Testing HYSPLIT Plume Dispersion Model Performance Using Regional Hydrocarbon Monitoring Data during a Gas Well Blowout
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fidelity of HRRR Data
2.2. HYSPLIT Processing
- An internal forward-backward transport scheme to correct for violations of mass consistency in the meteorological fields,
- The definition of additional layers near [the top of the boundary layer] to reduce particle trapping in that stable environment,
- A probability scheme for particle reflection/transmission across interfaces with step changes in turbulence, and
- A finer internal time step to reduce the errors introduced by operator splitting.
2.3. Study Site and Emission Rates
3. Results and Discussion
3.1. Blowout Emissions and Air Quality Monitor Measurements
3.1.1. Emissions Calculations
3.1.2. Excess Hydrocarbon Abundance at State Monitoring Sites
3.2. Comparisons of HYSPLIT Meteorological Input Data with Regional Measurements
3.3. Hydrocarbon Composition
3.4. HYPLIT Model Results Compared to Air Quality Monitor Observations
3.4.1. Performance of HYSPLIT Evaluated for the Karnes City Monitor
3.4.2. Performance of HYSPLIT Evaluated for the Floresville Hospital Monitor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngan, F.; Loughner, C.P.; Stein, A. The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmos. Environ. 2019, 219, 117043. [Google Scholar] [CrossRef]
- Karion, A.; Lauvaux, T.; Coto, I.L.; Sweeney, C.; Mueller, K.; Gourdji, S.; Angevine, W.; Barkley, Z.; Deng, A.J.; Andrews, A.; et al. Intercomparison of atmospheric trace gas dispersion models: Barnett Shale case study. Atmos. Chem. Phys. 2019, 19, 2561–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ionov, D.; Poberovskii, A. Observations of urban NOx plume dispersion using mobile and satellite DOAS measurements around the megacity of St. Petersburg (Russia). Int. J. Remote Sens. 2019, 40, 719–733. [Google Scholar] [CrossRef]
- Castro, M.; Pires, J.C.M. Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmos. Pollut. Res. 2019, 10, 827–834. [Google Scholar] [CrossRef]
- Pirouzmand, A.; Kowsar, Z.; Dehghani, P. Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Prog. Nuclear Energy 2018, 108, 169–178. [Google Scholar] [CrossRef]
- Ngan, F.; Stein, A.; Finn, D.; Eckman, R. Dispersion simulations using HYSPLIT for the Sagebrush Tracer Experiment. Atmos. Environ. 2018, 186, 18–31. [Google Scholar] [CrossRef]
- Fasoli, B.; Lin, J.C.; Bowling, D.R.; Mitchell, L.; Mendoza, D. Simulating atmospheric tracer concentrations for spatially distributed receptors: Updates to the Stochastic Time-Inverted Lagrangian Transport model’s R interface (STILT-R version 2). Geosci. Model. Dev. 2018, 11, 2813–2824. [Google Scholar] [CrossRef] [Green Version]
- Duc, H.N.; Chang, L.T.C.; Azzi, M.; Jiang, N.B. Smoke aerosols dispersion and transport from the 2013 New South Wales (Australia) bushfires. Environ. Monit. Assess. 2018, 190, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display System: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Truong, S.C.H.; Lee, M.I.; Kim, G.; Kim, D.; Park, J.H.; Choi, S.D.; Cho, G.H. Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model. Atmos. Environ. 2016, 144, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Ngan, F.; Draxler, R.R.; Chai, T. Potential Use of Transport and Dispersion Model Ensembles for Forecasting Applications. Weather Forecast 2015, 30, 639–655. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Ngan, F.; Stein, A.; Draxler, R. Inline Coupling of WRF-HYSPLIT: Model Development and Evaluation Using Tracer Experiments. J. Appl. Meteorol. Climatol. 2015, 54, 1162–1176. [Google Scholar] [CrossRef]
- Lin, J.C.; Gerbig, C.; Wofsy, S.C.; Andrews, A.E.; Daube, B.C.; Davis, K.J.; Grainger, C.A. A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res. Atmos. 2003, 108, 4493. [Google Scholar] [CrossRef] [Green Version]
- Loughner, C.P.; Fasoli, B.; Stein, A.F.; Lin, J.C. Incorporating Features from the Stochastic Time-Inverted Lagrangian Transport (STILT) Model into the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model: A Unified Dispersion Model for Time-Forward and Time-Reversed Applications. J. Appl. Meteorol. Climatol. 2021, 60, 799–810. [Google Scholar] [CrossRef]
- Hegarty, J.; Draxler, R.R.; Stein, A.F.; Brioude, J.; Mountain, M.; Eluszkiewicz, J.; Nehrkorn, T.; Ngan, F.; Andrews, A. Evaluation of Lagrangian Particle Dispersion Models with Measurements from Controlled Tracer Releases. J. Appl. Meteorol. Climatol. 2013, 52, 2623–2637. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 14 March 2022).
