Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ionospheric Storms—Morphology and Background Mechanisms
- Neutral composition changes through the downwelling of neutral gas due to the convergence of neutral winds;
- F layer uplifting due to vertical drifts. An increase in layer height leads to an increase in ionization density due to the reduced rate of ionization loss at higher altitudes. The F layer drift may be caused by two principal mechanisms:
- Equatorward-directed winds: in this case, the ions and electrons feel a frictional force. The geomagnetic field-aligned component of this force pushes the ionization up to the inclined magnetic field lines, resulting in an uplifting of the F layer. Such winds may be caused either by large-scale wind circulation or as part of so-called traveling atmospheric disturbances (TADs). TADs are the superimposed result of impulse-like travelling disturbances formed by a wide spectrum of atmospheric gravity waves. These are launched by the injection of solar wind energy to the polar upper atmosphere. TADs propagate with high velocity towards lower latitudes carrying along equatorward-directed winds of moderate magnitude.
- Electric fields: in this case, the height increase is caused by an ExB drift that is perpendicular to the inclined geomagnetic field, so it also leads to an uplifting of the ionosphere. Two major disturbance electric fields are: a. Disturbance dynamo electric fields: the disturbed thermospheric winds drive meridional winds to generate electric fields opposed to their quiet-time patterns. b. Penetration of electric fields originated from the solar wind/magnetosphere: high-latitude convection electric fields penetrate into the low-latitude ionosphere (a phenomenon known as prompt penetration electric fields, PPEFs) to produce changes known as the super-fountain effect [29].
- Advection of high-density plasma in combination to plasma uplift: nightside plasma is carried across the sunset terminator to draw out plumes of storm-enhanced density (SED) that stretches from the dusk sector to the noontime cusp ionosphere [30].
- Downward plasma flux from the plasmasphere.
3.2. On the Occurrence of the Ionospheric Storm Effects
4. Discussion and Conclusive Remarks
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cander, L.R. Ionospheric Storm Morphology. InIonospheric Space Weather; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–133. [Google Scholar]
- Schrijver, C.; Kauristie, K.; Aylward, A.D.; Denardini, C.M.; Gibson, S.E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M.; Heynderickx, D.; et al. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015, 55, 2745–2807. [Google Scholar] [CrossRef]
- Kutiev, I.; Tsagouri, I.; Perrone, L.; Pancheva, D.; Mukhtarov, P.; Mikhailov, A.; Lastovicka, J.; Jakowski, N.; Buresova, D.; Blanch, E.; et al. Solar activity impact on the Earth’s upper atmosphere. J. Space Weather Space Clim. 2013, 3, A06. [Google Scholar] [CrossRef] [Green Version]
- Balan, N.; Yamamoto, M.; Liu, J.Y.; Otsuka, Y.; Liu, H.; Lühr, H. New aspects of thermospheric and ionospheric storms revealed by CHAMP. J. Geophys. Res. Earth Surf. 2011, 116, A07305. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Galkin, I.A. Global ionospheric radio observatory (GIRO). EPS 2011, 63, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Kamide, Y.; Arballo, J.K. (Eds.) Magnetic Storms; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1997; Volume 98, p. 77. [Google Scholar] [CrossRef]
- Suess, S.; Tsurutani, B.T. From the Sun: Auroras, Magnetic Storms, Solar Flares, Cosmic Rays; AGU Monograph: Washington, DC, USA, 1998. [Google Scholar]
- Tsurutani, B.T.; McPherron, R.L.; Gonzalez, W.D.; Lu, G.; Sobral, J.H.A.; Gopalswamy, N. (Eds.) Recurrent Magnetic Storms: Corotating Solar Wind Streams; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2006; Volume 167, ISBN 978-0-875-90432-0. [Google Scholar]
- Hanslmeier, A. The Sun and Space Weather, Springer Netherlands, 2nd ed.; Astrophysics and Space Science Library: New York, NY, USA, 2007; Volume 347. [Google Scholar] [CrossRef]
