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Abstract: Climate change and rapid urbanization could possibly increase the vulnerability of the
Great Lakes Basin, Canada, which is the largest surface freshwater system in the world. This study
explores the joint impact of climate change and land-use changes on the hydrology of a rapidly
urbanizing Credit River watershed which lets out into Lake Ontario 25 km southwest of downtown
Toronto, Ontario (ON), Canada; we began by classifying the watershed into urban and rural sections.
A non-parametric Mann–Kendall test and the Sen slope estimator served to detect and describe the
annual-, seasonal-, and monthly-scale trends in the climate variables (temperature, precipitation, and
evapotranspiration), as well as the streamflow characteristics (median annual streamflow, baseflow,
Runoff Coefficients (RC), Flow Duration Curve (FDC), Center of Volume (COV), and Peak Over
Threshold (POT)) since 1916 for four rural and urban sub-watersheds. The temperature, precipitation
and evapotranspiration (1950–2019) showed significant increasing trends for different months and
seasons. Furthermore, the results indicated that the median annual streamflow, 7-day annual mini-
mum flow, and days above normal are increasing; meanwhile, the annual maximum streamflow is
decreasing. A total of 230 datasets were tested for their trends; of these, 80% and 20% increasing and
decreasing trends were obtained, respectively. Of the total, significant trends (<0.05%) of 32% and 2%
increasing and decreasing, respectively, were observed. The results of the FDC analysis indicated
a decline in the annual and winter 10:90 exceedance ratio over the years for the rural and urban
sub-watershed gauges. The BFI results show that the BFI of the rural areas was, on average, 18%
higher than that of the urban areas. In addition, the RC also showed the influence of land-use and
population changes on the watershed hydrology, as the RC for the urban gauge area was 19.3% higher
than that for the rural area gauge. However, the difference in the RC was the lowest (5.8%) in the
summer. Overall, the findings from this study highlight the annual, seasonal, and monthly changes
in the temperature, precipitation, evapotranspiration, and streamflow in the watershed under study.
Based on the available monitored data, it was difficult to quantify the changes in the streamflow
over the decade which were attributable to population growth and land-cover use and management
changes due to municipal official planning in the watershed.

Keywords: Great Lakes; climate change; streamflow; land-cover change; urbanization

1. Introduction

The mean global and mean Canadian temperature rose by 0.8 ◦C and 1.7 ◦C, respec-
tively, between 1948 and 2016 (3.3 ◦C, 1.7 ◦C, 1.5 ◦C, and 1.7 ◦C for the winter, spring,
summer, and fall seasons, for Canada, respectively), which is a cause for concern [1]. The
annual mean temperature in the Great Lakes Basin, the largest surface freshwater system
in the world, increased by 1.6 ◦C between the periods of 1901–1960 and 1985–2016 [2].
Comparing the years 1953 and 2100 within the Great Lakes Basin, a regional climate model
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implementing the Representative Concentration Pathway (RCP) emission 4.5 and 8.5 sce-
narios, predicted 136 mm and 204 mm increases in evaporation, 83 mm and 140 mm
increases in precipitation, and 68 mm and 135 mm increases in runoff under the respective
scenarios [3].

The warmer temperatures will most likely intensify the hydrological cycle, leading
to a greater intensity and frequency of precipitation events. The existing and anticipated
changes in the climate could alter the duration, magnitude, and location of extreme hydro-
logical events, leading to a heightened severity of extreme weather events, an increase in
the frequency of short-duration and/or high-intensity rainfall events, and changes in the
spatial distribution of precipitation [4].

The hydrology of the Great Lakes Basin is affected by land cover and land-use
changes arising from the watershed’s development, including a rise in population of
37 to 105 million from 1990 to 2015 [5]. Moreover, notwithstanding the moderating effects
of the basin, many of these changes have been bought about by climate change. Reporting
on an analysis of the influence of the Great Lakes on spatial changes in climate variables
(e.g., precipitation, the mean minimum and mean maximum temperatures, cloud cover,
vapor pressure, and wind speed), a variable impact of the lakes on precipitation and tem-
perature by season, time of day, and lake size was noted [6]. The Environmental Law and
Policy Center, in concert with the Chicago Council on Global Affairs, delivered a report on
climate change’s influence on the Great Lakes, wherein they highlighted for policymakers
the vital importance of acting now to protect our natural resources [7].

An upward trend in annual and seasonal extreme minimum temperatures for the Great
Lakes Basin, and a similar trend in summer extreme maximum temperatures have been
reported [8]. Others found that, on an annual or monthly basis, extreme rainfall events of
short durations (15 min, 30 min, and 60 min) occurring within Ontario revealed no regional
pattern [9,10]. The winter streamflow changes due to amplification in the atmospheric
circulation [11] and internal variability [12] for select watersheds of the Great Lakes were
analyzed, but land cover was not included in the modelling. The historic precipitation,
temperature and streamflow trends were analyzed for the Credit river, Ontario, Canada in
2009 [13].

Studies have been undertaken to capture the response of the streamflow to precipi-
tation under urbanization [14], changing land use characteristics [15], and the changing
population growth rate [16]. In general, a strong positive relationship was found between
urbanization and streamflow [17–19]. For example, studies reported urbanization to have
engendered a significant change in the flow pattern of a desert stream in the American
Southwest [20]. The potential impact of climate change on the magnitude of hydrological
extremes and timing in a densely populated and urbanized watershed in Southern Ontario,
Canada, was addressed by linking a weather-generating algorithm and GCM outputs. The
study showed that future river flows would be more variable, but relatively less extreme at
the seasonal levels [21].

