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Abstract: Agricultural activity greatly contributes to the secondary PM2.5 concentrations by releasing
relatively large amounts of ammonia emissions. Nonetheless, studies and air quality policies have
traditionally focused on industrial emissions such as NOx and SOx. To compare them, this study used
a three-dimensional modeling system (e.g., WRF/CMAQ) to estimate the effects of emission control
policies of agricultural and industrial emissions on PM2.5 pollution in Chungcheong, an agriculturally
active region in Korea. Scenario 1 (S1) was designed to estimate the effect of a 30% reduction in NH3

emissions from the agro-livestock sector on air pollution. Scenario 2 (S2) was designed to show the
air quality under a mitigation policy on NOx, SOx, VOCs, and primary PM2.5 from industrial sources,
such as power plants and factories. The results revealed that monthly mean PM2.5 in Chungcheong
could decrease by 3.6% (1.1 µg/m3) under S1 with agricultural emission control, whereas S2 with
industrial emission control may result in only a 0.7~1.1% improvement. These results indicate the
importance of identifying trends of multiple precursor emissions and the chemical environment in
the target area to enable more efficient air quality management.

Keywords: NH3; agriculture; PM2.5; CMAQ

1. Introduction

Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) is considered a
serious hazard due to its adverse effects on human health and the ecosystem [1–3]. Accord-
ing to the State of Global Air [4], air pollution accounted for about 12% of all deaths and
ranked as the fourth leading risk factor for premature death globally in 2019. Levinson [5]
and Lavy et al. [6] revealed that air pollution can cause negative psychological effects
on humans by lowering cognitive ability and altering emotions. Fu et al. [7] suggested
that a 1 µg/m3 increase in PM2.5 can decrease work productivity by 0.82%. The projected
increasing concentrations of PM2.5 and ozone will lead to more hospital admissions, health
expenditures, and sick or restricted activity days, resulting in labor productivity losses [8,9].

Many countries have suffered from air pollution over the past years [9–14], and South
Korea ranked first among 36 OECD countries in terms of mean population exposure to
PM2.5 [15]. Lee [16] also found that Seoul, the capital of South Korea, had 27 µg/m3 of
annual average PM2.5 concentration from November 2005 to March 2012, which is almost
three times the WHO standard. Han et al. [17] estimated that more than 11,000 prema-
ture deaths were attributable to high PM2.5 pollution in South Korea in 2015, especially
concentrated in the Seoul and Gyeonggi province with high population densities.

PM2.5 is formed through interactions between primary particles, various precursors
such as NOx, SOx, VOCs, and NH3, photochemical reactions, and meteorological pro-
cesses [18–20]. The composition of PM2.5 is various types of chemicals from primary and
secondary origins, including elemental and organic carbon, ionic species (i.e., chloride,
nitrates, sulfates, and ammonium), and elemental species [21,22]. Secondary inorganic
PM2.5, such as nitrate and sulfate, are formed through chemical reactions between the base
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gas NH3 and acidic gas (i.e., NO2 and SO2). As a result, NH4
+, SO4

2-, and NO3
− become

major components of inorganic PM2.5 [23–26].
Some studies have suggested that ammonia plays a critical role in the formulation of

PM2.5 as a precursor of secondary inorganic aerosols (SIAs) including ammonium sulfate
((NH4)2SO4) and ammonium nitrate (NH4NO3) [27–29]. As shown by Aneja et al. [30]
and Behera et al. [31], most ammonia is released from agricultural sources, such as animal
husbandry, fertilizer use, and crop residues combustion. Moreover, in the long run, Korea’s
ammonia emissions are steadily increasing despite its repeating short-term up-and-down
fluctuations [32,33]. However, studies on the effects of NH3 emission mitigations in South
Korea are still limited.

In this study, we conducted a modeling study to estimate the impact of agricultural
ammonia emission control on PM2.5 concentration in the Chungcheong region, which is
one of the most agriculture-dominated areas in South Korea. The results were compared to
other cases of industrial emission control.

2. Methods
2.1. Study Area

We carried out simulations focused on the Chungcheong area, considering its high agri-
cultural emissions in South Korea. The study area—Chungcheong—consists of two provinces:
Chungbuk and Chungnam, as shown in Figure 1. Figure 2 shows that Korea has recently
emitted about 300,000 tons of NH3 in a year, while Chungcheong accounts for more than
20% of the total since 2008 [33].
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This seems to be mainly caused by its vigorous activity of animal husbandry. Accord-
ing to a livestock trend survey by Korea National Statistical Office, Chungcheong accounts
for 25% of the nation’s livestock population and has 48,188,370 heads, the second largest
in the country (Figure 3, Table 1) [34]. Particularly, Chungcheong has the second and first
largest number of dairy cattle and swine, which belong to the livestock with the highest
emission factors (Table 2) [35]. In the agricultural sector, Chungcheong has 3283 km2 of
farmland, accounting for 20.3% of the total (Table 3) [36].
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Figure 2. Trend of NH3 emissions in South Korea (2008~2013).
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Figure 3. Livestock ratio by region (2017).

