Poor Visibility in Winter Due to Synergistic Effect Related to Fine Particulate Matter and Relative Humidity in the Taipei Metropolis, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observational Data
2.3. Analysis Methodology
3. Results and Discussion
3.1. Synoptic Weather Patterns
3.2. Sea and Land Breezes
3.3. Source of Moisture and Fine Particulate Matter
3.3.1. Moisture
3.3.2. Fine Particulate Matter
3.4. Visibility, RH, and Fine Particulate Matter
3.5. Contribution of Synergistic Effect
3.6. Case Studies
4. Conclusions
- (a)
- The sea breeze phenomena without the UHI effect were more obvious than those with the UHI effect. The influence of synoptic weather pattern type I on moisture was not obvious during the period with no UHI effect and sea breezes, even during the winter, and the water pressure was greater when the sea breezes were prominent.
- (b)
- The UHI circulation alone cannot contribute to the accumulation of PM2.5 in the Taipei metropolis. UHI circulation coupled with sea breezes can contribute to the accumulation of PM2.5, although sea breezes cannot carry PM2.5.
- (c)
- Quadratic equation models represented the relationship between the visibility and mean PM2.5 concentrations in the Taipei metropolis, as RH was confined to specific ranges. The PM2.5 concentrations, when greater than or equal to 5 μg/m3, were negatively correlated with visibility during the winter when the RH was 67–95% under synoptic weather pattern type I and when the RH was 49–89% under synoptic weather pattern type III. The synergistic effects of RH, PM2.5, and aerosol hygroscopicity were observed in both synoptic weather patterns.
- (d)
- Comparisons between groups of distinct weather conditions, the quadratic equation models, and two case studies indicated the predictor variables of the synergistic effects. PM2.5 RH was prominent in explaining the variation in visibility in the Taipei metropolis.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, W.; Cai, L.; Dang, H.; Jiao, Z.; Fan, H.; Cheng, F. Review on formation mechanism analysis method and control strategy of urban haze in China. Chin. J. Chem. Eng. 2018, 27, 1572–1577. [Google Scholar] [CrossRef]
- Kim, J.-S.; Zhou, W.; Cheung, H.N.; Chow, C.H. Variability and risk analysis of Hong Kong air quality based on Monsoon and El Niño conditions. Adv. Atmos. Sci. 2013, 30, 280–290. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, G.; Kong, F.; Chen, D.; Azorin-Molina, C.; Guijarro, J.A. Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. Atmos. Res. 2018, 215, 1–11. [Google Scholar] [CrossRef]
- Xue, D.; Li, C.; Liu, Q. Visibility characteristics and the impacts of air pollutants and meteorological conditions over Shanghai, China. Environ. Monit. Assess. 2015, 363, 1. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, N.P. Impaired visibility: The air pollution people see. Atmos. Environ. 2009, 43, 182–195. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Ratajczak, A.; Badyda, A.; Czechowski, P.; Czarnecki, A.; Dubrawski, M.; Feleszko, W. Air Pollution Increases the Incidence of Upper Respiratory Tract Symptoms among Polish Children. J. Clin. Med. 2021, 10, 2150. [Google Scholar] [CrossRef]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [CrossRef]
- Jalali, S.; Karbakhsh, M.; Momeni, M.; Taheri, M.; Amini, S.; Mansourian, M.; Sarrafzadegan, N. Long-term exposure to PM2.5 and cardiovascular disease incidence and mortality in an Eastern Mediterranean country: Findings based on a 15-year cohort study. Environ. Health 2021, 20, 112. [Google Scholar] [CrossRef]