Few researchers have attempted to use historical data from rural and urban watersheds
to investigate the impact of land cover and land use on streamflow [22]. Having evaluated
the impacts of urbanization that occurred between 1950 and 2000 on the streamflow for
nine rural watersheds situated in Maine (USA), researchers found that more northerly
watersheds exhibited relatively more stable trends than did more southerly watersheds [23].
They further concluded that urbanized areas within the study watershed had not passed the
urbanization threshold that would allow them to significantly alter streamflow. Drawing
upon discharges recorded between 1980 and 2000, the temporal effect of rapid urban
construction on the streamflow in a 100-year floodplain in Texas was studied [24]. They
found a statistically significant increasing trend between the instantaneous peak flow and
the area rendered impervious through urbanization. Modelled under urban conditions, a
3% increase in imperviousness over 20 years resulted in the 100-year and 24-h storm peak
flows increasing from 1161 to 1218 m3/s.
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A recent review listed several important considerations when seeking to discriminate
between the impacts of climate change and anthropogenic activities on runoff [25]. Among
these are the use of the change point method to identify the reference and post-human
activity periods highlighted. The different abrupt changes in the trend tests reported in
their review included accumulative anomalies, the Mann–Kendall test, Pettitt’s test, order
cluster analysis, and double-mass curves. Machine learning techniques such as Depth Belief
Networks (DBN), Artificial Neural Networks (ANN), Support Vector Regression (SVR),
Random Forest (RF), Long Short-Term Memory (LSTM), and the Reduced-Order Model
(ROM) have been used in the analysis and modelling of large hydrological datasets. The
study further pointed out the difficulty in determining whether the location of the change
point is attributable to human activities or climate change. An important conclusion of the
review was that most studies consider human activities and climate change independently;
however, it is evident that human activities have a direct impact on climate change, and
vice-versa. Overall, it was concluded that no method exists to separate the impact of
changes in human activities due to possible changes in climatic conditions.

The reviewed literature showed the ways in which land-cover changes coupled with
climate change can affect hydrology, which has always been of great interest to researchers
and field agencies in the Great Lakes region. As a multitude of factors can influence the
quantity and distribution of streamflow, it is difficult to distinguish and quantify the impact
of each factor on the watershed’s overall hydrological response. In order to detect and
attribute temporal changes in streamflow, it is important to understand and identify the
cause of the change: is it the result of changes in land cover and land use, population
growth, climate, the interaction of several factors, or current water management practices?

Accordingly, a suite of statistical and analytical methods combining climate and
streamflow data with the rural and urban areas with a long period of record (>100 years)
may offer the means of a detailed analysis. Therefore, in the present study, annual and
seasonal changes in streamflow, together with precipitation, temperature, evapotranspi-
ration, readily available land cover, land use, and population density information were
investigated, in order to shed light on the research question: “Has streamflow changed?”
Accordingly, the present study’s primary objective was to examine trends in the historic
streamflow and identify the impact of climate change and/or urbanization through differ-
ent statistical and analytical approaches for a rapidly urbanizing Credit River watershed in
the Ontario (ON) portion of the Great Lake Basin.

2. Materials and Methods
2.1. Study Area

Extending nearly 100 km from its headwaters at Orangeville (ON) to Port Credit (ON)
on the shoreline of Lake Ontario, the moderately flat and southward-sloping mixed-use
Credit River watershed extends over a drainage area of 1000 km2 (Figure 1) [26]. Harboring
some 1500 km of tributaries, this cold-climate watershed is subject to diverse land cover.
The watershed is situated within the most rapidly urbanizing region of Canada, with about
87% of its population living in the southernmost third of the watershed. The watershed
also harbors portions of the World Biosphere Reserve, Oak Ridges Moraine, and Niagara
Escarpment, making it the home of significant natural features. The watershed has three
distinct physiographic zones: the upper, middle, and lower zones. The upper reaches of
the watershed cover the complete North Inglewood delta, situated on or above the Niagara
Escarpment. The middle reaches of the watershed are characterized by the steep slopes of
the Oak Ridges Moraine, which covers the Niagara Escarpment area between Inglewood
and Georgetown. The lower (southernmost) reaches of the watershed are highly urbanized,
and include the western edge of Brampton and most of Mississauga.
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Figure 1. Credit River watershed with the locations of the streamflow and climate stations. The
number indicates the drainage area (km2) and elevation (m).

The mean air temperature and total precipitation in the Credit River watershed vary
monthly and seasonally, and differ between the upper, middle, and lower reaches of the
watershed. The mean temperatures and precipitation values (1950–2005) for the upstream
Orangeville and Georgetown stations are 6.14 ◦C and 7.06 ◦C, and 900 mm and 868 mm,
respectively [27]. Of the total precipitation, 15% (125 mm) falls as snow. Due to lake-
effect precipitation from Lake Ontario, the greatest quantity of precipitation is received
on the Niagara Escarpment, in the northern reaches of the watershed. The mean annual
evapotranspiration is 546 mm [28].