- Kamide, Y.; Chian, A. Handbook of the Solar-Terrestrial Environment; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Koskinen, H. Physics of Space Storms: From the Solar Surface to the Earth, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Buzulukova, N. Extreme Events in Geospace, Origins, Predictability and Consequences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Tsurutani, B.T.; Lakhina, G.S.; Hajra, R. The physics of space weather/solar-terrestrial physics (STP): What we know now and what the current and future challenges are. Nonlinear Process. Geophys. 2020, 27, 75–119. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Bhargawa, A.; Siingh, D.; Singh, R. Physics of Space Weather Phenomena: A Review. Geosciences 2021, 11, 286. [Google Scholar] [CrossRef]
- Hajra, R.; Echer, E.; Tsurutani, B.T.; Gonzalez, W.D. Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during solar cycle 23. J. Geophys. Res. Space Phys. 2014, 119, 2675–2690. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Perreault, P.; Akasofu, S.-I. A study of geomagnetic storms. Geophys. J. Int. 1978, 54, 547–573. [Google Scholar] [CrossRef] [Green Version]
- Akasofu, S.-I. Interplanetary energy flux associated with magnetospheric substorms. Planet. Space Sci. 1979, 27, 425–431. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, 28, 121–190. [Google Scholar] [CrossRef]
- Lastovicka, J. Monitoring and forecasting of ionospheric space weather—Effects of geomagnetic storms. J. Atmos. Sol. -Terr. Phys. 2002, 64, 697–705. [Google Scholar] [CrossRef]
- Prölss, G.W. Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy. Surv. Geophys. 2010, 32, 101–195. [Google Scholar] [CrossRef]
- Mendillo, M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, 44, RG4001. [Google Scholar] [CrossRef]
- Danilov, A. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Rishbeth, H. F-Region Storms and Thermospheric Dynamics. J. Geomagn. Geoelectr. 1991, 43, 513–524. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F region storms. In Handbook of Atmospheric Electrodynamics; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 195–248. [Google Scholar]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric storms—A review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Prölss, G.W. On explaining the local time variation of ionospheric storm effects. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 1993; Volume 11, pp. 1–9. [Google Scholar]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Vasyliūnas, V.M. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, A05311. [Google Scholar] [CrossRef]
- Foster, J.C.; Zou, S.; Heelis, R.A.; Erickson, P.J. Ionospheric Storm-Enhanced Density Plumes. In Ionosphere Dynamics and Applications; Huang, C., Lu, G., Zhang, Y., Paxton, L.J., Eds.; AGU Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2021; Volume 260, pp. 115–126. [Google Scholar]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef] [Green Version]
- Huba, J.D.; Sazykin, S.; Coster, A. SAMI3-RCM simulation of the 17 March 2015 geomagnetic storm. J. Geophys. Res. Space Phys. 2017, 122, 1246–1257. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.; Amory-Mazaudier, C.; Fleury, R. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef] [Green Version]
- Astafyeva, E.; Bagiya, M.S.; Förster, M.; Nishitani, N. Unprecedented Hemispheric Asymmetries During a Surprise Ionospheric Storm: A Game of Drivers. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027261. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Huba, J.D.; Doornbos, E.; Ijssel, J. Global Ionospheric and Thermospheric Effects of the June 2015 Geomagnetic Disturbances: Multi-Instrumental Observations and Modeling. J. Geophys. Res. Space Phys. 2017, 122, 11716–11742. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Huang, F.; Chen, X.; Zhong, J.; Ren, D.; Wang, W.; Yue, X.; Luan, X.; Jia, M.; Dou, X.; et al. Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector between 7 and 12 September 2017? J. Geophys. Res. Space Phys. 2018, 123, 3217–3232. [Google Scholar] [CrossRef]