- Cusworth, D.H.; Duren, R.M.; Thorpe, A.K.; Pandey, S.; Maasakkers, J.D.; Aben, I.; Jervis, D.; Varon, D.J.; Jacob, D.J.; Randles, C.A.; et al. Multisatellite Imaging of a Gas Well Blowout Enables Quantification of Total Methane Emissions. Geophys. Res. Lett. 2021, 48, e2020GL090864. [Google Scholar] [CrossRef]
Method (Abbreviation) | Met Input | Resolution 1 | Processing Time 2 |
---|---|---|---|
STILT default (HS1) | HRRR 3 km | 0.01 deg (1 km) | 525 ± 153 |
STILT default (HS3) | HRRR 3 km | 0.03 deg (3 km) | 383 ± 186 |
HYSPLIT default (HKC1) | HRRR 3 km | 0.01 deg (1 km) | 248 ± 122 |
HYSPLIT default (HKC3) | HRRR 3 km | 0.03 deg (3 km) | 251 ± 89 |
HYSPLIT default (HKC1NAM) | NAM 12 km | 0.01 deg (1 km) | 180 ± 42 |
STILT × STILT (HSS1) 3 | HRRR 3 km | 0.01 deg (1 km) | 539 ± 166 |
Composition | Gas Only | Well-Stream | Ambient | Ambient | Ambient |
---|---|---|---|---|---|
origin | 2017 permit | 2009 wildcat | blowout | Karnes City | Floresville |
C3/C2 1 | 0.38 | 0.48 | NA | 0.63 | 0.59 |
nC4/C3 | 0.28 | 0.4 | NA | 0.49 | 0.49 |
iC4/nC4 | 0.7 | 0.65 | NA | 0.49 | 0.46 |
totC5/totC4 | 0.34 | 0.56 | 0.433 | 0.49 | 0.54 |
benz/totC4 | 0.005 | NA | 0.031 | 0.009 | 0.012 |
tol/totC4 | 0.012 | NA | 0.147 | 0.02 | 0.03 |
benz/tol | 0.42 | NA | 0.21 | 0.27–0.4 2 | 0.31 |
Spatial Average | HS1 1 | HS3 | HKC1 | HKC1NAM | HSS1 |
---|---|---|---|---|---|
3 × 3 km | 1.11 | 0.90 | 1.27 | 1.22 | 1.24 |
6 × 6 km | 1.84 | 1.78 2 | 1.59 | 1.34 | 1.61 |
Spatial Average | HS1 1 | HS3 | HKC1 | HKC1NAM | HSS1 |
---|---|---|---|---|---|
3 × 3 km | 1.69 | 0.48 | 1.14 | 1.42 | 1.99 |
6 × 6 km | 1.40 | 1.93 2 | 1.30 | 1.61 | 2.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schade, G.W.; Gregg, M.L. Testing HYSPLIT Plume Dispersion Model Performance Using Regional Hydrocarbon Monitoring Data during a Gas Well Blowout. Atmosphere 2022, 13, 486. https://doi.org/10.3390/atmos13030486
Schade GW, Gregg ML. Testing HYSPLIT Plume Dispersion Model Performance Using Regional Hydrocarbon Monitoring Data during a Gas Well Blowout. Atmosphere. 2022; 13(3):486. https://doi.org/10.3390/atmos13030486
Chicago/Turabian StyleSchade, Gunnar W., and Mitchell L. Gregg. 2022. "Testing HYSPLIT Plume Dispersion Model Performance Using Regional Hydrocarbon Monitoring Data during a Gas Well Blowout" Atmosphere 13, no. 3: 486. https://doi.org/10.3390/atmos13030486
APA StyleSchade, G. W., & Gregg, M. L. (2022). Testing HYSPLIT Plume Dispersion Model Performance Using Regional Hydrocarbon Monitoring Data during a Gas Well Blowout. Atmosphere, 13(3), 486. https://doi.org/10.3390/atmos13030486