2.2. Data Used

Quality controlled daily historic streamflow (m3 s−1) data were collected from the
Water Survey of Canada’s (WSC) HYDAT database. The temperature (◦C) and precipitation
(mm) for the period of 1950–2005 were drawn from the Ontario in-filled climate data for
the rural Orangeville Ministry of the Environment (MOE) weather monitoring station (lat.
43◦55′, long. 80◦05′, elevation 411.5 m, Climate ID: 6155790) and the urban Georgetown
WWTP (lat. 43◦38′, long. 79◦52′, elevation 221 m, Climate ID: 6152695) weather monitoring
station, both of which are maintained by the Meteorological Service of Canada [27]. Con-
tinuous data for the whole period, and daily mean temperature and precipitation data for
2006–2019 were collected from NASA’s EARTH DATA portal, GPM GPM_3IMERGDF v06
(0.1◦), and GLDAS_CLSM025_DA1_D v2.2 (0.25◦), respectively. The evapotranspiration
data for the watershed were downloaded from GLDAS_CLSM025_DA1_D v2.2 (0.25◦) [28].

The published flood and low-flow frequency analysis results from the Ontario Ministry
of Northern Development, Mines, Natural Resources and Forestry, and Ontario Ministry of
Environment and Climate Change were used in the comparison of floods and low flows.
The watershed is delineated [29], and the locations of the streamflow gauges and the climate
stations are given in Figure 1 and Table 1.
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Table 1. Concomitant streamflow and climate gauges selected for the present study.

Streamflow Gauge Climate Gauge Streamflow Gauge Climate Gauge

Rural Urban

Orangeville Orangeville WB Norval Georgetown
Cataract Orangeville Erindale Georgetown

2.3. Population, Land-Cover and Land-Use Information

Over the years, as it became more developed, the Credit River watershed experienced
an increase in population, thereby changing the land cover. There were no consistent
data sources available to represent and quantify the changes in the land cover, land use,
and population growth in the study watershed. Furthermore, during the last century,
continuous changes in the boundaries of various municipalities and census areas made it
difficult to quantify the changes in land use and population in this study watershed. In a
previous study, satellite images were used to quantify the changes in the land cover [30].
The watershed’s population progressed from 0.15 to 1.28 to 1.98 million in 1951, 1998, and
2020, respectively. The urban/built-up area rose from 3% in 1956 to 22.8% in 2015 [31].

2.4. Statistical Analysis

Three climate and 10 streamflow statistics (Table 2) were applied at different scales to assess
the impact of climate change and urbanization on the watershed’s hydrological response.

Table 2. Climate and streamflow matrix used for the analysis.

Analysis

Parameters

Meteorological Hydrological

Temperature Precipitation Evapotranspiration Streamflow Baseflow Flow Duration
Curve

Annual/seasonal/monthly trend X X X
Annual/seasonal/sub-period trend X X
Annual/seasonal/sub-period peak

over threshold X

Annual flood frequency X
Annual low flow frequency X

Annual/seasonal/sub-period runoff
coefficient X

Centre of volume trend X
Annual/seasonal/sub-period

baseflow index X

Annual/seasonal/sub-period 10%
exceedance X

Annual/seasonal/sub-period 10:90
exceedance X

The Mann–Kendall (non-parametric) test and Sen’s slope estimator were used to
identify the trends in the streamflow, baseflow, temperature, precipitation, and evapotran-
spiration. The Mann–Kendall trend test is widely used in hydrological time series analysis
because it is not affected by extreme values/outliers, and it does not require data to be
normally distributed [32–38]. The strength of the association was found using τb (tau-b),
and the magnitude of the trend was estimated using Sen’s slope. A p-value of ≤0.05 meant
the rejection of a zero-trend hypothesis.

COV is a timing measure (the winter temperature rise) representing the center of
mass of the streamflow curve [39]. The COV is sensitive to the total annual discharge,
and indicates that analyses are meaningful only if the correlation between COV and time
is greater than the correlation between the mean annual flow and time (>1). The non-
parametric Pettitt test served to detect any shift in the central tendency of a time series.
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The baseflow is the portion of the streamflow which is the sum of deep subsurface
flow and delayed shallow subsurface flow. The recursive digital filter method was used to
separate the baseflow from the streamflow [39]. The baseflow index (BFI) is the ratio of the
volume of the baseflow to the total volume of the streamflow, and is expressed as a value
ranging from 0 to 1.

The FDC provides the relationship between any given discharge value and the per-
centage of time for which this discharge is exceeded. The lateral/directional shift in mass of
the streamflow serves as a measure of water stress, and is used in climate change studies to
report on Sustainable Development Goal (SDG) 6.4.2 [40]. Moreover, the 10:90 exceedance
ratio was used to compare the extremes of high and low flows. The 10:90 exceedance
ratio and BFI are helpful in advancing our knowledge of watershed storage capacity and
groundwater recharge, and are accordingly proxies for urbanization.

Extreme Value Theory (EVT) and the Peak Over Threshold (POT) served to test the
stationarity of the streamflow data, as well as the likelihood of magnitude (return period–
return level) and the volatility of the flood flow. The extreme volatility is computed as the
ratio of two return levels. It is also a measure of surprise or the extreme volatility ratio.
The normalized measure is called the Extremes Volatility Index (EVI) [41]. This approach
provides the projected change in the return level over say 25 years, with one occurring
every 2 years, which may occur with the intensification of the hydrological cycle. The
amount of precipitation with a certain recurrence interval is projected to increase [1].

The runoff coefficient for a given period (event/annual/seasonal, etc.) represents
the runoff expressed as a percentage of precipitation. Its long-term average can be used
to understand the land-use change within a watershed. This value could also be used to
compare watershed portions with different land-use patterns, e.g., a rural (Orangeville)
portion of the watershed and an urban one (Georgetown).

