Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Collection of Samples and Chemical Analysis
2.3. Quality Control
3. Results and Discussion
3.1. Physical Properties of Fog Water
Color and Odor
3.2. pH, TDS, and EC
3.3. Total Organic Carbon (TOC)
3.4. Water-Soluble Ions
3.5. Trace Metals
3.6. Correlation Analysis
3.7. Fractional Acidity and Neutralizing Factor
3.8. Enrichment Factor
3.9. Source Contribution
3.10. Marine Contribution
3.11. Anthropogenic and Crustal Contribution
3.12. Air Mass Back Trajectories Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.Y.; Xie, C.E.; Shi, C.E.; Liu, D.Y.; Niu, S.J.; Li, Z.H. Ion Composition of fog water and its relation to air pollutants during winter fog events in Nanjing, China. Pure Appl. Geophys. 2012, 169, 1037–1052. [Google Scholar] [CrossRef]
- Nair, V.S.; Moorthy, K.K.; Alappattu, D.P.; Kunhikrishnan, P.K.; George, S.; Nair, P.R.; Babu, S.S.; Abish, B.; Satheesh, S.K.; Tripathi, S.N.; et al. Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. J. Geophys. Res. Atmos. 2007, 112, D13205. [Google Scholar] [CrossRef]
- Munger, J.W.; Waldman, D.J.; Hoffman, M.R. Fog water chemistry in an urban atmosphere. J. Geophys. Res. 1983, 88, 5109–5123. [Google Scholar] [CrossRef]
- Jacob, D.J.; Munger, J.W.; Waldman, J.M.; Hoffmann, M.R. H2SO4–HNO3–NH3 System at high humidities and in fogs, part 1, spatial and temporal patterns in the san Joaquin valley of California. J. Geophys. Res. 1986, 91, 1073–1088. [Google Scholar] [CrossRef]
- Pandis, S.N.; Seinfeld, J.H. Mathematical modelling of acid deposition due to radiation fog. J. Geophys. Res. 1989, 94, 12911–12923. [Google Scholar] [CrossRef] [Green Version]
- Pandis, S.N.; Seinfeld, J.H.; Pilinis, C. Chemical composition differences in fog and cloud droplets of different sizes. Atmos. Environ. 1990, 24A, 1957–1969. [Google Scholar] [CrossRef]
- Polkowsk, Ż.; Błaś, M.; Klimaszewska, K.; Sobik, M.; Małek, S.; Namieśnik, J. Chemical characterization of dew water collected in different geographic regions of Poland. Sensors 2008, 8, 4006–4032. [Google Scholar] [CrossRef] [Green Version]
- Rubio, M.A.; Lissi, E.; Villena, G. Nitrite in rain and dew in Santiago city, Chile. Its possible impact on the early morning start of the photochemical smog. Atmos. Environ. 2002, 36, 293–297. [Google Scholar] [CrossRef]
- Lynam, M.M.; Dvonch, J.T.; Hall, N.L.; Morishita, M.; Barres, J.A. Trace elements and major ions in atmospheric wet and dry deposition across central Illinois, USA. Air Qual. Atmos. Health 2015, 8, 135–147. [Google Scholar] [CrossRef]
- Lekouch, I.; Mileta, M.; Muselli, M.; Milimouk-Melnytchouk, I.; Šojat, V.; Kabbachi, B.; Beysens, D. Comparative chemical analysis of fog and rainwater. Atmos. Res. 2000, 95, 224–234. [Google Scholar] [CrossRef]
- Beysens, D.; Ohayon, C.; Muselli, M.; Clus, O. Chemical and biological characteristics of dew and rainwater in an urban coastal area (Bordeaux, France). Atmos. Environ. 2006, 40, 3710–3723. [Google Scholar] [CrossRef]
- Jiries, A. Chemical composition of fog in Amman, Jordan. Atmos. Res. 2001, 57, 261–268. [Google Scholar] [CrossRef]