Table 1. Livestock statistics by animal type and region (2017).

Region Beef
Cattle

Dairy
Cattle Swine Poultry Duck Total

Seoul 127 21 - - - 148
Busan 1575 378 5806 93,264 - 101,023
Daegu 18,426 1267 8114 388,500 - 416,307

Incheon 19,104 2675 40,325 1,175,700 - 1,237,804
Gwangju 6525 674 8269 141,700 - 157,168
Daejeon 6079 - 60 98,200 - 104,339

Ulsan 28,232 777 25,589 481,081 - 535,679
Gyeonggi 274,776 163,486 1,866,428 27,710,065 205,600 30,220,355
Gangwon 207,235 17,567 453,137 6,502,703 2080 7,182,722

Chungcheong 567,489 94,433 2,728,372 44,147,120 650,956 48,188,370
Jeolla 767,005 59,707 2,329,466 54,546,211 5,044,435 62,746,824

Gyeongsang 856,847 57,187 2,394,658 35,743,902 540,465 39,593,059
Jeju 32,326 4003 571,684 1,715,033 16,300 2,339,346

Total 2,785,746 402,175 10,431,908 172,743,479 6,459,836 192,823,144
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Table 2. Ammonia emission factor by livestock type.

Livestock Type Subdivision Emission Factor
(kg-NH3/Head)

Beef cattle
Under 1 year old 11.8

1–2 years old 14.0
Over 2 years old 16.8

Dairy cattle - 24.6

Swine

Nursery pig 4.4
Glowing pig 8.7
Fatting pig 11.4

Sow 21.4

Poultry Laying hen 0.37
Broiler 0.28

Other poultry Duck 0.92

Table 3. Area and area ratio of farmland by region (2017).

Region Farmland (km2) Ratio (%)

Seoul 4 0.0
Busan 57 0.4
Daegu 81 0.5

Incheon 190 1.2
Gwangju 94 0.6
Daejeon 39 0.2

Ulsan 105 0.7
Gyeonggi 1657 10.2
Gangwon 1031 6.4

Chungcheong 3283 20.3
Jeolla 4931 30.4

Gyeongsang 4124 25.4
Jeju 611 3.8

Total 16,208 100.0

2.2. Model Description and Emission Inventory

In this study, we used Weather Research and Forecast (WRFv3.6) and Sparse Matrix
Operator Kernel Emission (SMOKEv3.5) to simulate meteorological conditions and process
emission data. Community Multi-scale Air Quality Modeling (CMAQv5.0.2) was applied
to estimate concentrations of PM2.5 in the Chungcheong area. Figure 4 shows a general
flowchart of the WRF-SMOKE-CMAQ modeling system. This simulation was carried out
for three nested domains, including Domain 1 (East-Asia)—27 × 27 km and 124 × 131 grid
cells, Domain 2 (Korea)—9 × 9 km and 73 × 85 grid cells, and Domain 3 (Chungcheong)—
3 × 3 km and 88 × 58 grid cells (Figure 5). The projection mode was Lambert. Carbon
Bond 5 (CB5) schemes, the SAPRC mechanism, and AERO 5 module were applied for
gas and aerosol chemical mechanism for CMAQ modeling. YAMO was selected for the
advection scheme.

WRF was used to provide meteorological data needed by the CMAQ under conditions
as follows; WSM6 for microphysics, Dudhia for shortwave radiation, RRTM for longwave
radiation, Kain–Fritsch for cumulus parametrization, the Yonsei University Scheme (YUS)
for planetary boundary layer, and Noah for land surface model (Table 4).
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Table 4. CMAQ and WRF model conditions.