In order to perform various analyses, packages (in2extRemes, rkt, FlowScreen, and
fasstr) of the free and open-source programming software R, Streamflow Analysis and
Assessment Software (SAAS) version 4.1. [42], and Low-flow frequency (LFA) analysis
(Environment Canada) software were used.

An orthogonal approach was used to study the seasonal characteristics: winter (Jan-
uary, February, March), spring (April, May, June), summer (July, August, September), and
autumn (October, November, December). In order to compare rural and urban areas, two
climate stations were chosen within the basin, from one rural (Orangeville) and one urban
(Georgetown) region of the basin. The rural climate station is north of the urban one,
though both lie south of a latitude of 60◦ north.

3. Results and Discussion
3.1. Preliminary Inferences regarding the Data

Prior to the analysis of the climate variables and streamflow changes, some interme-
diate analytical steps must be implemented if one is to draw reasonable inferences about
the characteristics of the watershed. The climate inputs for the watershed varied spatially
and temporally within the watershed (Figure 2). The precipitation, temperature and evap-
otranspiration values in the watershed increased with time. It can also be inferred that
the evaporation is greater than the precipitation in some of the years. Both precipitation
and evapotranspiration are energy driven, yet the process takes place in different locations,
such that during drought years the demand will be greater than the supply.

In the visual analysis of the streamflow (Figures 3–6), the rural gauges showed a
more definite pattern than did the urban gauges (dispersed pattern). Amongst all of the
gauges, the rural gauge—Cataract, with 104 years of data—showed a clear pattern. For all
four gauges, the median annual streamflow, 7-day annual minimum flow, and days above
normal streamflow are increasing, while the annual maximum streamflow is decreasing.
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3.2. Spatio-Temporal Changes in Climate Variables

The results of the Mann–Kendall test to detect and attribute the change in mean
temperature, total precipitation, and evapotranspiration at the monthly, seasonal, and
annual scales at a rural and an urban site for the period of 1950–2019 are shown in Table 3
and Figure 7. Table S1 in the Supplementary Materials provides the τ, p-value, and slope
derived from the analysis.

For the rural Orangeville site, the temperature (1950–2019) showed a significant
increasing trend for the month of September, as well as the winter, spring, summer, and
full year. For the urban Georgetown site, except for January, March, April, and May, the
other periods showed a significant increasing trend for temperature. At both stations, the
increase in the winter temperature was the main contributor to the increase in the annual
temperature. The decadal temperature increase for Orangeville and Georgetown were
0.09 ◦C and 0.33 ◦C, respectively. These results concur with those of previous studies [4,8].
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Table 3. Results of the monthly, seasonal, and annual trend analysis of the temperature, precipitation,
and evapotranspiration for the period 1950–2019.

Time
Temperature Precipitation Evapotranspiration

Orangeville Georgetown Orangeville Georgetown Watershed Average

January ↓ ↑ ↑↑ ↑ ↓↓
February ↑ ↑↑ ↑↑ ↑ ↓↓

March ↑ ↓ ↑ ↑ ↓
April ↑ ↑ ↑ ↑ ↑
May ↑ ↑ ↑↑ ↑↑ ↑↑
June ↑ ↑↑ ↑ ↑ ↑↑
July ↑ ↑↑ ↑ ↑ ↑

August ↑ ↑↑ ↓ ↑ ↑
September ↑↑ ↑↑ ↑ ↑ ↓

October ↓ ↑↑ ↑↑ ↑ ↓
November ↓ ↑↑ ↑↑ ↑ ↓↓
December ↑ ↑↑ ↑↑ ↑ ↓↓

Winter ↑↑ ↑↑ ↑↑ ↑ ↓↓
Spring ↑↑ ↑↑ ↑ ↑↑ ↑↑

Summer ↑↑ ↑↑ ↑ ↓ ↑
Autumn ↑ ↑↑ ↑↑ ↑ ↓
Annual ↑↑ ↑↑ ↑↑ ↑↑ ↑

↓ Increasing trend, ↑ decreasing trend, ↑↑ significant (<0.05%) increasing trend, ↓↓ significant (<0.05%) decreasing trend.
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Precipitation (1950–2019) showed weak increasing monthly trends except for the
month of August (summer month) for both the Orangeville (rural) and Georgetown (urban)
sites, and for summer for Georgetown; however, these trends were not significant. The an-
nual precipitation showed a significant increase for both stations. The decadal precipitation
change was 33.7 mm for Orangeville (rural) and 16.9 mm for Georgetown (urban).

The annual evapotranspiration (1950–2019) did show an increasing and nonsignificant
trend. Compared to other hydrological processes like precipitation, infiltration and runoff,
evapotranspiration is a rapid and energy-driven process (rate). It varies regionally and
seasonally, as observed in the USA [43]. The lack of a significant trend in evapotranspiration
on an annual basis agrees with the results of a recent study reported by [3].

Of the total 85 datasets, 82% showed an increasing trend and 18% showed a decreasing
trend. Out of these, 33 datasets had a significant increasing trend and five had a significant
decreasing trend. The highest Sen’s slope for temperature and precipitation for the rural
Orangeville (0.021 and 0.92) was found for March and April, respectively, and those for the
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urban Georgetown (0.093 and 0.49) were found for February and April, respectively. Sen’s
slope (0.157) for evapotranspiration for the whole watershed was highest for the month of
May. These results suggest possible changes in the climate and land use. However, studies
relating to temperature, precipitation, and evapotranspiration on a monthly, seasonal, and
annual scale for the Great Lakes Basin are few.