- Tsagouri, I.; Belehaki, A.; Moraitis, G.; Mavromichalaki, H. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys. Res. Lett. 2000, 27, 3579–3582. [Google Scholar] [CrossRef] [Green Version]
- Burns, A.G.; Killeen, T.L.; Wang, W.; Roble, R.G. The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J. Atmos. Sol. -Terr. Phys. 2004, 66, 1–14. [Google Scholar] [CrossRef]
- Buresova, D.; Lastovicka, J.; Hejda, P.; Bochnicek, J. Ionospheric disturbances under low solar activity conditions. Adv. Space Res. 2014, 54, 185–196. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.; Araujo-Pradere, E.; Codrescu, M. An empirical ionospheric storm-time correction model. Adv. Space Res. 2000, 25, 139–146. [Google Scholar] [CrossRef]
- Araujo-Pradere, E.A.; Fuller-Rowell, T.J.; Codrescu, M.V. STORM: An empirical storm-time ionospheric correction model: 1. Model description. Radio Sci. 2002, 37, 1–12. [Google Scholar]
- Wang, W.; Wiltberger, M.; Burns, A.G.; Solomon, S.C.; Killeen, T.L.; Maruyama, N.; Lyon, J.G. Initial results from the coupled magnetosphere-ionosphere-thermosphere model: Thermosphere-ionosphere responses. J. Atmos. Sol. -Terr. Phys. 2004, 66, 1425–1441. [Google Scholar] [CrossRef]
- Tsagouri, I.; Belehaki, A. A new empirical model of middle latitude ionospheric response for space weather applications. Adv. Space Res. 2006, 37, 420–425. [Google Scholar] [CrossRef]
- Tsagouri, I.; Belehaki, A. An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response. J. Atmos. Sol. -Terr. Phys. 2008, 70, 2061–2076. [Google Scholar] [CrossRef]
- Tsagouri, I.; Koutroumbas, K.; Belehaki, A. Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters. Radio Sci. 2009, 44, 1–21. [Google Scholar] [CrossRef]
- Tsagouri, I.; Belehaki, A. Ionospheric forecasts for the European region for space weather applications. J. Space Weather Space Clim. 2015, 5, A9. [Google Scholar] [CrossRef] [Green Version]
- Tsagouri, I.; Galkin, I.; Asikainen, T. Long-term changes in space weather effects on the Earth’s ionosphere. Adv. Space Res. 2017, 59, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Burns, A.G.; Solomon, S.C.; Qian, L.; Wang, W.; Emery, B.A.; Wiltberger, M.; Weimer, D.R. The effects of corotating interaction region/high speed stream storms on the thermosphere and ionosphere during the last solar minimum. J. Atmos. Sol. -Terr. Phys. 2012, 83, 79–87. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Huang, C.M.; Brahmanandam, P.S.; Chang, L.C.; Chen, K.T.; Tsai, L.C. Longitudinal variations of positive dayside ionospheric storms related to recurrent geomagnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 6806–6822. [Google Scholar] [CrossRef] [Green Version]
- Verkhoglyadova, O.; Tsurutani, B.T.; Mannucci, A.J.; Mlynczak, M.G.; Hunt, L.A.; Runge, T. Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): External high speed stream drivers. Ann. Geophys. 2013, 31, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Verkhoglyadova, O.P.; Tsurutani, B.T.; Mannucci, A.J.; Mlynczak, M.G.; Hunt, L.A.; Komjathy, A.; Runge, T. Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008. J. Geophys. Res. Space Phys. 2011, 116, A09325. [Google Scholar] [CrossRef]
- Matamba, T.M.; Habarulema, J.B. Ionospheric Responses to CME- and CIR-Driven Geomagnetic Storms Along 30 °E–40 °E Over the African Sector From 2001 to 2015. Space Weather 2018, 16, 538–556. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric Storms at Mid-Latitude: A Short Review. Midlatitude Ionos. Dyn. Disturb. 2018, 181, 9–24. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.; Yizengaw, E.; Doherty, P.H.; Basu, S. Ionospheric Space Weather: Longitude Dependence and Lower Atmosphere Forcing; John Wiley and Sons: Hoboken, NJ, USA, 2016; Volume 220. [Google Scholar]