- Chilian-Herrera, O.L.; Tamayo-Ortiz, M.; Texcalac-Sangrador, J.L.; Rothenberg, S.J.; López-Ridaura, R.; Romero-Martínez, M.; Wright, R.O.; Just, A.C.; Kloog, I.; Bautista-Arredondo, L.F.; et al. PM2.5 exposure as a risk factor for type 2 diabetes mellitus in the Mexico City metropolitan area. BMC Public Health 2021, 21, 2087. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, Y.; Wang, Y.; Wang, H.; Sheng, Z.; Gui, K.; Zheng, Y.; Zhang, X.; Che, H. Aerosol and gaseous pollutant characteristics during the heating season (winter–spring transition) in the Harbin-Changchun megalopolis, northeastern China. J. Atmos. Sol.-Terr. Phys. 2019, 188, 26–43. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, S.; Chen, D.; Lang, J.; Wang, G.; Xu, T.; Wang, X.; Yao, S. Temporal and Spatial Characteristics of Ambient Air Quality in Beijing, China. Aerosol Air Qual. Res. 2015, 15, 1868–1880. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Liu, X.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Zhang, Y. Characteristics and formation mechanism of persistent extreme haze pollution events in Chengdu, southwestern China. Environ. Pollut. 2019, 251, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Liang, Y.; Tian, Y.; Yang, Z.; Sun, Y.; Feng, Y. Quantitatively analyzing effects of meteorology and PM2.5 sources on low visual distance. Sci. Total Environ. 2018, 659, 764–772. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The Effects of PM 2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Ribeiro, F.N.; Oliveira, A.; Soares, J.; de Miranda, R.M.; Barlage, M.; Chen, F. Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil. Atmos. Res. 2018, 214, 174–188. [Google Scholar] [CrossRef]
- Tsai, H.-H.; Yuan, C.-S.; Hung, C.-H.; Lin, C.; Lin, Y.-C. Influence of Sea-Land Breezes on the Tempospatial Distribution of Atmospheric Aerosols over Coastal Region. J. Air Waste Manag. Assoc. 2011, 61, 358–376. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.; Kumar, A.; Mishra, D. The Impact of Air Pollutants and Meteorological Variables on Visibility in Delhi. Environ. Model. Assess. 2013, 19, 127–138. [Google Scholar] [CrossRef]
- Li, X.; Gao, Z.; Li, Y.; Gao, C.Y.; Ren, J.; Zhang, X. Meteorological conditions for severe foggy haze episodes over north China in 2016–2017 winter. Atmos. Environ. 2018, 199, 284–298. [Google Scholar] [CrossRef]
- Deng, X.; Cao, W.; Huo, Y.; Yang, G.; Yu, C.; He, D.; Deng, W.; Fu, W.; Ding, H.; Zhai, J.; et al. Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2018, 135, 1105–1122. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, F.; Huang, J.-C.; Chen, W.-C.; Liou, Y.-A.; Liu, S.-C. Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos. Environ. 2008, 42, 5635–5649. [Google Scholar] [CrossRef]
- Maurer, M.; Klemm, O.; Lokys, H.L.; Lin, N.-H. Trends of Fog and Visibility in Taiwan: Climate Change or Air Quality Improvement? Aerosol Air Qual. Res. 2019, 19, 896–910. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-Y.; Cheng, F.-C.; Chang, S.-Y.; Lin, C.Y.; Chou, C.C.; Chou, C.-H.; Lin, Y.-R. Analysis of the major factors affecting the visibility degradation in two stations. J. Air Waste Manag. Assoc. 2013, 63, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.C.-H.; Tai, J.-H.; Feng, C.-H.; Lin, D.-E. Towards Improving Visibility Forecasts in Taiwan: A Statistical Approach. Terr. Atmos. Ocean. Sci. 2010, 21, 359. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics. Ministry of the Interior. Available online: http://statis.moi.gov.tw/micst/stmain.jsp?sys=100 (accessed on 27 January 2021).
- World Health Organization (WHO). WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Environmental Protection Administration (EPA). Air Quality Annual Report of Taiwan; EPA: Taipei, Taiwan, 2018.
- Lai, I.-C.; Brimblecombe, P. Long-range Transport of Air Pollutants to Taiwan during the COVID-19 Lockdown in Hubei Province. Aerosol Air Qual. Res. 2021, 21, 200392. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Wang, Z.; Chen, W.-N.; Chang, S.-Y.; Chou, C.C.K.; Sugimoto, N.; Zhao, X. Long-range transport of Asian dust and air pollutants to Taiwan: Observed evidence and model simulation. Atmos. Chem. Phys. 2007, 7, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Huang, K.-F. Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci. Rep. 2021, 11, 7593. [Google Scholar] [CrossRef]
- Lai, L.-W. Fine particulate matter events associated with synoptic weather patterns, long-range transport paths and mixing height in the Taipei Basin, Taiwan. Atmos. Environ. 2015, 113, 50–62. [Google Scholar] [CrossRef]
- Central Weather Bureau (CWB). Regulations for Ground Meteorological Observation; CWB: Taipei, Taiwan, 2004.
