Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Period
2.2. Measurement of Chimney Emissions
2.3. Measurement of Outdoor Ambient Air Pollution
2.4. Measuring of Meteorological Factors
3. Results and Discussion
3.1. Chimney Emissions
3.2. Outdoor Air Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Ethical Approval
References
- Po1torak, A.; Wyrwisz, J.; Moczkowska, M.; Marcinkowska-Lesiak, M.; Stelmasiak, A.; Rafalska, U. Microwave vs. convection heating of bovine gluteus Medius muscle: Impact on selected physical properties of final product and cooking yield. Int. J. Food Sci. Technol. 2015, 50, 958–965. [Google Scholar] [CrossRef]
- Bansal, M.; Saini, R.P.; Khatod, D.K. Development of cooking sector in rural areas in India—A review. Renew. Sustain. Energy Rev. 2013, 17, 44–53. [Google Scholar] [CrossRef]
- İşler, A.; Karaosmanoğlu, F. Traditional cooking fuels, ovens and stoves in Turkey. In Proceedings of the Thirty-First IAEE International Conference, Istanbul, Turkey, 16–17 June 2008. [Google Scholar]
- Ramanathan, R.; Ganesh, L.S. A multi-objective analysis of cooking energy alternatives. Energy 1994, 19, 469–478. [Google Scholar] [CrossRef]
- Afrane, G.; Ntiamoah, A. Analysis of the life-cycle costs and environmental impacts of cooking fuels used in Ghana. Appl. Energy 2012, 98, 301–306. [Google Scholar] [CrossRef]
- World Bank. Household Cookstoves, Environment, Health, and Climate Change: A New Look at an Old Problem; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Jian-li, W.; Jun-bo, Z.; Mao-chu, G.; Zhi-min, L.; Ming, Z.; Yao-qiang, C. Remove cooking fume using catalytic combustion over Pt/La-Al2O3. J. Environ. Sci. 2007, 19, 644–646. [Google Scholar]
- Zhang, Z.; Zhao, Y.; Zhou, M.; Tao, P.; Li, R. Measurement of indoor air quality in Chinese charcoal barbecue restaurants. Proc. Eng. 2017, 205, 887–894. [Google Scholar] [CrossRef]
- Guo, H. Source apportionment of ambient volatile organic compounds from petroleum and non-petroleum emissions. J. Pet. Environ. Biotechnol. 2012, 3, e112. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Jahan, S.A.; Kabir, E. A review of diseases associated with household air pollution due to the use of biomass fuels. J. Hazard. Mater. 2011, 192, 425–431. [Google Scholar] [CrossRef]
- Bhanarkar, A.D.; Majumdar, D.; Nema, P.; George, K.V. Emissions of SO2, NOx and particulates from a pipe manufacturing plant and prediction of impact on air quality. Environ. Monit. Assess. 2010, 169, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Li, W.; Chan, L.Y. Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Sci. Total Environ. 2001, 279, 181–193. [Google Scholar] [CrossRef]
- Pang, S.; Wong, A. Challenges on the control of cooking fume emissions from restaurants. In Proceedings of the Better Air Quality in Asian and Pacific Rim Cities (BAQ 2002), Hong Kong, 16–18 December 2002. [Google Scholar]
- Alves, C.A.; Evtyugina, M.; Cerqueira, M.; Nunes, T.; Duarte, M.; Vicente, E. Volatile organic compounds emitted by the stacks of restaurants. Air Qual. Atmos. Health 2015, 8, 401–412. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.H. An investigation on hazardous and odorous pollutant emission during cooking activities. J. Hazard. Mater. 2011, 188, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Vicente, E.D.; Vicente, A.; Evtyugina, M.; Carvalho, R.; Tarelho, L.A.C.; Oduber, F.I.; Alves, C. Particulate and gaseous emissions from charcoal combustion in barbecue Grills. Fuel Proc. Technol. 2018, 176, 296–306. [Google Scholar] [CrossRef]
- Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar]
