Seasonal Temperature Extremes in the North Eurasian Regions Depending on ENSO Phase Transitions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Bjerknes, J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 1966, 18, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. J. Phys. Oceanogr. 1969, 97, 163–172. [Google Scholar]
- Fraedrich, K. An ENSO impact on Europe? A review. Tellus 1994, 44A, 5541–5552. [Google Scholar]
- Renwick, J.A.; Wallace, J.M. Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev. 1996, 124, 2071–2076. [Google Scholar] [CrossRef]
- Gushchina, D.Y.; Petrosyants, M.A. Interaction between equatorial Pacific sea surface temperature and wind velocity circulation in atmospheric centers of action. Russ. Meteorol. Hydrol. 1998, 12, 1–14. [Google Scholar]
- Arpe, K.; Bengtsson, L.; Golitsyn, G.S.; Mokhov, I.I.; Semenov, V.A.; Sporyshev, P.V. Analysis and modeling of the hydrological regime variations in the Caspian Sea basin. Doklady Earth Sci. 1999, 366, 552–556. [Google Scholar]
- Gruza, G.V.; Rankova, E.Y.; Kleshchenko, L.K.; Aristova, L.N. On the relationship between climatic anomalies on the territory of Russia and the El Niño phenomenon-Southern Oscillation. Russ. Meteorol. Hydrol. 1999, 5, 32–51. [Google Scholar]
- Arpe, K.; Bengtsson, L.; Golitsyn, G.S.; Mokhov, I.I.; Semenov, V.A.; Sporyshev, P.V. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett. 2000, 17, 2693–2699. [Google Scholar] [CrossRef] [Green Version]
- Wiedenmann, J.M.; Lupo, A.R.; Mokhov, I.I.; Tikhonova, E.A. The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic. J. Clim. 2002, 15, 3459–3473. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Oceanic and atmospheric transport of multiyear El Niño–Southern Oscillation (ENSO) signatures to polar regions. Geophys. Res. Lett. 2004, 31, L24210. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Khon, V.C. Interannual variability and long-term tendencies of change in atmospheric centers of action in the northern hemisphere: Analyses of observational data. Izv. Atmos. Ocean. Phys. 2005, 41, 657–666. [Google Scholar]
- Wang, Z.; Chang, C.-P.; Wang, B.; Jin, F.-F. Teleconnections from tropics to northern extratropics through a southerly conveyor. J. Atmos. Sci. 2005, 62, 4057–4070. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Smirnov, D.A. Study of the mutual influence of the El Nino—Southern Oscillation processes and the North Atlantic and Arctic Oscillations. Izv. Atmos. Ocean. Phys. 2006, 42, 598–614. [Google Scholar] [CrossRef]
- Bronnimann, S. Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys. 2007, 45, RG3003. [Google Scholar]
- Kaznacheeva, V.D.; Trosnikov, I.V. Estimation of dependence of seasonal predictability of meteorological quantities in different regions of the Northern Hemisphere on the El Niño-Southern Oscillation phenomenon. Russ. Meteorol. Hydrol. 2008, 33, 63–72. [Google Scholar] [CrossRef]
- Mokhov, I.I. Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies. Izv. Atmos. Ocean. Phys. 2011, 47, 653–660. [Google Scholar] [CrossRef]
- Lupo, A.R.; Mokhov, I.I.; Akperov, M.G.; Chernokulsky, A.V.; Athar, H. A dynamic analysis of the role of the planetary and synoptic scale in the summer of 2010 blocking episodes over the European part of Russia. Adv. Meteorol. 2012, 2012, 584257. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Timazhev, A.V. Climatic anomalies in Eurasia from El Niño/La-Niña effects. Doklady Earth Sci. 2013, 453, 1141–1144. [Google Scholar] [CrossRef]
- Lupo, A.R.; Mokhov, I.I.; Chendev, Y.G.; Lebedeva, M.G.; Akperov, M.; Hubbard, J.A. Studying summer season drought in Western Russia. Adv. Meteorol. 2014, 940227. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Timazhev, A.V. Assessment of the predictability of climate anomalies in connection with El Niño phenomena. Doklady Earth Sci. 2015, 464, 1089–1093. [Google Scholar] [CrossRef]
- Zheleznova, I.V.; Gushchina, D.Y. The response of global atmospheric circulation to two types of El Niño. Russ. Meteorol. Hydrol. 2015, 40, 170–179. [Google Scholar] [CrossRef]
- Zheleznova, I.V.; Gushchina, D.Y. Circulation anomalies in the atmospheric centers of action during the Eastern Pacific and Central Pacific El Nino. Russ. Meteorol. Hydrol. 2016, 11, 41–55. [Google Scholar] [CrossRef]
- Lupo, A.R.; Jensen, A.D.; Mokhov, I.I.; Timazhev, A.; Eichler, T.; Efe, B. Changes in global blocking character during recent decades. Atmosphere 2019, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Timazhev, A.V. Assessing the probability of El Niño-related weather and Climate Anomalies in Russian Regions. Russ. Meteorol. Hydrol. 2017, 42, 635–643. [Google Scholar] [CrossRef]