The precipitation and evapotranspiration data were analyzed separately in this study
because the data were from different sources. This study did not analyze the difference between
precipitation (P) and evapotranspiration (E), i.e., the (P-E) trend of the time series data.

3.3. Spatio-Temporal Changes in the Streamflow

The Period of Record (POR) was divided into sub-periods of 20 years’ worth of data
(Table 4). Starting from the headwaters (the upstream location), the gauges at Orangeville,
Cataract, Boston Mills, Norval, and Erindale were in the main channel of the Credit River,
while those at Erin and West Branch Norval were located on a tributary of the Credit
River. The streamflow gauges were divided into two categories based on urbanization
and ecoregions: two gauges each (drainage area > 50 km2) were situated in the rural/Lake
Simcoe-Rideau ecoregion (Orangeville and Cataract), and another two were situated in the
urban/Lake Erie-Lake Ontario ecoregion (Erindale and West Branch Norval). The urban
gauge in the tributary channel (West Branch Norval) was selected to negate the cumulative
effect of the streamflow from the upstream streamflow.

Table 4. Period of record and the sub-period chosen for each of the stream gauges.

Gauge
Drainage

Area
(km2)

Period of
Record
(POR)

Chosen Sub-Period

1920–1939
(A)

1940–1959
(B)

1960–1979
(C)

1980–1999
(D)

2000–2019
(E)

Cataract (Rural) 209 1916–2019 X X X X X
Erindale (Urban) 795 1949–1993 X

West Branch Norval (Urban) 131 1961–2019 X X X
Orangeville (Rural) 60.6 1968–2019 X X
Boston Mills (Rural) 415 1983–2019 X

Erin (Rural) 32.3 1984–2019 X
Norval (Urban) 645 1989–2019 X

As an initial screening to detect the streamflow changes, cumulative mass curves
were generated for each of the gauges. This assisted in testing any abrupt change in the
streamflow due to dams or other structures. All of the gauges showed changes in the
streamflow; however, the changes were minor and gradual.

The results of the Mann–Kendall non-parametric (distribution-free) test with Sen’s
slope estimator for the streamflow and baseflow at the Cataract, Orangeville, NB Norval
and Erindale gauges are presented in Tables S2 and S3 in the Supplementary Materials.
The overall picture is represented in Table 5 and Figure 8. An increase in precipitation
correlated well with an increase in the streamflow and baseflow. An increase in the spring
flow was the main contributor to the significantly increasing trend in the annual flow at
Cataract, Orangeville, and WB Norval. In contrast, Erindale showed both positive and
negative trends in its streamflow, reflecting the ways in which land-use and climate change
are probably compensating for each other’s effects. The decadal streamflow slopes for two
gauges, one from a rural (Cataract) and one from an urban (Erindale) gauge, were 0.014
and 0.557 m3 s−1, respectively, while for the baseflow slope values these gauges were 0.02
and 0.431 m3 s−1. Because there are no major hydrotechnical projects in the watershed, the
change could be attributable to climate change and land-use change.



Atmosphere 2022, 13, 225 11 of 20

Table 5. Significant (up/down arrow) and non-significant (horizontal arrow) temporal trends in the
streamflow and baseflow. Period A, 1920–1939; Period B, 1940–1959; Period C, 1960–1979; Period D,
1980–1999; Period E, 2000–2019.

Streamflow Trend Baseflow Trend

Period

A B C D E A B C D E

Annual

Cataract ↑ ↑ ↑↑ ↓ ↑ ↑ ↑ ↑↑ ↓ ↑
Orangeville ↓ ↑↑ ↓ ↑↑

Erindale ↑↑ ↑↑
WB Norval ↑↑ ↓ ↑ ↑↑ ↓ ↑

Winter

Cataract ↑ ↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑ ↑
Orangeville ↓ ↑↑ ↓ ↑↑

Erindale ↑↑ ↑
WB Norval ↑ ↑ ↑ ↑ ↓ ↑

Spring

Cataract ↑ ↑ ↑↑ ↓ ↑ ↑ ↑ ↑↑ ↓ ↑
Orangeville ↑ ↑↑ ↑ ↑↑

Erindale ↑ ↑↑
WB Norval ↑↑ ↓ ↑ ↑↑ ↑ ↑

Summer

Cataract ↓ ↑ ↑↑ ↓ ↑ ↓ ↑ ↑↑ ↓ ↑↑
Orangeville ↓ ↑↑ ↓ ↑↑

Erindale ↑↑ ↑
WB Norval ↑ ↓ ↑ ↑ ↓ ↑

Autumn

Cataract ↑ ↑ ↑↑ ↓ ↑ ↑ ↑ ↑↑ ↓ ↑
Orangeville ↓↓ ↑ ↓ ↑

Erindale ↑ ↑↑
WB Norval ↑ ↑↑ ↑ ↑ ↑↑ ↑

↓Decreasing trend, ↑ increasing trend, ↑↑ significant (<0.05%) increasing trend, ↓↓ significant (<0.05%) decreasing trend.
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Overall, the urban streamflow and baseflow can be concluded to be changing at a faster
rate than the rural area due to the build-up of an impervious layer in the watershed, as
well as climate change. The increase in the baseflow during winter and summer improves
the water quality [44]. Standardized data from Reference Hydrologic Networks’ (RHBN)
stream gauges—situated in the UK, USA, and Canada—were used to analyze climate-
driven changes in the streamflow; however, it was found that it was difficult to separate the
impact of climate change and urbanization [45]. The key issue with this method was that
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there was a limited number of RHBN gauges (n = 12) on the Canadian side of the Great
Lakes Basin, with no RHBN gauge in the Credit River basin. Previous studies [11,12] on
the same watershed looked at the projected values from climate models. The study using
historic data showed a similar trend, but the data was limited up to 2009 [13].