- Civil Aeronautics Administration; Ministry of Transportation and Communications (CAA, MOTC). Aeronautical Meteorology Norms; College Art Association, Ministry of Transporation and Communications ROC: Taipei, Taiwan, 2021.
- Environmental Protection Administration (EPA). Manual Monitoring of Fine Particulate Matter. Available online: https://airtw.epa.gov.tw/ENG/EnvMonitoring/Central/spm.aspx (accessed on 22 November 2021).
- Nozaki, K.Y. Mixing Depths Model Using Hourly Surface Observations; Report 7053; USAF Environmental Technical Applications Center: Patrick Space Force Base, FL, USA, 1973. [Google Scholar]
- Du, C.; Liu, S.; Yu, X.; Li, X.; Chen, C.; Peng, Y.; Dong, Y.; Dong, Z.; Wang, F. Urban Boundary Layer Height Characteristics and Relationship with Particulate Matter Mass Concentrations in Xi’an, Central China. Aerosol Air Qual. Res. 2013, 13, 1598–1607. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, Y. The Effect of Meteorological Elements on Continuing Heavy Air Pollution: A Case Study in the Chengdu Area during the 2014 Spring Festival. Atmosphere 2017, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- NOAA Air Resources Laboratory. Pasquill Stability Classes 1961. Available online: https://www.ready.noaa.gov/READYpgclass.php (accessed on 27 September 2021).
- Pasquill, F.; Smith, F. The physical and meteorological basis for the estimation of the dispersion of windborne material. In Proceedings of the Second International Clean Air Congress, Washington, DC, USA, 6–11 December 1970; Academic Press Inc.: New York, NY, USA, 1971; pp. 1067–1072. [Google Scholar] [CrossRef]
- Eagleson, P.S. Dynamic Hydrology; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Li, Z.-H.; Yang, J.; Shi, C.-E.; Pu, M.-J. Urbanization Effects on Fog in China: Field Research and Modeling. Pure Appl. Geophys. 2011, 169, 927–939. [Google Scholar] [CrossRef]
- Hu, F.; Liu, X.-M.; Li, L.; Wang, Y. Summer Urban Climate Trends and Environmental Effect in the Beijing Area. Chin. J. Geophys. 2006, 49, 617–626. [Google Scholar] [CrossRef]
- American Meteorological Society (AMS). Standard Atmosphere. 2012. Available online: https://glossary.ametsoc.org/wiki/Standard_atmosphere (accessed on 29 September 2021).
- Systat. SYSTAT® 12 Getting Started; Systat Software, Incorp.: San Jose, CA, USA, 2007. [Google Scholar]
- Chernick, M.; Bowerman, B.L.; O’Connell, R.T. Forecasting and Time Series: An Applied Approach. Am. Stat. 1994, 48, 347. [Google Scholar] [CrossRef]
- Systat. Systat. Statistics-II; Systat Software, Incorp.: San Jose, CA, USA, 2007. [Google Scholar]
- Hsu, C.-H.; Cheng, F.-Y. Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol Air Qual. Res. 2019, 19, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-C.; Yen, M.-C.; Tsay, J.-D.; Liao, C.-C.; Takle, E.S. Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. J. Appl. Meteorol. Clim. 2014, 53, 1714–1738. [Google Scholar] [CrossRef]