- Jong, D.-T.; Ning, M.; Seager, R.; Anderson, W.B. ENSO teleconnections and impacts on U.S. summertime temperature during a multiyear La Niña life cycle. J. Clim. 2020, 33, 6009–6024. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Chernokulsky, A.V.; Osipov, A.M. Atmospheric Centers of Action in the Northern and Southern Hemispheres: Features and Variability. Russ. Meteorol. Hydrol. 2020, 45, 749–761. [Google Scholar] [CrossRef]
- Wen, N.; Li, L.; Luo, J.-J. Direct impacts of diferent types of El Niño in developing summer on East Asian precipitation. Clim. Dyn. 2020, 55, 1087–1104. [Google Scholar] [CrossRef]
- Ashok, K.; Yamagata, T. The El Niño with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Mokhov, I.I. Changes in the frequency of phase transitions of different types of El Niño phenomena in recent decades. Izv., Atmos. Ocean. Phys. 2022, 58, 1–6. [Google Scholar]
- Meshcherskaya, A.V.; Blazhevich, V.G. The drought and excessive moisture indices in a historical perspective in the principal grain-producing regions of the Former Soviet Union. J. Clim. 1997, 10, 2670–2682. [Google Scholar] [CrossRef]
- Meshcherskaya, A.V.; Mirvis, V.M.; Golod, M.P. The drought in 2010 against the background of multiannual changes in aridity in the major grain-producing regions of the European part of Russia. Tr. MGO 2011, 563, 94–121. (In Russian) [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Agayan, G.M.; Mokhov, I.I. Quasistationary autumn atmospheric regimes of the Northern Hemisphere during the period of the FGGE. Izv. Atmos. Ocean. Phys. 1989, 25, 851–855. [Google Scholar]
- Sitnov, S.A.; Mokhov, I.I.; Lupo, A.R. Ozone, water vapor, and temperature anomalies associated with atmospheric blocking events over Eastern Europe in spring—Summer 2010. Atmos. Environ. 2017, 164, 180–194. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.-W.; Xu, T.; Murray, D. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 2011, 38, L06702. [Google Scholar] [CrossRef] [Green Version]
- Schneidereit, A.; Schubert, S.; Vargin, P.; Lunkeit, F.; Zhu, X.; Peters, D.H.W.; Fraedrich, K. Large-scale flow and the long-lasting blocking high over Russia: Summer 2010. Mon. Weather Rev. 2012, 140, 2967–2981. [Google Scholar] [CrossRef]
- Trenberth, K.; Fasullo, J.T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. 2012, I, D17103. [Google Scholar] [CrossRef]
- Katsafados, P.; Papadopolous, A.; Varlas, G.; Papadopoulou, E.; Mavromatidis, E. Seasonal predictability of the 2010 Russian heat wave. Nat. Hazards Earth Syst. Sci. 2014, 14, 1531–1542. [Google Scholar] [CrossRef] [Green Version]
- Di Capua, G.; Sparrow, S.; Kornhuber, K.; Rousi, E.; Osprey, S.; Wallom, D.; van den Hurk, B.; Coumou, D. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. npj Clim. Atmos. Sci. 2021, 4, 55. [Google Scholar] [CrossRef]
- Khon, V.C.; Mokhov, I.I.; Roeckner, E.; Semenov, V.A. Regional changes of precipitation characteristics in Northern Eurasia from simulations with global climate model. Glob. Planet. Chang. 2007, 57, 118–123. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Eliseev, A.V.; Khvorostyanov, D.V. Evolution of the characteristics of interannual climate variability associated with the El Niño and La-Niña phenomena. Izv. Atmos. Ocean. Phys. 2000, 36, 681–690. [Google Scholar]
(a) | ||||||
ER E→L | Niño4 | Niño3.4 | Niño3 | |||
>0 | >1 K | >0 | >1 K | >0 | >1 K | |
1891–2015 | 7/8 | 4/8 | 10/12 | 5/12 | 8/9 | 5/9 |
1950–2015 | 7/7 | 4/7 | 8/9 | 5/9 | 6/7 | 4/7 |
1980–2015 | 5/5 | 4/5 | 6/6 | 5/6 | 4/4 | 4/4 |
(b) | ||||||
AR E→E | Niño4 | Niño3.4 | Niño3 | |||
>0 | >1 K | >0 | >1 K | >0 | >1 K | |
1891–2015 | 6/8 | 6/8 | 5/9 | 4/9 | 2/4 | 2/4 |
1950–2015 | 6/7 | 6/7 | 3/4 | 3/4 | 2/2 | 2/2 |
1980–2015 | 6/6 | 6/6 | 2/2 | 2/2 | 2/2 | 2/2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhov, I.I.; Timazhev, A.V. Seasonal Temperature Extremes in the North Eurasian Regions Depending on ENSO Phase Transitions. Atmosphere 2022, 13, 249. https://doi.org/10.3390/atmos13020249
Mokhov II, Timazhev AV. Seasonal Temperature Extremes in the North Eurasian Regions Depending on ENSO Phase Transitions. Atmosphere. 2022; 13(2):249. https://doi.org/10.3390/atmos13020249
Chicago/Turabian StyleMokhov, Igor I., and Alexander V. Timazhev. 2022. "Seasonal Temperature Extremes in the North Eurasian Regions Depending on ENSO Phase Transitions" Atmosphere 13, no. 2: 249. https://doi.org/10.3390/atmos13020249
APA StyleMokhov, I. I., & Timazhev, A. V. (2022). Seasonal Temperature Extremes in the North Eurasian Regions Depending on ENSO Phase Transitions. Atmosphere, 13(2), 249. https://doi.org/10.3390/atmos13020249