Out of the total 110 datasets, 78% showed an increasing trend and 28% showed a
decreasing trend. Out of these, 30 datasets showed a significant an increasing trend, and
one showed a significant decreasing trend. The change was neither dependent on the
drainage area nor on the gauge location (main channel/tributary). As there were no major
structures or diversions in the watershed, the change was primarily due to climate change
and land-cover changes.

Only estimated for the Cataract gauge, the COV value was 1.3 (COV > 1.0; p = 0.03).
The slope was –0.304, indicating that every 10 years the COV occurs three days earlier.
This is likely driven by warming winter and spring temperatures, and changes in the
snow-to-rain ratio [1].

The 10% exceedance and 10:90 exceedance ratios for FDC were estimated, and the data
are provided in Table S4 as Supplementary Materials. Although the 10% exceedance did
change over the years, it did not show any consistent decrease/increase. In contrast, the annual
and winter 10:90 exceedance ratio declined over the years for the rural (Cataract) and urban
(WB Norval) gauges, though they did not show a consistent change for the summer and
autumn values. The reduction in the ratio during the winter season was likely due to increased
temperatures, while for the annual period it was likely due to changes in the streamflow regime.
Using the FDC, water flow and yield differences attributed to permanent changes in vegetation
cover were observed in a number of paired catchment studies undertaken at different temporal
scales [46]. They concluded that it was difficult to generalize the quantitative impact of changes
in vegetation on seasonal yield and flow regimes.

In order to assess the changes in the baseflow contribution to the total streamflow,
the BFI—a proxy indicator of groundwater discharge and other water storage in the
watershed—was determined. The baseflow is considered to be an important parameter
for effective water management planning, especially during long dry periods. The BFI
(Table S5, Supplementary Materials) changed over time. For the summer and autumn, as
well as for the full year, the BFI was >0.5, showing that the watershed is a slow-response
watershed with sustained flow and high groundwater storage. This occurs because with
warmer winter temperatures the soil freezes and thaws, and there are frequent snowmelt
events. In hydrological models for Ontario, the BFI is the variable which is most sensitive
to regional low [47] and flood flows [48].

The assumption of stationarity which is necessary for POT flood analysis failed for
all gauges and all periods, as the values of the location and shape changed (Table S6,
Supplemental Materials). In order to make the analysis physically more meaningful using
EVI, the sensitivity of the magnitude of the flood, a normalized value (Q100/Q2), was
estimated. Within the five sub-periods (104 years) of the records for the Cataract gauge, the
EVI showed periodicity (not monotonic), while at the same time the POR values showed a
decreasing trend. As the basin regularly experiences floods in the spring (snowmelt and/or
a combination of snowmelt and rain) and summer months, the EVI for the two seasons was
compared. For both rural and urban watersheds, the spring EVI was smaller than that in
the summer. This indicates that spring floods are more volatile than summer floods. The
EVI can also be used as a proxy for event attribution in order to understand the impact of
climate change. The amount of precipitation with a certain recurrence interval is projected
to increase.

The flood flows (Q2 and Q100) and low flows (7Q2 and 7Q20) for two periods were
compared in order to investigate their change (Figures 9 and 10). These values are tied
to Ontario regulations: a 100-year flood is the regulatory flood employed in flood plain
mapping and development, and a 7Q20 low flow is used as the limiting flow for the
abstraction and discharge of water from/to the stream. A 2-year return period is used as
an index flood in Ontario regional flood models [48]. These data indicate that the flood
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flow decreased while the low flow increased from the earlier (up to 1984) to the current
period (up to 2019). This was further investigated by looking at the parent (precipitation)
data series over the years.
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Figure 9. Comparison of the flood flows for the return periods Q2, Q2.33, Q10, Q50 and Q100 from
1985 to 2014 for two rural stream gauges (c) Orangeville and (a) Cataract and one urban gauge
(b) WB Norval. The graph shows a decrease in the return level in 2014.
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shows an increase in the return level in 2019.

In Ontario, the annual maximum precipitation data is bimodal due to low-likelihood,
high-frequency events happening once in three to four years. The number of these outliers
of high magnitude increases as the period of record increases. Accordingly, the Intensity,
Duration and Frequency (IDF) precipitation values may increase because the extreme
outliers (historic events) are never removed. Due to global warming, it is anticipated that
the snowmelt will happen earlier, and hence rainfall events that usually occur during
April–May are not snowmelt on rainfall events. Because of the compensating effect of the
decrease in snow cover, storm events are not producing riverine floods (no outliers); this
may also be due to the earlier occurrence of the peak streamflow. Low antecedent soil
moisture values and the greater availability of watershed/channel storage capacity are
the main physiographic reasons for this effect. Flood flows were studied at the watershed
scale [28,29]; however, flood flows and low flows should be studied at a regional scale,
rather than on a watershed scale [49,50].