- You, C.; Fung, J.C.-H.; Tse, W.P. Response of the Sea Breeze to Urbanization in the Pearl River Delta Region. J. Appl. Meteorol. Clim. 2019, 58, 1449–1463. [Google Scholar] [CrossRef]
- Kang, Y.-H.; Song, S.-K.; Hwang, M.-K.; Jeong, J.-H.; Kim, Y.-K. Impacts of Detailed Land-Use Types and Urban Heat in an Urban Canopy Model on Local Meteorology and Ozone Levels for Air Quality Modeling in a Coastal City, Korea. Terr. Atmos. Ocean. Sci. 2016, 27, 877–891. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tong, L.; Peng, C.; Zhang, H.; Huang, Z.; He, J.; Xiao, H. Temporal variability of visibility and its parameterizations in Ningbo, China. J. Environ. Sci. 2018, 77, 372–382. [Google Scholar] [CrossRef]
- Singh, A.; Bloss, W.J.; Pope, F.D. 60 years of UK visibility measurements: Impact of meteorology and atmospheric pollutants on visibility. Atmos. Chem. Phys. 2017, 17, 2085–2101. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
No. | Sites | Longitude | Latitude | Altitude (m) | Type of Station | No. | Sites | Longitude | Latitude | Altitude (m) | Type of Station |
---|---|---|---|---|---|---|---|---|---|---|---|
CWB | 12 | Songsang | 121°34′43″ E | 25°03′00″ N | 27 | B | |||||
1 | Taipei | 121°30′24″ E | 25°02′23″ N | 5.3 | A | 13 | Tamsui | 121°26′57″ E | 25°09′52″ N | 41 | B |
2 | Banqiao | 121°26′02″ E | 24°59′58″ N | 9.7 | A | 14 | Tucheng | 121°27′06″ E | 24°58′57″ N | 75 | B |
3 | Tamsui | 121°26′24″ E | 25°09′56″ N | 19 | A | 15 | Wanhua | 121°30′28″ E | 25°02′47″ N | 27 | B |
4 | Keelung | 121°45′36″ E | 25°07′45″ N | 26.7 | A | 16 | Wanli | 121°41′23″ E | 25°10′46″ N | 39 | C |
EPA | 17 | Xindian | 121°32′16″ E | 24°58′38″ N | 37 | B | |||||
5 | Banqiao | 121°27′31″ E | 25°00′46″ N | 29 | B | 18 | Xinzhuang | 121°25′57″ E | 25°02′16″ N | 34 | B |
6 | Cailiao | 121°28′51″ E | 24°04′08″ N | 21 | B | 19 | Xizhu | 121°38′26″ E | 25°03′56″ N | 29 | B |
7 | Chungshan | 121°32′05″ E | 25°04′47″ N | 34 | B | 20 | Yangming | 121°31′46″ E | 25°10′57″ N | 830 | E |
8 | Guting | 121°31′46″ E | 25°01′14″ N | 31 | B | 21 | Yonghe | 121°30′58″ E | 25°01′01″ N | 14 | D |
9 | Linkou | 121°21′56″ E | 25°04′42″ N | 262 | B | CAA | |||||
10 | Sanchong | 121°29′37″ E | 25°04′21″ N | 9 | D | 22 | Songsang | 121°33′09″ E | 25°04′11″ N | 5 | F |
11 | Shilin | 121°30′55″ E | 25°06′19″ N | 34 | B |
PM2.5 (μg/m3) | a1 | a2 | a0 | Equation |
0–5 | 1.814 | −294.320 | 30,124.0 | 4 |
5–10 | −5.530 | 602.230 | 3991.4 | 4 |
10–15 | −7.830 | 868.260 | −3858.5 | 4 |
15–20 | −6.590 | 678.190 | 2176.1 | 4 |
20–25 | −4.940 | 416.420 | 9973.9 | 4 |
PM2.5 (μg/m3) | a | b | Equation | |
25–30 | 51,247 | 0.021 | 5 | |
30–35 | 32,743 | 0.016 | 5 | |
35–40 | 37,912 | 0.019 | 5 | |
>=40 | 54,559 | 0.029 | 5 |
PM2.5 (μg/m3) | y (vis.: m) | x (RH: %) | a2x2 (Equation (4)) | a1x (Equation (4)) | a0 (Equation (4)) | Equation |
0–5 | 20,057.3 | 49.0 | 4354.9 | −14,421.7 | 30,124.0 | 4 |