- Johnson, E. Charcoal versus LPG grilling: A carbon-footprint comparison. Environ. Impact Assess. Rev. 2009, 29, 370–378. [Google Scholar] [CrossRef]
- Taner, S.; Pekey, B.; Pekey, H. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Sci. Total Environ. 2013, 454–455, 79–87. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, K.H. Release of offensive odorants from the combustion of barbecue charcoals. J. Hazard. Mater. 2012, 215-216, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Susaya, J.; Kim, K.; Ahn, J.; Jung, M.; Kang, C. BBQ charcoal combustion as an important source of trace metal exposure to humans. J. Hazard. Mater. 2010, 176, 932–937. [Google Scholar] [CrossRef]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mut. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef]
- Fitzer, E.; Ochling, K.; Boehm, H.P.; Marsh, H. Recommended terminology for the description of carbon as a solid. Pure Appl. Chem. 1995, 67, 473–506. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.-H.; Ahn, J.-W.; Hong, O.-F.; Sohn, J.R. Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. J. Hazard. Mater. 2010, 174, 492–499. [Google Scholar] [CrossRef]
- Pandey, S.K.; Kim, K.-H.; Kang, C.H.; Jung, M.C.; Yoon, H. BBQ charcoal as an important source of mercury emission. J. Hazard. Mater. 2009, 162, 536–538. [Google Scholar] [CrossRef]
- Hsieh, L.T.; Yang, H.H.; Lin, Y.C.; Tsai, C.H. Levels and composition of volatile organic compounds from the electric oven during roasting pork activities. Sustain. Environ. Res. 2012, 2, 17–24. [Google Scholar]
- Huang, Y.; Ho, S.S.H.; Ho, K.F.; Lee, S.C.; Yu, J.Z.; Louie, P.K.K. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J. Hazard. Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef]
- Usinger, J. Manual on Simple Monitoring Techniques for the Control. of Indoor Air and Combustion Quality Standards in Developing Countries, 2nd ed.; Deutsche Gesellschaft für Technische Zusammenarbei: Wiesbaden, Germany, 1999. [Google Scholar]
- Chao, C.Y.; Wong, K.K. Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos. Environ. 2002, 36, 265–277. [Google Scholar] [CrossRef]
- Sweeney, L.M.; Sommerville, D.R.; Goodwin, M.R.; James, R.A.; Channel, S.R. Acute toxicity when concentration varies with time: A case study with carbon monoxide inhalation by rats. Regul. Toxicol. Pharm. 2016, 80, 102–115. [Google Scholar] [CrossRef]
- Kleeman, M.J.; Schauer, J.J.; Cass, G.R. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environ. Sci. Technol. 1999, 33, 3516–3523. [Google Scholar] [CrossRef]
- Nolte, C.G.; Schauer, J.J.; Cass, G.R.; Simoneit, B.R.T. Highly polar organic compounds present in meat smoke. Environ. Sci. Technol. 1999, 33, 3313–3316. [Google Scholar] [CrossRef]
- Maes, W.H.; Verbist, B. Increasing the sustainability of household cooking in developing countries: Policy implications. Renew. Sustain. Energy Rev. 2012, 16, 4204–4221. [Google Scholar] [CrossRef]
- Rehfuess, E.; Tzala, L.; Best, N.; Briggs, D.J.; Joffe, M. Solid fuel use and cooking practices as a major risk factor for ALRI mortality among African children. J. Epid. Community Health 2009, 63, 887–892. [Google Scholar] [CrossRef] [Green Version]
- MacCarty, N.; Still, D.; Ogle, D. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Develop. 2010, 14, 161–171. [Google Scholar] [CrossRef]
- Ballard-Tremeer, G.; Mathee, A. Review of Interventions to Reduce the Exposure of Women and Young Children to Indoor Air Pollution in Developing Countries; WHO/USAID Global Consultation: Washington, DC, USA, 2000. [Google Scholar]