Furthermore, the Cataract gauge, with the longest duration of data, was further
investigated for all five sub-periods. The results showed an increase as well as a decrease
for the median streamflow, baseflow, and BFI; an increase in the low flow; and a decrease in
the flood flow and POT (the magnitude of the flood). This could be due to climate change.
The warming of temperatures results in an increase in rainfall and a decrease in snowfall
during the winter and early spring periods. This results in reduced flows due to snowmelt.

A preliminary review (starting 1851) was carried out on the land-use change within
the watershed. During 1851–1890, the land cover was dominated with forest and wetland.
Then, until 1940, watershed development started to convert it to urban and agriculture
land use. Then, re-forestation happened until 1954. A summary of the land use for three
periods—1956, 1996, 2010, and 2015—is given in Table 6 [24,31]. With the progress of time,
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land use management practice has changed in a complex way, along with municipal official
planning; hence, a detailed study is warranted.

Table 6. Table showing the land cover percentage for the years 1956 (published data [24]), 1996 [24]
(published data), 2010 (Landsat satellite data) and 2015 (Landsat satellite data) [31].

Land Use
Percentage Area

1956 1996 2010 2015

Natural area 16.6 26.5 28.5 28.6
Agricultural 80.4 45.7 44 44.1

Urban/settled area 3 22.7 22.9 22.8
Other N/A 1.5 4.6 4.5

3.4. Spatial Analysis between Rural and Urban Stream Gauges

The initial screening was performed using Pettitt’s test and population growth data for
the regions around the Cataract (rural) and West Branch Norval (urban) stream gauges; data
for the 1971–2019 period were selected for analysis. Concomitant data for the nearby climate
stations (Orangeville and Georgetown) were also selected for the same period for analysis.

The results of the Mann–Kendall trend analysis for the annual and seasonal time series
for the mean temperature, total precipitation, evapotranspiration, and median streamflow
are shown in Table 7. Details of the statistics (τ, p-value, and slope) of these test results
are provided in Table S7 of the Supplementary Materials. Except for the winter (rural) and
summer (urban) precipitation, which showed a negative temporal trend, in all other cases
(temperature and precipitation) a positive trend was observed. The evapotranspiration
within the watershed (as the GLDAS resolution is high) was taken for reference. There were
significant changes (increases or decreases) in the evapotranspiration for the spring and
autumn seasons. For the rural areas, the median streamflow showed a significant increase
for the annual, winter, and spring periods. Out of the total 35 datasets, 86% showed an
increasing trend and 14% showed a decreasing trend. Out of these, 12 datasets showed a
significant increasing trend, and none showed a significant decreasing trend.

Table 7. Summary of the trend analysis for the urban and rural stations for the period 1971–2019.

Time
Period

Trending Parameter

Meteorological Hydrological

Temperature Precipitation Evapotranspiration Streamflow

Orangeville Georgetown Orangeville Georgetown Watershed Average Cataract WB Norval

Annual ↑↑ ↑↑ ↑ ↑ ↑ ↑↑ ↑
Winter ↑↑ ↑↑ ↓ ↑ ↓ ↑↑ ↑
Spring ↑↑ ↑↑ ↑ ↑ ↑ ↑↑ ↑

Summer ↑↑ ↑↑ ↑ ↓ ↑ ↑ ↑
Autumn ↑ ↑↑ ↑ ↑ ↓ ↑ ↑

↓ Decreasing trend, ↑ increasing trend, ↑↑ significant (<0.05%) increasing trend.

In order to compare the rural and urban sub-watersheds, Sen’s slope of streamflow was
normalized with the annual precipitation and temperature. Overall, the annual streamflow
increased for all of the gauges. However, the rural (vs. urban) areas were more sensitive to
both temperature and precipitation (Figures 11 and 12), perhaps because of the sinusoidal
variability in the minimum and maximum temperatures that occurs between the two
areas, as suggested by another study [51]. When analyzed for seasonal data in sequence,
the winter streamflow showed a decline, whereas, for the same time for other periods, it
showed an increasing trend in the rural areas. However, the urban areas were underwater
because of the increase in winter flow (snowmelt or precipitation falling as rain); therefore,
the spring freshet was reduced. Furthermore, exaggerating the process, lower precipitation
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during the summer would result in a low streamflow not only during the summer but also
into the coming autumn, as the historical data has shown in this study.
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The BFI results show that the BFI of the rural areas was, on average, 18% higher than
that of the urban areas (Table 8). This proxy parameter for impervious built-up areas shows
that an increase in these areas in urban zones reduces the baseflow of the stream. This trend
is visible and consistent for the annual analysis. The highest percentage change between
the two gauging stations was found during the winter season, i.e., 21.6%. The lowest BFI
difference for these stations was found during the spring season, i.e., 12.5%.
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Table 8. Summary of the seasonal and annual baseflow index (rural and urban) for the period
1971–2019.