5–10 | 20,223.4 | 49.0 | −13,277.3 | 29,509.3 | 3991.4 | 4 |
10–15 | 19,885.9 | 49.0 | −18,800.3 | 42,544.7 | −3858.5 | 4 |
15–20 | 19,584.1 | 49.0 | −15,823.3 | 33,231.3 | 2176.1 | 4 |
20–25 | 18,518.3 | 49.0 | −11,860.2 | 20,404.6 | 9973.9 | 4 |
PM2.5 (μg/m3) | y (vis.: m) | x (RH: %) | bx (Equation (5)) | e−bx (Equation (5)) | Equation | |
25–30 | 18,313.8 | 49.0 | 1.029 | 0.357 | 5 | |
30–35 | 14,949.7 | 49.0 | 0.784 | 0.457 | 5 | |
35–40 | 14,943.4 | 49.0 | 0.931 | 0.394 | 5 | |
>=40 | 13,174.5 | 49.0 | 1.421 | 0.241 | 5 |
Synoptic Weather Patterns | Frequency (%) | Feature |
---|---|---|
Type I | 34.3 | The CCHP was over the Asian continent. |
Type II | 10.7 | The CCHP had left the Asian continent, but its centre was not beyond 125° E. |
Type III | 14.2 | The CCHP had moved eastward with its centre located beyond 125° E. |
Patterns with rainfall | 17.1 | Hourly rainfall > 0.1 mm |
Other types | 23.6 | Low-pressure system, typhoon, and fronts, among others. |
Features | |
---|---|
G1-A | Longitude < 121° E; Tm < 20 °C; UHI > 0 °C; sea breeze |
G1-B | Longitude < 121° E; Tm < 20 °C; UHI > 0 °C; non-sea breeze |
G2-A | Longitude > 125° E; Tm > 20 °C; UHI > 0 °C; sea breeze |
G2-B | Longitude > 125° E; Tm > 20 °C; UHI > 0 °C; non-sea breeze |
G3-A | Longitude < 121° E; Tm < 20 °C; UHI < 0 °C; sea breeze |
G3-B | Longitude < 121° E; Tm < 20 °C; UHI < 0 °C; non-sea breeze |
G4-A | Longitude > 125° E; Tm > 20 °C; UHI < 0 °C; sea breeze |
G4-B | Longitude > 125° E; Tm > 20 °C; UHI < 0 °C; non-sea breeze |
G3-A n = 24 | G3-B n = 151 | Null Hypothesis, Alternative Hypothesis | |
---|---|---|---|
PM2.5 (μg/m3) | 12.2 ± 6.1 | 13.5 ± 9.8 | H0: G3-A = G3-B; H1: G3-A > G3-B |
Water pressure (hPa) | 15.3 ± 1.6 * | 14.3 ± 2.6 | H0: G3-A = G3-B; H1: G3-A > G3-B |
SIAP Vis. (m) | 13,500.0 ± 4086.0 | 14,192.1 ± 4561.7 | H0: G3-A = G3-B; H1: G3-A < G3-B |
Taipei Vis. (km) | 13.3 ± 3.8 | 15.3 ± 5.4 | H0: G3-A = G3-B; H1: G3-A < G3-B |
G4-A n = 24 | G4-B n = 243 | ||
PM2.5 (μg/m3) | 13.9 ± 7.4 | 13.0 ± 5.5 | H0: G4-A = G4-B; H1: G4-A > G4-B |
Water pressure (hPa) | 20.5 ± 2.6 * | 19.2 ± 4.2 | H0: G4-A = G4-B; H1: G4-A > G4-B |
SIAP Vis. (m) | 15,291.7 ± 4601.3 | 17,958.8 ± 3644.1 * | H0: G4-A = G4-B; H1: G4-A < G4-B |
Taipei Vis. (km) | 15.8 ± 5.7 | 22.3 ± 7.7 * | H0: G4-A = G4-B; H1: G4-A < G4-B |
G2-A n = 320 | G4-A n = 24 | ||
PM2.5 (μg/m3) | 25.4 ± 11.6 * | 13.9 ± 7.4 | H0: G2-A = G4-A; H1: G2-A > G4-A |
Water pressure (hPa) | 19.1 ± 3.7 | 20.5 ± 2.6 | H0: G2-A = G4-A; H1: G2-A > G4-A |
SIAP Vis. (m) | 15,007.3 ± 4701.0 | 15,291.7 ± 4601.3 | H0: G2-A = G4-A; H1: G2-A < G4-A |
Taipei Vis. (km) | 17.0 ± 7.1 | 15.8 ± 5.7 | H0: G2-A = G4-A; H1: G2-A < G4-A |
G3-B n = 151 | G4-B n = 243 | ||
PM2.5 (μg/m3) | 13.5 ± 9.8 | 13.0 ± 5.5 | H0: G3-B = G4-B; H1: G3-B > G4-B |
Water pressure (hPa) | 14.3 ± 2.6 | 19.2 ± 4.2 | H0: G3-B = G4-B; H1: G3-B > G4-B |