- Budds, J.; Biran, A.; Rouse, J. What’s Cooking? A Review of Health Impacts of Indoor air Pollution and Technical Interventions for Its Reduction; Leicser; Water and Environmental Health at London and Loughborough (WELL): London, UK, 2001. [Google Scholar]
- Probert, D.; Newborough, M. Designs, thermal performances and other factors concerning cooking equipment and associated facilities. Appl. Energy 1985, 21, 81–222. [Google Scholar] [CrossRef]
- Kshirsagar, M.P.; Kalamkar, V.R. A comprehensive review on biomass cook stoves and a systematic approach for modern cook stove design. Renew. Sustain. Energy Rev. 2014, 30, 580–603. [Google Scholar] [CrossRef]
- Parmigiani, S.P.; Vitali, F.; Lezzi, A.M.; Vaccari, M. Design and performance assessment of a rice husk fueled stove for household cooking in a typical sub-Saharan setting. Energy Sustain. Develop. 2014, 23, 15–24. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, D.-W.; Zhang, Z.; Zhu, Z. Research developments in methods to reduce carbon footprint of cooking operations: A review. Trends Food Sci. Technol. 2015, 44, 49–57. [Google Scholar] [CrossRef]
- Prapas, J.; Baumgardner, M.E.; Marchese, A.J.; Willson, B.; DeFoort, M. Influence of chimneys on combustion characteristics of buoyantly driven biomass stoves. Energy Sustain. Develop. 2014, 23, 286–293. [Google Scholar] [CrossRef]
- El Sharkawy, M.; Javed, W. Study of indoor air quality level in various restaurants in Saudi Arabia. Environ. Prog. Sustain. Energy 2018, 37, 1713–1721. [Google Scholar] [CrossRef]
- Svendsen, K.; Jensen, H.N.; Sivertsen, I.; Sjaastad, A.K. Exposure to cooking fumes in restaurant kitchens in Norway. Ann. Occup. Hyg. 2002, 46, 395–400. [Google Scholar] [PubMed] [Green Version]
- Chiang, C.M.; Lai, C.M.; Chou, P.C.; Li, Y.Y. The influence of an architectural design alternative (transoms) on indoor air environment in conventional kitchens in Taiwan. Build. Environ. 2000, 35, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Environment Protection Agency (EPA). Air Emissions Monitoring Guidance Note #2 (AG2); EPA, Office of Environmental Enforcement (OEE): Wexford, Ireland, 2007.
- Huang, H.L.; Lee, W.M.G.; Wu, F.S. Emissions of air pollutants from indoor charcoal barbecue. J. Hazard. Mater. 2016, 302, 198–207. [Google Scholar] [CrossRef]
- Sung-OK, B.; Kim, Y.-S.; Perry, R. Indoor air quality in homes, offices and restaurants in Korean urban areas–indoor/outdoor relationships. Atmos. Environ. 1997, 31, 529–544. [Google Scholar]
- Benfenati, E.; Pierucci, P.; Niego, D. A case study of indoor pollution by Chinese cooking. Toxic Environ. Chem. 1998, 65, 217–224. [Google Scholar] [CrossRef]
- Central Pollution Control Board. Guidelines for Continuous Emission Monitoring Systems; East Arjun Nagar: Delhi, India, 2018. [Google Scholar]
- The Ministry of Environment. Revised Standards for Coal-Based Thermal Power Plants, India. 2017. Available online: http://www.indiaenvironmentportal.org.in/content/423111/revised-standards-for-coal-based-thermal-power-plants (accessed on 10 May 2021).
- Sloss, L.L. Emissions and effects of air toxics from coal combustion: An overview. In Proceedings of the Managing Hazardous Air Pollutants: State of the Art, Washington, DC, USA, 13–15 July 1993. [Google Scholar]
- Licata, A.; Hartenstein, H.U.; Terracciano, L. Comparison of U.S. EPA and European Emission Standards for Combustion and Incineration Technologies. Columbia. 1997. Available online: http://www.seas.columbia.edu/earth/wtert/newwtert/Research/sofos/nawtec/nawtec05/nawtec05-48.pdf (accessed on 10 May 2021).
- Royal Commission for Jubail and Yanbu; Royal Commission Environmental Regulations: Jubail, Kingdom of Saudi Arabia, 2015; Volume 1.