Period Cataract WB Norval % Change in BFI

Annual 0.675 0.549 18.7
Winter 0.621 0.487 21.6
Spring 0.632 0.553 12.5

Summer 0.761 0.629 17.3
Autumn 0.743 0.592 20.3

The analysis of the surface Runoff Coefficient (RC) for the rural and urban gauges,
Cataract and WB Norval, respectively, is shown in Figure 13. The annual RC for the urban
gauge area was 19.3% higher than that for the rural area gauge, and this was due to the
higher percentage of impervious areas in the urban zone. A similar trend was observed
for spring, summer, and autumn. However, the difference of the RC was the lowest (5.8%)
in the summer (Figure 13). In addition, the analysis of the RC for various periods (C, D,
and E) also shows the greater contribution of surface runoff from urban areas compared to
rural areas. This indicates that climate change and urbanization affect the changes in the
streamflow. However, even though different methods have been tried, there is no feasible
method to separate the impact of climate change and that of land-use change [23].
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4. Conclusions

The goal of the present study was to evaluate the impact of climate change, land
cover, and land-use change on the streamflow in the rapidly urbanizing Credit River
watershed, which drains into Lake Ontario at Port Credit (Ontario, Canada). For some
of the gauging stations, streamflow data were available for a period of over 100 years.
The non-parametric Mann–Kendall test with Sen’s Slope estimator method was used to
detect changes in the climate variables (temperature, precipitation, and evapotranspiration)
and streamflow characteristics (median annual streamflow, baseflow, and COV). Other
streamflow characteristics that were studied tested the stationarity of the peak over the
threshold streamflow using EVT, duration curves and their derivatives, BFI, and runoff
coefficient. A total of 230 datasets were tested for their trends; of these, 80% and 20%
increasing and decreasing trends, respectively, were obtained. Of the total, significant
trends (<0.05%) of 32% and 2% increasing and decreasing trends were found, respectively.

• The analysis of the annual mean temperature and precipitation showed significant
trends; however, evapotranspiration showed no such trends. The rural gauges tended
to show increasing monthly and seasonal trends for precipitation, whereas the urban
gauges tended to show increasing trends for temperature. Of the total 85 datasets, 82%
of the datasets showed an increasing trend and 18% showed a decreasing trend. Out
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of these, 33 datasets showed a significant increasing trend and five datasets showed
a significant decreasing trend. Over a ten-year period, the COV shifted three days
earlier, showing that the fraction of streamflow happening each month was changing,
driven by warming winter temperatures.

• Both the streamflow and baseflow showed trends. Out of the total 110 datasets, 78% of
the datasets showed an increasing trend and 28% showed a decreasing trend. Out of
these, 30 datasets showed a significant increasing trend, and one showed a significant
decreasing trend. The FDC derivative—10% exceedance, which was used to detect
the lateral shifts in the streamflow—did not show any consistent increase/decrease in
values; however, the 10:90 exceedance ratio declined over the years but did not show
any consistent change in its summer or autumn values.

• The BFI index varied during the latter two periods (Periods D and E). In general, if
BFI > 0.5, the watershed could be deemed to have a slow response. The stationarity
test was failed for the POT analysis. Though the magnitude of the likelihood of a flood
changed, this change showed no clear pattern. At the same time, the flood and low
flow frequencies decreased and increased, respectively. This change in the latter period,
highlighting the fact that the annual peak declined over the years, at the same time as
the annual seven-day minimum increased. The runoff coefficient showed a consistent
behavior for the winter, spring, and autumn periods, where evapotranspiration was
not a dominating factor. This implies that land use has played a significant role in the
watershed’s hydrology for urban regions.

• A spatial analysis of both rural and urban gauges was used to attribute changes in
streamflow to temperature and/or precipitation, which showed that rural zones were
more sensitive to temperature and precipitation than urban zones. The same was the
case for BFI. Out of the total 35 datasets, 86% showed an increasing trend and 14%
showed a decreasing trend. Out of these, 12 datasets showed a significant increasing
trend, and none showed a significant decreasing trend.

Overall, the findings from this study highlight the annual, monthly, and seasonal
changes in the temperature, precipitation, and streamflow in a rapidly urbanizing water-
shed in the Lake Ontario Basin. However, it was difficult to clearly quantify the changes
in the streamflow over the decade which were attributable to population growth and the
expansion of urban areas. The study further revealed that more detailed, continuous,
spatio-temporal land-cover and land-use data regarding the expansion of urban areas are
needed in order to better quantify the impact of urbanization on the streamflow, as changes
in the streamflow associated with changes in land use would potentially impact the water
quality and water levels in the Great lakes. Therefore, a more detailed investigation of the
impact of urbanization on the hydrology and water quality for the watersheds in the Great
Lakes region is recommended. In addition, watershed modelling methods with detailed
monitoring data should be employed in order to segregate the impact of land cover and
land-use changes from the impact of climate change on the streamflow and hydrology of
the watershed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos13020225/s1, Table S1: Summary of the trend analysis for the temperature, precipi-
tation, and evapotranspiration variables annually, seasonally, and monthly, Table S2: Summary of
the trend analysis of the streamflow. Period A, 1920–1939; Period B, 1940–1959; Period C, 1960–1979;
Period D, 1980–1999; Period E, 2000–2019, Table S3: Summary of the trend analysis of the baseflow.
Period A, 1920–1939; Period B, 1940–1959; Period C, 1960–1979; Period D, 1980–1999; Period E,
2000–2019, Table S4: Summary of the FDC 10% exceedance and 10:90% exceedance ratio. Period
A, 1920–1939; Period B, 1940–1959; Period C, 1960–1979; Period D, 1980–1999; Period E, 2000–2019,
Table S5: Summary of the BFI for different periods. Period A, 1920–1939; Period B, 1940–1959; Period
C, 1960–1979; Period D, 1980–1999; Period E, 2000–2019, Table S6: Summary of the POT analysis
parameters and return level for 2 years, 10 years, 20 years, 100 years, and its derivative. Period
A, 1920–1939; Period B, 1940–1959; Period C, 1960–1979; Period D, 1980–1999; Period E, 2000–2019,
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analysis for the period 1971–2019.
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