SIAP Vis. (m) | 14,192.1 ± 4561.7 | 17,958.8 ± 3644.1 * | H0: G3-B = G4-B; H1: G3-B < G4-B |
Taipei Vis. (km) | 15.3 ± 5.4 | 22.3 ± 7.9 * | H0: G3-B = G4-B; H1: G3-B < G4-B |
G2-B n = 241 | G4-B n = 243 | ||
PM2.5 (μg/m3) | 13.4 ± 6.9 | 13.0 ± 5.5 | H0: G2-B = G4-B; H1: G2-B > G4-B |
Water pressure (hPa) | 18.6 ± 4.0 | 19.2 ± 4.2 | H0: G2-B = G4-B; H1: G2-B < G4-B |
SIAP Vis. (m) | 18,497.9 ± 2909.9 * | 17,958.8 ± 3644.1 | H0: G2-B = G4-B; H1: G2-B > G4-B |
Taipei Vis. (km) | 24.1 ± 7.7 | 22.3 ± 7.9 | H0: G2-B = G4-B; H1: G2-B > G4-B |
G1-B n = 755 | G3-B n = 151 | ||
PM2.5 (μg/m3) | 19.3 ± 12.4 * | 13.5 ± 9.8 | H0: G1-B = G3-B; H1: G1-B > G3-B |
Water pressure (hPa) | 12.9 ± 3.1 | 14.3 ± 2.6 * | H0: G1-B = G3-B; H1: G1-B < G3-B |
SIAP Vis. (m) | 14,775.0 ± 4595.7 | 14,192.1 ± 4561.7 | H0: G1-B = G3-B; H1: G1-B < G3-B |
Taipei Vis. (km) | 24.1 ± 7.7 | 22.3 ± 7.9 | H0: G1-B = G3-B; H1: G1-B < G3-B |
Relationships | Synoptic Weather Patterns | Confined Conditions |
---|---|---|
Visibility negatively correlated with PM2.5 concentration | Synoptic weather type I | 67% ≤ RH ≤ 95% |
Visibility negatively correlated with PM2.5 concentration | Synoptic weather type III | 49% ≤ RH ≤ 89% |
Model 1 | (n = 5241) | Model 2 | (n = 5241) | ||||
---|---|---|---|---|---|---|---|
Parameters | Std. Coefficient (p < 0.05) | R2 | Tolerance Value | Parameters | Coefficient (p < 0.05) | R2 | Tolerance Value |
PM2.5 (μg/m3) | −0.732 | 0.311 | 0.834 | PM2.5 × RH | −0.665 | 0.395 | 0.896 |
RH (%) | −0.522 | 0.184 | 0.538 | UHI (°C) | 0.099 | 0.015 | 0.865 |
WS (m/s) | −0.132 | 0.024 | 0.337 | GSR (MJ/m2) | 0.149 | 0.012 | 0.752 |
UHI (°C) | 0.081 | 0.006 | 0.860 | WS (m/s) | −0.205 | 0.005 | 0.343 |
GSR (MJ/m2) | −0.051 | 0.001 | 0.524 | PBLH (m) | 0.149 | 0.008 | 0.752 |
AT (°C) | 0.018 | <0.001 | 0.743 | AT (°C) | −0.046 | 0.002 | 0.802 |
PBLH (m) | −0.006 | <0.001 | 0.346 | ||||
Accumulated R2 | 0.526 | Accumulated R2 | 0.437 | ||||
BIC | −70,586.84 | BIC | −70,983.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, L.-W. Poor Visibility in Winter Due to Synergistic Effect Related to Fine Particulate Matter and Relative Humidity in the Taipei Metropolis, Taiwan. Atmosphere 2022, 13, 270. https://doi.org/10.3390/atmos13020270
Lai L-W. Poor Visibility in Winter Due to Synergistic Effect Related to Fine Particulate Matter and Relative Humidity in the Taipei Metropolis, Taiwan. Atmosphere. 2022; 13(2):270. https://doi.org/10.3390/atmos13020270
Chicago/Turabian StyleLai, Li-Wei. 2022. "Poor Visibility in Winter Due to Synergistic Effect Related to Fine Particulate Matter and Relative Humidity in the Taipei Metropolis, Taiwan" Atmosphere 13, no. 2: 270. https://doi.org/10.3390/atmos13020270
APA StyleLai, L. -W. (2022). Poor Visibility in Winter Due to Synergistic Effect Related to Fine Particulate Matter and Relative Humidity in the Taipei Metropolis, Taiwan. Atmosphere, 13(2), 270. https://doi.org/10.3390/atmos13020270