- World Health Organization. Guidelines for Air Quality; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Adhikari, S.; Mahapatra, P.S.; Pokheral, C.P.; Puppala, S.P. Cookstove smoke impact on ambient air quality and probable consequences for human health in rural locations of southern Nepal. Int. J. Environ. Res. Public Health 2020, 17, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soneja, S.I.; Tielsch, J.M.; Curriero, F.C.; Zaitchik, B.; Khatry, S.K.; Yan, B.; Chillrud, S.N.; Breysse, P.N. Determining particulate matter 1 and black carbon exfiltration estimates for traditional cookstove use in rural Nepalese village households. Environ. Sci. Technol. 2015, 49, 5555–5562. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.W.; Brunekreef, B.; Ellwood, P.; Anderson, H.R.; Asher, M.I.; Crane, J.; Lai, C.K.W. Cooking fuels and prevalence of asthma: A global analysis of phase three of the international study of asthma and allergies in childhood (ISAAC). Lancet Respir. Med. 2013, 1, 386–394. [Google Scholar] [CrossRef]
- Amouei Torkmahalleh, M.; Gorjinezhad, S.; Unluevcek, H.S.; Hopke, P.K. Review of factors impacting emission/ concentration of cooking generated particulate matter. Sci. Total Environ. 2017, 586, 1046–1056. [Google Scholar] [CrossRef]
- Garrett, M.H.; Hooper, M.A.; Hooper, B.M.; Abramson, M.J. Respiratory symptoms in children and indoor exposure to nitrogen dioxide and gas stoves. Am. J. Respir. Crit. Care Med. 1998, 158, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, B.; Umlauf, G.; Maiz, P.; Mariani, G.; Skejo, H.; Blanco, S. PCDD/F, PCB and HCB emissions from rural wood stoves: A preliminary evaluation in Mexico. Organohalog. Compd. 2010, 72, 1511–1513. [Google Scholar]
- Northcross, A.L.; Katharine, H.S.; Canuz, E.; Smith, K.R. Dioxin inhalation doses from wood combustion in indoor cookfires. Atmos. Environ. 2012, 49, 415–418. [Google Scholar] [CrossRef]
- Abdullahi, K.L.; Delgado-Saborit, J.M.; Harrison, R.M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Environ. 2013, 71, 260–294. [Google Scholar] [CrossRef]
- Seltenrich, N. Take Care in the Kitchen: Avoiding Cooking-Related Pollutants. Environ. Health Perspect. 2014, 122, A154–A159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberilla, J.M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Environmental sustainability of cooking fuels in remote communities: Life cycle and local impacts. Sci. Total Environ. 2020, 713, 136445. [Google Scholar] [CrossRef] [PubMed]
Sensor | Detection Limit | Full Scale Range | Upscale Repeatability | Resolution |
---|---|---|---|---|
O2 | 0.2% | 0 to 30% v/v | ±1% | 0.1% v/v |
CO (low) | 2 ppm | 0 to 6000 ppm | CO (low) | 2 ppm |
CO (high) | 20 ppm | 0 to 10% | ±2% * | 0.1 ppm |
SO2 | 2 ppm | 0 to 4000 ppm | ±2% * | 0.1 ppm |
NO | 2 ppm | 0 to 5000 ppm | ±2% * | 0.1 ppm |
NO2 | 2 ppm | 0 to 1000 ppm | ±2% * | 0.1 ppm |
Hydrocarbons (CxHy) | (Application dependent) | 0 to 5% v/v | ±4% * | 0.1% v/v |
Flue Gas/AmbientTemperature | Measured | |||
Draft | ±50 hPa/20 “Water Gauge” | |||
Flow (velocity) | 1 to 50 m/s |