- Kidron, G.J.; Starinsky, A. Chemical composition of fog and rain in an extreme desert (Negev): Cobbles serve as sink for nutrients. J. Hydrol. 2012, 420, 284–291. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Yang, C.; Wang, X.; Chen, J.; Collett, J.L. Fog water chemistry in Shanghai. Atmos. Environ. 2011, 45, 4034–4041. [Google Scholar] [CrossRef]
- Ervens, B.; Turpin, B.J.; Weber, R.J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069–11102. [Google Scholar] [CrossRef] [Green Version]
- Nieberding, F.; Breuer, B.; Braeckevelt, E.; Klemm, O.; Song, Q.; Zhang, Y. Fog water chemical composition on Ailaoshan mountain, Yunnan province, SW China. Aerosol Air Qual. Res. 2018, 18, 37–48. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Kafatos, M.; Tsay, S.C. Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res. 2007, 112, D05207. [Google Scholar] [CrossRef] [Green Version]
- Kar, J.; Deeter, M.N.; Fishman, J.; Liu, Z.; Omar, A.; Creilson, J.K.; Trepte, C.R.; Vaughan, M.A.; Winker, D.M. Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmos. Chem. Phys. 2010, 10, 12273–12283. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, R.; Sarin, M.M.; Sudheer, A.K. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J. Geophys. Res. 2007, 112, D21307. [Google Scholar] [CrossRef]
- Niranjan, K.; Sreekanth, V.; Madhavan, B.L.; Krishna, M.K. Wintertime aerosol characteristics at a north Indian site Kharagpur in the Indo-Gangetic plains located at the outflow region into Bay of Bengal. J. Geophy. Res. 2006, 111, D24209. [Google Scholar] [CrossRef] [Green Version]
- Salam, A.; Hossain, T.; Siddique, M.N.A.; Alam, A.S. Characteristics of atmospheric trace gases, particulate matter, and heavy metal pollution in Dhaka, Bangladesh. Air Qual. Atmos. Health 2008, 1, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Hossain, A.; Akther, T.; Shohel, M.; Salam, A. Chemical composition and source identification of fog water at an Indo-Gangetic plain (IGP) outflow location (coastal Bhola Island). Bangladesh. J. Environ. Pollut. Manag. 2018, 1, 1–9. [Google Scholar]
- Shohel, M.; Simol, H.A.; Reid, R.; Reid, J.S.; Salam, A. Dew water chemical composition and source characterization in the IGP outflow location (costal Bhola, Bangladesh). Air Qual. Atmos. Health 2017, 10, 981–990. [Google Scholar] [CrossRef]
- Islam, M.A.; Karim, M.R.; Higuchi, T.; Sakakibara, H.; Sekine, M. Comparison of the trace metal concentration of drinking water supply options in southwest coastal areas of Bangladesh. Appl. Water Sci. 2014, 4, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, M.; Okochi, H.; Igawa, M. Deposition of coarse soil particles and ambient gaseous components dominating dew water chemistry. J. Geophys. Res. 2003, 108, D10. [Google Scholar] [CrossRef]
- Izhar, S.; Gupta, T.; Minz, A.P.; Senapati, S.; Panday, A.K. Influence of regional and long range transport air masses on fog water composition, contribution and toxicological response at Indo Gangetic Plain. Atmos. Environ. 2019, 214, 116888. [Google Scholar] [CrossRef]
- Allan, M.A. Manual for the GAW Precipitation Chemistry Programme. Guidelines, Data Quality Objectives and Standard Operating Procedures; World Meteorological Organization: Geneva, Switzerland, 2004; 160p. [Google Scholar]
- Yadav, S.; Kumar, P. Pollutant scavenging in dew water collected from an urban environment and related implications. Air Qual. Atmos. Health 2014, 7, 559–566. [Google Scholar] [CrossRef]