Model Parameter Selected Option

CMAQ

Gas-phase chemical mechanism CB05

Aerosol module AERO5

Chemical mechanism SAPRC99

Advection scheme YAMO

WRF

Microphysics WSM6

Shortwave radiation Dudhia

Longwave radiation RRTM

Cumulus parameterization Kain–Fritsch

Planetary boundary layer Yonsei University Scheme

Land surface model Noah

SMOKE was used as a processing model of emission data—CAPSS, which is the
national emissions inventory developed by the National Institute of Environmental Re-
search here in Korea. It uses classification categories including point, area, on-road and
non-road sectors. Point sectors include industrial emissions from related sources such as
“combustion in manufacturing industries”, “production processes, storage and distribution
of fuels”, and “combustion in energy industries”. Area sectors include emissions from
“agriculture” and “agricultural crop residues burning” [37]. In this study, we focused only
on the “agriculture” subsector. The agriculture subsector consists of two classes—“Manure
management” and “Agricultural land”. “Manure management” includes emissions from
manure of the livestock such as cattle, swine, poultry, other poultry, sheep and lamb,
perissodactyl, fur animal, and others. “Agricultural land” represents all emissions from
fertilized farmland.

2.3. Emission Scenarios

We designed three types of scenarios including Base case without any control policy,
Scenario 1 (S1) with agricultural emission control policy only, and Scenario 2 (S2) with
industrial emission control policy only.

Base case was performed to show standard pollution conditions under no emission
control. Emission data used in the Base case simulation is from CAPSS 2017, which was
the latest version of national emission data in South Korea. For S1 and S2, CAPSS 2017
data were applied with modifications in agricultural or industrial emissions depending
on each emission reduction policy. S1 focused only on NH3 emissions control from agro-
livestock sources such as livestock and fertilizer applications. S2 was limited to emission
control of NOx, SOx, VOCs, and primary PM2.5 from industrial sources such as power
plants and factories. To design these scenarios, we referred to the latest Korean national
air quality management policy, including the “Fine Dust Reduction Measures in Agro-
Livestock Sector” and the “Comprehensive Plan on Fine Dust Management (2020~2024)”.
Each emission inventory for the respective scenarios is described in Table 5.

The Ministry of Agriculture, Food and Rural Affairs announced the “Fine Dust Reduc-
tion Measures in Agro-Livestock Sector “in 2019 in consideration of increasing concerns
regarding NH3 emissions. This policy aimed to decrease agricultural NH3 emissions
by 30% through 2022.

The “Comprehensive Plan on Fine Dust Management” was designed to decrease the
national annual mean of PM2.5 from 26 µg/m3 in 2016 to 16 µg/m3 in 2024. To achieve
this target, different reduction rates were applied to the two provinces comprising the
Chungcheong region—Chungbuk Province (Figure 3) and Chungnam Province, and the
respective reduction rates are shown in Table 6.
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Table 5. Emission inventories for Base case, S1, and S2.

Scenario
Point Source Emissions from Chungcheong (ton/yr)

CO NOx SOx VOCs PM2.5 PM10 NH3

Base 18,611 85,449 58,270 33,910 2674 3600 11,111
S1 18,611 85,449 58,270 33,910 2674 3600 11,111

S2 18,611 53,970
(−31,479)

28,397
(−29,873)

30,747
(−3163)

2277
(−397) 3600 11,111

Scenario
Area Source Emissions from Chungcheong (ton/yr)

CO NOx SOx VOCs PM2.5 PM10 NH3

Base 60,055 21,413 18,090 75,942 12,222 21,820 55,045

S1 60,055 21,413 18,090 75,942 12,222 21,820 38,859
(−16,186)

S2 60,055 21,413 18,090 75,942 12,222 21,820 55,045

Table 6. Emission reduction rates of Chungcheong for S2.

NOx SOx VOCs PM2.5

Chungbuk 27% 17% 8% 15%
Chungnam 44% 55% 13% 15%

2.4. Target Period

In this study, we focused on evaluating the air quality improvement under emission-
controlled cases in the most polluted month, which was March 2017. From the data on
monthly mean air pollution in Chungcheong in 2017 [38], March showed the highest PM2.5
concentration, reaching 36.6 µg/m3, while the annual mean was 25.0 µg/m3 (Figure 6).
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2.5. Model Performance

