Trend Analysis of U. S. Tornado Activity Frequency
Abstract
:1. Introduction
2. Data and Methods
2.1. Observational Data
2.2. Sample Generation by Replacement (SGR)
2.3. Trend-Free Approach for Removing AR(1) Process
- (1)
- A non-zero slope β of a trend in a time series {, t = 1,2,…,n} is estimated by linear regression, and the sample data are detrended.
- (2)
- A lag-one serial correlation coefficient of the detrended series is calculated and the AR(1), if it is statistically significant, is removed from .
- (3)
- The identified trend from step (1) and the residual are blended.
- (4)
- The MK test is then applied to the blended time series to assess the significance of the trend. The blended series preserves the true trend and is no longer contaminated by the effects of autocorrelation.
2.4. Non-parametric MK Statistical Test for Trend Detection
2.5. Monte Carlo Simulation for Confirming Detected Trends
3. Results
3.1. Trend Analyses for U.S. Tornadoes (E)F1–(E)F5 over the Last Six Decades
3.2. Two-Way Interconnections between Long-Term Climate Trends and Internal Variabilities
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOAA. National Weather Service. Quick Facts: Tornadoes. Available online: www.crh.noaa.gov/images/dvn/downloads/quickfacts_Tornadoes.pdf (accessed on 1 October 2018).
- NOAA. National Weather Service, Office of Climate, Water, and Weather Services. Weather Fatalities. Available online: http://www.nws.noaa.gov/om/hazstats.shtml (accessed on 1 October 2018).
- Ashley, W.S.; Strader, S.M. Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado. disaster landscape. Bull. Am. Meteorol. Soc. 2016, 97, 767–786. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar5_wgII_spm_en.pdf (accessed on 16 March 2022).
- The U.S. Climate Change Science Program and the Subcommittee on Global Change Research. In Weather and Climate Extremes in a Changing Climate; Department of Commerce, NOAA’s National Climatic Data Center: Washington, DC, USA, 2008.
- Tippett, M.K.; Lepore, C.; Cohen, J.E. More tornadoes in the most extreme U.S. tornado outbreaks. Science 2016, 354, 1419–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diffenbaugh, N.S.; Trapp, R.J.; Brooks, H.E. Does global warming influence tornado activity? Eos Trans. 2008, 89, 553–554. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, K.E.; Karl, T.R.; Kossin, J.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N.; Emanuel, K.; Groisman, P.Y.; et al. Monitoring and understanding trends in extreme storms. Bull. Am. Meteor. 2013, 4, 499–514. [Google Scholar] [CrossRef]
- Verbout, S.M.; Brooks, H.E.; Leslie, L.M.; Schultz, D.M. Evolution of the U.S. tornado database: 1954-2003. Weather Forecast. 2006, 21, 86–93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Moore, T.W. On the temporal and spatial characteristics of tornado days in the United States. Atmos. Res. 2017, 184, 56–65. [Google Scholar] [CrossRef]
- Guo, L.; Wang, K.; Bluestein, H.B. Variability of tornado occurrence over the continental United States since 1950. J. Geophys. Res. Atmos. 2016, 121, 6943–6953. [Google Scholar] [CrossRef] [Green Version]
- Gensini, V.A.; Brooks, H.E. Spatial trends in United States tornado frequency. NPJ Clim. Atmos. Sci. 2018, 1, 38. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.W. Annual and seasonal tornado trends in the contiguous United States and its regions. Int. J. Clim. 2018, 38, 1582–1594. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int. J. Clim. 2002, 22, 933–946. [Google Scholar] [CrossRef]
- Cao, Z. Severe hail frequency over Ontario, Canada: Recent trend and variability. Geophys. Res. Lett. 2008, 35, L14803. [Google Scholar] [CrossRef]
- Chu, P.S.; Wang, J.B. Recent climate change in the tropical western Pacific and Indian Ocean regions as detected by outgoing longwave radiation records. J. Clim. 1997, 10, 636–646. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Ma, J. Summer severe rainfall frequency trend and variability over Ontario, Canada. J. Appl. Meteor. Clim. 2009, 48, 1955–1960. [Google Scholar] [CrossRef]
- Cao, Z.; Cai, H. Detection of tornado frequency trend over Ontario, Canada. Open Atmos. Sci. J. 2011, 5, 27–31. [Google Scholar] [CrossRef]
- Fuhrmann, C.M. Ranking of tornado outbreaks across the United States and their climatological characteristics. Weather Forecast. 2014, 29, 684–701. [Google Scholar] [CrossRef]
- Lombardi, L.; Pastore, M. Sensitivity of fit indices to fake perturbation of ordinal data: A sample by replacement approach. Multivar. Behav. Res. 2012, 47, 519–546. [Google Scholar] [CrossRef]
- Pastore, M.; Lombardi, L. The impact of faking on Cronbach’s Alpha for dichotomous and ordered rating scores. Qual. Quant. 2014, 48, 1191–1211. [Google Scholar] [CrossRef]
- Lombardi, L.; Pastore, M. sgr: A package for simulating conditional fake ordinal data. R J. 2014, 6, 164–177. [Google Scholar] [CrossRef]