- Safai, P.D.; Budhavant, K.B.; Rao, P.S.P.; Ali, K.; Sinha, A. Source characterization for aerosol constituents and changing roles of calcium and ammonium aerosols in the neutralization of aerosol acidity at a semi-urban site in SW India. Atmos. Res. 2010, 98, 78–88. [Google Scholar] [CrossRef]
- Błaś, M.; Polkowska, Ż.; Sobik, M.; Klimaszewska, K.; Nowiński, K.; Namieśnik, J. Fog water chemical composition in different geographic regions of Poland. Atmos. Res. 2010, 95, 455–469. [Google Scholar] [CrossRef]
- Watanabe, K.; Takebe, Y.; Sode, N.; Igarashi, Y.; Takahashi, H.; Dokiya, Y. Fog and rain water chemistry at Mt. Fuji: A case study during the September 2002 campaign. Atmos. Res. 2006, 82, 652–662. [Google Scholar] [CrossRef]
- Lu, X.; Li, L.Y.; Li, N.; Yang, G.; Lu, D.; Chen, J. Chemical characteristics of spring rainwater of Xi’an city, NW China. Atmos. Environ. 2011, 45, 5058–5063. [Google Scholar] [CrossRef]
- Puxbaum, H. Luftchemie. Schriftenreihe “Modern Analytical Chemie”; Band Institut für Analytical Chemie, Technische Universät Wien: Vienna, Austria, 1993. [Google Scholar]
- Kulshrestha, U.C.; Kulshrestha, M.J.; Sekar, R.; Sastry, G.S.R.; Vairamani, M. Chemical characteristics of rainwater at an urban site of south-central India. Atmos. Environ. 2003, 37, 3019–3026. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Wang, S.; Zhang, G.; Luo, J.; Lu, S. Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China. Atmos. Res. 2009, 94, 462–469. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Wu, F.; Yuan, X.; Zhang, Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 2007, 84, 311–322. [Google Scholar] [CrossRef]
- Safai, P.D.; Rao, P.S.P.; Momin, G.A.; Ali, K.; Chate, D.M.; Praveen, P.S. Chemical composition of precipitation during 1984–2002 at Pune, India. Atmos. Environ. 2004, 38, 1705–1714. [Google Scholar] [CrossRef]
- Tripathee, L.; Kang, S.; Huang, J.; Sillanpää, M.; Sharma, C.M.; Lüthi, Z.L.; Guo, J.; Paudyal, R. Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal. Environ. Sci. Pollutt. Res. 2014, 12, 2677–2687. [Google Scholar] [CrossRef]
- Al-Momani, I.F. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: Acidity and possible sources. Atmos. Environ. 2003, 37, 4507–4515. [Google Scholar] [CrossRef]
- Chester, R.; Nimmo, M.; Preston, M.R. Te trace metal chemistry of atmospheric dry deposition samples collected at cap ferrat: A coastal site in the western mediterranean. Mar. Chem. 1999, 68, 15–30. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, H.; Tang, J.; Lin, Y. Chemical compositions of fog and scavenging of particles in changchun, China. Adv. Meteorol. 2015, 2015, 104048. [Google Scholar] [CrossRef]
- Lakhani, A.; Parmar, R.S.; Prakash, S. Chemical composition of dew resulting from radiative cooling at a semi-arid site in Agra, India. Pure Appl. Geophys. 2012, 169, 859–871. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
Na+ | K+ | Mg2+ | NH4+ | Ca2+ | SO42− | NO3− | Cl− | Fe | Cu | Mn | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | 1 | |||||||||||
K+ | 0.08 | 1 | ||||||||||
Mg2+ | 0.79 | 0.48 | 1 | |||||||||
NH4+ | −0.12 | 0.21 | 0.32 | 1 | ||||||||