- Kozyra, J.U.; Crowley, G.; Emery, B.A.; Fang, X.; Maris, G.; Mlynczak, M.G.; Niciejewski, R.J.; Palo, S.E.; Paxton, L.J.; Randall, C.E. Response of the Upper/Middle Atmosphere to Coronal Holes and Powerful High-Speed Solar Wind Streams in 2003. In Recurrent Magnetic Storms: Corotating Solar Wind Streams; AGU Geophysical Monograph Series; Tsurutani, B.T., McPherron, R.L., Gonzalez, W.D., Lu, G., Sobral, J.H.A., Gopalswamy, N., Eds.; American Geophysical Union: Washington, DC, USA, 2006; Volume 167, p. 319. [Google Scholar] [CrossRef]
- Turner, N.E.; Mitchell, E.J.; Knipp, D.J.; Emery, B.A. Energetics of magnetic storms driven by corotating interaction regions: A study of geoeffectiveness. In Recurrent Magnetic Storms, Corotating Solar Wind Streams; Geophysical Monograph, Series; Tsurutani, B.T., McPherron, R., Gonzalez, W., Lu, G., Sobral, J.H.A., Gopalswamy, N., Eds.; AGU: Washington, DC, USA, 2006; Volume 167, pp. 113–124. [Google Scholar]
- Verkhoglyadova, O.P.; Mannucci, A.J.; Tsurutani, B.T.; Mlynczak, M.G.; Hunt, L.A.; Redmon, R.J.; Green, J.C. Localized thermosphere ionization events during the high-speed stream interval of 29 April to 5 May 2011. J. Geophys. Res. Space Phys. 2014, 120, 675–696. [Google Scholar] [CrossRef] [Green Version]
- Emery, B.A.; Richardson, I.; Evans, D.S.; Rich, F.J. Solar wind structure sources and periodicities of auroral electron power over three solar cycles. J. Atmos. Sol. -Terr. Phys. 2009, 71, 1157–1175. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Verkhoglyadova, O.P.; Tsurutani, B.T.; Meng, X.; Pi, X.; Wang, C.; Rosen, G.; Lynch, E.; Sharma, S.; Ridley, A.; et al. Medium-Range Thermosphere-Ionosphere Storm Forecasts. Space Weather 2015, 13, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Longden, N.; Denton, M.H.; Honary, F. Particle precipitation during ICME-driven and CIR-driven geomagnetic storms. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, A.J.; Tsurutani, B.T.; Solomon, S.C.; Verkhoglyadova, O.P.; Thayer, J.P. How Do Coronal Hole Storms Affect the Upper Atmosphere? Eos 2012, 93, 77–79. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Coster, A.J.; Goncharenko, L.P.; Varney, R.H.; Eastes, R. Salient Midlatitude Ionosphere-Thermosphere Disturbances Associated with SAPS During a Minor but Geo-Effective Storm at Deep Solar Minimum. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029509. [Google Scholar] [CrossRef]
- Qiu, N.; Chen, Y.H.; Wang, W.B.; Gong, J.C.; Liu, S.Q. Statistical analysis of the ionosphere response to the CIR and CME in Mid-latitude regions. Chin. J. Geophys. 2015, 58, 2250–2262. [Google Scholar]
- Belehaki, A.; Tsagouri, I. Investigation of the relative bottomside/topside contribution to the total electron content estimates. Ann. Geophys. 2009, 45, 73–86. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Le, H.; Wan, W. Geomagnetic activity effect on the global ionosphere during the 2007–2009 deep solar minimum. J. Geophys. Res. Space Phys. 2014, 119, 3747–3754. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2015, 121, 727–744. [Google Scholar] [CrossRef]
- Tsagouri, I.; Koutroumbas, K.; Elias, P. A new short-term forecasting model for the total electron content storm time disturbances. J. Space Weather Space Clim. 2018, 8, A33. [Google Scholar] [CrossRef]
Station Name | Geographic Longitude (°E) | Geographic Latitude (°N) |
---|---|---|
Chilton | 359.4 | 51.5 |
Dourbes | 4.6 | 50.1 |
Juliusruh | 13.4 | 54.6 |
Pruhonice | 14.6 | 50.0 |
Ebre | 0.5 | 40.8 |
Rome | 12.5 | 41.9 |
San Vito | 17.8 | 40.6 |
Athens | 23.5 | 38.0 |
Dst min (nT), Range | Storm Intensity |
---|---|
−30 to −50 | Weak |
−50 to −100 | Moderate |
<−100 | Intense |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsagouri, I. Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes. Atmosphere 2022, 13, 346. https://doi.org/10.3390/atmos13020346
Tsagouri I. Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes. Atmosphere. 2022; 13(2):346. https://doi.org/10.3390/atmos13020346
Chicago/Turabian StyleTsagouri, Ioanna. 2022. "Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes" Atmosphere 13, no. 2: 346. https://doi.org/10.3390/atmos13020346
APA StyleTsagouri, I. (2022). Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes. Atmosphere, 13(2), 346. https://doi.org/10.3390/atmos13020346