- Anderson, C.J.; Wikle, C.K.; Zhou, Q.; Royle, J.A. Population Influences on Tornado Reports in the United States. Weather Forecast. 2007, 22, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Elsner, J.B.; Fricker, T.; Schroder, Z. Increasingly Powerful Tornadoes in the United States. Geophys. Res. Lett. 2019, 46, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Agee, E.; Childs, S. Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Clim. 2014, 53, 1494–1505. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences: An Introduction; Academic Press: Cambridge, MA, USA, 1995; p. 467. [Google Scholar]
- Brooks, H.E.; Carbin, G.W.; Marsh, P.T. Increased variability of tornado occurrence in the United States. Science 2014, 346, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Anderson-Frey, A.K.; Richardson, Y.P.; Dean, A.R.; Thompson, R.L.; Smith, B.T. Near-Storm Environments of Outbreak and Isolated Tornadoes. Weather Forecast. 2018, 33, 1397–1412. [Google Scholar] [CrossRef]
- Cao, Z.; Cai, H.; Zhang, G.J. Geographic Shift and Environment Change of U.S. Tornado Activities in a Warming Climate. Atmosphere 2021, 12, 567. [Google Scholar] [CrossRef]
- Tippett, M.K.; Cohen, J.E. Tornado Outbreak Variability Follows Taylor’s Power Law of Fluctuation Scaling and Increases Dramatically with Severity. Nat. Commun. 2016, 7, 10668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, D.W.J.; Barnes, E.A.; Deser, C.; Foust, W.E.; Phillips, A.S. Quantifying the role of internal climate variability in future climate trends. J. Clim. 2015, 28, 6443–6456. [Google Scholar] [CrossRef]
- Nouri, N.; Devineni, N.; Were, V.; Khanbilvardi, R. Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices. Sci. Rep. 2021, 11, 1741. [Google Scholar] [CrossRef]
- Elsner, J.; Michaels, L.; Scheitlin, K.; Elsner, I. The decreasing population bias in tornado reports across the Central Plains. Weather Clim. Soc. 2013, 5, 221–232. [Google Scholar] [CrossRef]
- Elsner, J.; Elsner, S.; Jagger, T. The increasing efficiency of tornado days in the United States. Clim. Dyn. 2015, 45, 651–659. [Google Scholar] [CrossRef]
- Moore, T.; DeBoer, T. A review and analysis of possible changes to the climatology of tornadoes in the United States. Prog. Phys. Geogr. Earth Environ. 2019, 43, 365–390. [Google Scholar] [CrossRef]
- Moore, T.; Fricker, T. Tornadoes in the USA are concentrating on fewer days, but their power dissipation is not. Theor. Appl. Climatol. 2020, 142, 1569–1579. [Google Scholar] [CrossRef]
EF Scale | (E)F 0 | (E)F1 | (E)F2 | (E)F3 | (E)F4 | (E)F5 |
---|---|---|---|---|---|---|
Vmedian | 33.5 | 43.8 | 55.0 | 67.3 | 81.8 | 89.4 |
Speed range | 29.1–38.0 | 38.4–49.2 | 49.6–60.4 | 60.8–73.8 | 74.2–89.4 | >89.4 |
Authors | Entire or Regions of U.S. | Tornado Counts and/or Days | Trend Analysis Methods | Individual (E)F Scale or (E)F+ | Data Coverage (Years) |
---|---|---|---|---|---|
Verbout et al. (2007) | Entire | Counts | Linear Regression | (E)F0–(E)F5 (E)F1+…(E)F4+ | 1954–2003 (50 years) |
Kunkel et al. (2013) | Entire | Counts | Eye-ball Slope Line | (E)F0 (E)F1+ | 1950–2011 (62 years) |
Moore (2017) | Entire | Days | MK test with pre-whitening | (E)F1+ | 1974–2015 (42 years) |
Guo et al. (2016) | Regions | Counts | Linear Regression | (E)F1+ | 1950–2013 (64 years) |
Gensini and Brooks (2018) | Regions | Counts | Linear Regression | (E)F0+ | 1979–2017 (39 years) |
Moore (2018) | Regions | Counts | MK test with pre-whitening | (E)F1+ | 1954–2016 (63 years) |
Our work | Entire | Counts and Days | (1) Linear Regression (2) MK test with trend-free pre-whitening (3) Monte Carlo simulation | (E)F1+ (E)F1…(E)F5 | 1954–2018 (65 years) |
F Scale | (E)F1 | (E)F2 | (E)F3 | (E)F4 |
---|---|---|---|---|
t > t0.05 (=1.96) | 2.15 | 2.10 | 2.10 | 2.19 |
θp | 0.25 | 0.45 | 0.40 | 0.35 |
F Scale | (E)F1 | (E)F2 | (E)F3 | (E)F4 | (E)F5 |
---|---|---|---|---|---|
Z statistic | 3.66 | −5.83 | −4.26 | −3.06 | −1.06 |
2.58 | 2.58 | 2.58 | 2.58 | 1.65 | |
α | 0.01 | 0.01 | 0.01 | 0.01 | 0.10 |
Trend (tornado/year) | 1.99 | −2.00 | −0.45 | −0.10 | −0.01 |
F Scale | (E)F1 | (E)F2 | (E)F3 | (E)F4 |
---|---|---|---|---|
b2 | 3.9601 | 4.0000 | 0.2025 | 0.0100 |
RIV | 0.5770 | 0.5414 | 0.7669 | 0.8881 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Cai, H. Trend Analysis of U. S. Tornado Activity Frequency. Atmosphere 2022, 13, 498. https://doi.org/10.3390/atmos13030498
Cao Z, Cai H. Trend Analysis of U. S. Tornado Activity Frequency. Atmosphere. 2022; 13(3):498. https://doi.org/10.3390/atmos13030498
Chicago/Turabian StyleCao, Zuohao, and Huaqing Cai. 2022. "Trend Analysis of U. S. Tornado Activity Frequency" Atmosphere 13, no. 3: 498. https://doi.org/10.3390/atmos13030498
APA StyleCao, Z., & Cai, H. (2022). Trend Analysis of U. S. Tornado Activity Frequency. Atmosphere, 13(3), 498. https://doi.org/10.3390/atmos13030498