Parameter | Range | Limit of Detection | T90 Response | Sensor Drift |
---|---|---|---|---|
SO2 | 0–20.0 ppm | 0.2 ppm | <25 s | <2% per mo |
NO2 | 0–20.0 ppm | 0.1 ppm | <20 s | <2% per mo |
NO | 0–200 ppm | 1 ppm | <20 s | <2% per mo |
CO | 0–500 ppm | 1 ppm | <35 s | <2% per mo |
CO2 | 0 to 10,000 ppm | ±3% rdg ±50 ppm | <25 s | <2% per mo |
TVOCs | 0 to 10,000 ppm | 0.1 ppm | <25 s | <2% per mo |
Pollutant | Food Preparation Type | Frying | Cooking | Baking |
---|---|---|---|---|
CO | Grilling | 0.000 * | 0.000 * | 0.005 * |
Frying | 0.023 * | 0.146 | ||
Cooking | 0.943 | |||
CO2 | Grilling | 0.027 * | 0.008 * | 0.252 |
Frying | 0.193 | 0.760 | ||
Cooking | 0.236 | |||
VOCs | Grilling | 0.002 * | 0.000 * | 0.003 * |
Frying | 0.000 * | 0.004 * | ||
Cooking | 0.899 | |||
NO2 | Grilling | 0.008 * | 0.002 * | 0.035 * |
Frying | 0.444 | 0.000 * | ||
Cooking | 0.017 * | |||
SO2 | Grilling | 0.001 * | 0.001 * | 0.049 * |
Frying | 0.970 | 0.947 | ||
Cooking | 924 |
Pollutant | Mean Concentration of the Study (ppm) | Standard (ppm) | |||
---|---|---|---|---|---|
Grilling | Frying | Cooking | Baking | ||
CO | 64.8 | 14.3 | 8.3 | 9.3 | 100 |
NO2 | 4.2 | 2.0 | 1.4 | 6.0 | 50–150 |
SO2 | 8.0 | 1.4 | 1.2 | 1.3 | 30–80 |
Pollutant | Food Preparation Type | Frying | Cooking | Baking | Control |
---|---|---|---|---|---|
CO | Grilling | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Frying | 0.965 | 0.976 | 0.934 | ||
Cooking | 0.999 | 0.961 | |||
Baking | 0.968 | ||||
CO2 | Grilling | 0.009 | 0.002 * | 0.132 | 0.000 * |
Frying | 0.569 | 0.870 | 0.044 * | ||
Cooking | 0.573 | 0.118 | |||
Baking | 0.082 | ||||
VOC | Grilling | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Frying | 0.033 * | 0.124 | 0.085 | ||
Cooking | 0.998 | 0.934 | |||
Baking | 0.948 | ||||
NO2 | Grilling | 0.004 * | 0.001 * | 0.007 * | 0.000 * |
Frying | 0.677 | 0.000 * | 0.073 | ||
Cooking | 0.000 * | 0.145 | |||
Baking | 0.000 * | ||||
SO2 | Grilling | 0.000 * | 0.000 * | 0.008 | 0.001 * |
Frying | 0.993 | 0.987 | 0.555 | ||
Cooking | 982 | 556 | |||
Baking | 0.649 |
Pollutant | Mean Concentration of the Study (ppm) | AQG (ppm) | ||||
---|---|---|---|---|---|---|
Grilling | Frying | Cooking | Baking | Control | ||
CO | 5.0 | 2.0 | 2.0 | 3.0 | 2.0 | 9 |
NO2 | 0.04 | 0.03 | 0.01 | 0.02 | 0.01 | 0.08 |
SO2 | 0.18 | 0.12 | 0.11 | 0.15 | 0.01 | 0.14 |
VOCs | 0.31 | 0.26 | 0.12 | 0.11 | 0.08 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElSharkawy, M.F.; Ibrahim, O.A. Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality. Atmosphere 2022, 13, 261. https://doi.org/10.3390/atmos13020261
ElSharkawy MF, Ibrahim OA. Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality. Atmosphere. 2022; 13(2):261. https://doi.org/10.3390/atmos13020261
Chicago/Turabian StyleElSharkawy, Mahmoud Fathy, and Osama Ahmed Ibrahim. 2022. "Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality" Atmosphere 13, no. 2: 261. https://doi.org/10.3390/atmos13020261
APA StyleElSharkawy, M. F., & Ibrahim, O. A. (2022). Impact of the Restaurant Chimney Emissions on the Outdoor Air Quality. Atmosphere, 13(2), 261. https://doi.org/10.3390/atmos13020261