To assess the performance of WRF-CMAQ, we compared the simulated PM2.5 concen-
trations with the observation values collected in each representative station in Chungbuk
province (Cheongju) and Chungnam province (Cheonan) during March 2017. Figure 7
shows the correlation analysis results of the observation data and the simulation data from
CMAQ in two representative stations. Table 7 indicates the statistical values including
Mean Bias (MB), Index of Agreement (IOA), fraction of predictions within a factor of two
of observations (FAC2), and Correlation coefficient (R). MB was calculated as the mean
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difference in model estimates-observation pairings within the selected study area and
period. IOA metric integrates all the differences between model estimates and observations
into one statistical quantity. FAC2 was calculated by dividing model predictions by obser-
vations. From the summary statistics, we concluded that the model performed well, as the
MB in both areas is relatively small with adequate IOA (0.71–0.74). FAC2 ranging from 0.82
to 0.86 is also within the acceptable range (0.5–2.0) [39]. R of 0.57–0.62 seems to be relatively
low, however, we considered it is within acceptable range based on previous studies, which
simulated secondary air pollutants concentration and concluded R is reasonable with
similar levels (below 0.70) [40–43]. These studies have suggested that CMAQ simulates con-
centration trend well, but it tends to over/under-estimate concentrations during low/high
concentration periods, which might be due to uncertainty in emission data and inaccuracy
of meteorological model (WRF) under complex weather change conditions. In this study,
the air quality model generally underestimated PM2.5 concentration during high PM2.5
episodes as shown in Figure 8, resulting in a lower average of predicted concentration of
32.4–36.7 µg/m3 compared to the observed concentration of 39.7–42.6 µg/m3 (Table 8).
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Table 8. Observed and simulated monthly mean PM2.5 at Cheongju station in Chungbuk province
and Cheonan station in Chungnam province.

Mean (µg/m3) Cheongju Cheonan

OBS 39.7 42.6
MOD 32.4 36.7

3. Results and Discussions
3.1. Base Case

Under the baseline scenario, the PM2.5 concentration throughout Chungcheong was
simulated as shown in Figure 9 and Table 9. The overall monthly mean PM2.5 in Chungcheong
was about 31.6 µg/m3 with 31.65 µg/m3 in Chungbuk and 31.58 µg/m3 in Chungnam. At
the city level, Cheongju in Chungbuk, and Hongseong and Cheonan in Chungnam showed
comparatively severe pollution with PM2.5 concentrations higher than 35 µg/m3.
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Cheongju 35.8 Gongju 29.3
Goesan 30.9 Geumsan 26.3

Danyang 26.0 Hongseong 36.2
Jincheon 33.9 Nonsan 34.2

Boeun 31.8 Dangjin 28.1
Chungju 32.3 Seosan 31.5

Eumseong 34.6 Boryeong 31.8
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Okcheon 32.1 Buyeo 30.9

Jeungpyeong 34.7 Seocheon 31.3
Gyeryong 31.3

Yesan 32.8

Average 31.65 Average 31.58
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3.2. Benefits of Agricultural Emission Control (S1)

Under agricultural emission reduction policy, NH3 concentration seems to be reduced
by more than 2 ppb in most regions in Chungcheong (Figure 10). The PM2.5 concentration is
also predicted to decrease, as shown in Figure 11. In short, 30% of NH3 emission reduction
from the agricultural sector may lead to more than 0.8 µg/m3 in PM2.5 improvement
compared to the base case throughout Chungcheong. It is simulated that the average PM2.5
decrease is 1.1 µg/m3 and the improvement rate is about 3.6% in Chungcheong (Table 10).
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Table 10. Predicted average change of PM2.5 concentration under S1 relative to the base case in
Chungcheong in March 2017.

Region PM2.5 Change (µg/m3) Improvement Rate (%)

Chungbuk −1.1 3.6
Chungnam −1.1 3.5
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However, concentration improvements of NH3 and PM2.5 show spatial inconsistencies.
For example, the city showing the largest improvement in NH3 concentration under S1
is Hongseong, while the city with the largest improvement in PM2.5 concentration is its
neighbor, Boryeong. We presume that this may be caused by other major precursors of
inorganic PM2.5, such as HNO3 and H2SO4 [44]. In other words, it seems that some regions,
such as Hongseong, do not show PM2.5 concentration reduction effects proportional to
their NH3 reduction amount because of their low concentration of HNO3 and/or H2SO4.
To verify this, we carried out a spatial prediction of HNO3 concentration under the base
scenario (Figure 12). H2SO4 was not considered because it is rarely found in the atmo-
sphere since it usually reacts with ammonia instantly and forms ammonium bisulfate or
ammonium sulfate [44]. Therefore, we presumed that the difference in abundance of HNO3,
which reacts with the NH3 remaining after reaction with H2SO4, also affected the results of
NH3 reduction.
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The results showed that the HNO3 concentration was less than 0.2 ppb in Hongseong,
the city with the highest reduction in NH3 emissions under S1. On the other hand, Bo-
ryeong, with the most improved PM2.5 concentration under S1, showed a relatively high
HNO3 concentration of 0.4 ppb or higher. In addition, most regions with higher HNO3
concentrations showed larger PM2.5 reduction effects.