Ca2+ | 0.61 | 0.65 | 0.62 | 0.68 | 1 | |||||||
SO42− | 0.09 | 0.47 | 0.50 | 0.59 * | 0.93 | 1 | ||||||
NO3− | 0.30 | 0.34 | 0.32 | 0.09 | 0.28 | 0.79 | 1 | |||||
Cl− | 0.95 | 0.03 | 0.76 | −0.07 | 0.38 | 0.28 | 0.43 | 1 | ||||
Fe | 0.05 | 0.19 | −0.01 | −0.21 | 0.04 | 0.27 | 0.57 | 0.19 | 1 | |||
Cu | 0.48 | −0.12 | 0.43 | −0.37 | 0.04 | −0.04 | 0.23 | 0.77 | 0.39 | 1 | ||
Mn | 0.22 | 0.17 | 0.53 | 0.20 | 0.61 * | 0.82 | 0.62 | 0.37 | 0.02 | 0.13 | 1 | |
Zn | −0.08 | 0.03 | 0.26 | 0.60 | 0.65 * | 0.84 | 0.16 | 0.11 | 0.18 | −0.03 | 0.90 | 1 |
Features | Figure 11a | Figure 11b | Figure 11c | Figure 11d | Figure 11e |
---|---|---|---|---|---|
The concentration of (SO42− + NO3−) in a specific sample | 3.30 times lower than average | 1.5 times lower than average | 1.55 times higher than average | 2.05 times higher than average | - |
The total concentration of trace metals in a specific sample | 5.80 times lower than average | - | - | - | 2.32 times higher than average |
Pathway of air of 2500 MAGL | From the Bay of Bengal to Bhola | From the northwestern direction (probably IGP region) | From West Bengal region of India passing over Rajshahi | From West Bengal to Bhola | From West Bengal to Bhola |
Pathway of air of 1500 MAGL | From the Bay of Bengal to Bhola | From the Bay of Bengal to Bhola | From Dhaka | From Rajshahi to Bhola | Passing directly over Dhaka |
Pathway of air of 500 MAGL | From Dhaka to Bhola | From north- eastern direction | From Dhaka | From Dhaka to Bhola | Passing directly over Dhaka |
pH | Highest (7.25) | Lower than average (6.9) | Lowest (6.85) | Higher than average (7.10) | Higher than average (7.09) |
EC | Lowest (275 µScm−1) | Lower than average (371 µScm−1) | Highest (489 µScm−1) | Higher than average (388 µScm−1) | Higher than average (380 µScm−1) |
Remarks | Cleaner air from the seashore with less SOx, NOx, and trace metal species | Air flowing from IGP region might have carried pollutants | Air from IGP region probably carried a high concentration of precursor gases, which is evident from the low pH | Alkaline constituents dominated in fog composition, indicating neutralization of acidic components | Alkaline constituents dominated in fog composition, indicating neutralization of acidic components |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, K.; Nahian, S.; Jeba, F.; Islam, M.S.; Rahman, M.S.; Choudhury, T.R.; Fatema, K.J.; Salam, A. Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh. Atmosphere 2022, 13, 497. https://doi.org/10.3390/atmos13030497
Nahar K, Nahian S, Jeba F, Islam MS, Rahman MS, Choudhury TR, Fatema KJ, Salam A. Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh. Atmosphere. 2022; 13(3):497. https://doi.org/10.3390/atmos13030497
Chicago/Turabian StyleNahar, Kamrun, Samiha Nahian, Farah Jeba, Md Safiqul Islam, Md Safiur Rahman, Tasrina Rabia Choudhury, Konica Jannat Fatema, and Abdus Salam. 2022. "Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh" Atmosphere 13, no. 3: 497. https://doi.org/10.3390/atmos13030497
APA StyleNahar, K., Nahian, S., Jeba, F., Islam, M. S., Rahman, M. S., Choudhury, T. R., Fatema, K. J., & Salam, A. (2022). Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh. Atmosphere, 13(3), 497. https://doi.org/10.3390/atmos13030497