We estimated that, unlike HNO3, regional differences in meteorological factors were
limited, so they did not play an important role in the spatial inconsistency between NH3
improvement and PM2.5 improvement. It is known that the SIAs mass has seasonal
variability. While the formation of nitrate is relatively more active in the winter under lower
temperature and higher humidity, sulfate formation is more active in summer due to high
solar radiation and more OH radicals [45]. However, when we examined the possibility
that meteorological conditions would affect the inconsistency, the results showed as “less
likely”. As shown in Figure 13, the spatial distribution of temperature at 2 m and surface
temperature across Chungcheong indicates that it would not have played an important role
due to its limited differences by region. Moreover, there is no significant difference in the
temperatures of Hongseong and Boryeong, the regions with the NH3-PM2.5 inconsistency.
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3.3. Benefits of Industrial Emission Control (S2)

As shown in Figure 14, it was predicted that industrial NOx, SOx, VOCs, and primary
PM2.5 emission controls may lead to smaller PM2.5 concentration improvements compared
to S1. Under S2, PM2.5 concentration decreased by less than 0.4 µg/m3 in all cities in
Chungcheong except Hongseong in Chungnam. The improvement rate was also limited to
0.7% in Chungbuk and 1.1% in Chungnam (Table 11).
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Table 11. Predicted average change of PM2.5 concentration under S2 relative to the Base case in
Chungcheong in March 2017.

Region PM2.5 Change (µg/m3) Improvement Rate (%)

Chungbuk −0.2 0.7
Chungnam −0.3 1.1

In short, the industrial emission control policy was less effective than the agricultural
emission policy despite its larger reduction of emissions and more various target pollutants.
The main reason for this seems to be the non-linear formation mechanism of secondary
air pollutants. For example, in a VOCs-limited (or NOx-rich) region, control of NOx may
lead to increased concentration of ozone and particulate matter, which is the so-called
“NOx disbenefit” [46]. To examine this case, we compared the spatial distribution of NOx
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and ozone concentration changes under S2, which are shown in Figures 15 and 16. As a
result, it was found that the ozone concentration was higher than that of the base scenario,
especially in regions with relatively large NOx reduction. As the ozone concentration
increased, the atmospheric acidity was also strengthened, which seems to have led to more
active formation processes of secondary PM2.5.
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4. Conclusions

In this study, we carried out air quality simulations to quantify the environmental
effects of agricultural NH3 reduction versus industrial emissions reduction on PM2.5 pro-
duction. The results showed that a 30% NH3 emission mitigation from the agro-livestock
sector in Chungcheong could lead to about a 3.6% decrease in PM2.5 concentrations com-
pared to 32 µg/m3 of the estimated monthly mean PM2.5 in March 2017. In contrast, under
the industrial emission reduction scenario (S2), it was predicted that the improvement
ratio of the PM2.5 concentration would be only 0.7%~1.1% despite the greater amount of
reduced emissions and more target precursors including NOx, SOx, VOCs, and primary
PM2.5. Considering the predicted increases of ozone concentrations under S2, we assume
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that the main reason for this is that Chungcheong has a NOx-rich environment, where
reducing the NOx might rather trigger the formation of ozone and secondary aerosols.

Regarding the agricultural emission control case, spatial inconsistency between the
regions with the biggest NH3 reduction and regions with the most improved PM2.5 concen-
trations was observed. Given that concentrations of acid precursors could also affect the
formation of secondary aerosols, we confirmed that a relatively low HNO3 concentration
caused a non-proportional effect of NH3 reduction measures on PM pollution in this case.
For example, Hongseong, the city with the largest NH3 emission reduction, did not get the
best improvement effects on PM2.5 concentration because of its low HNO3 concentration of
less than 0.2 ppb.

In short, this study verified that the management of agricultural NH3 emissions could
be a more efficient way for reducing PM2.5 concentrations rather than the current policy,
mostly focused on industrial emissions for certain regions. In addition, to formulate
effective air pollution control policies, it would be required to examine the possibility of
negative and/or minimal effects of NOx emission mitigations by clarifying if the target
area has a NOx-rich environment or not. In conclusion, especially in agriculture-dominated
cities, this study highlights that a policy targeting ammonia management could be a safer
choice and result in significant air pollution improvement effects unless the target area
has a limited amount of HNO3 Therefore, it should be considered that HNO3 can be an
important factor influencing the effectiveness of the NH3 mitigation measures to reduce
PM pollution.
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