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Abstract: Global warming is not an expectation but a reality in the “oreums” (common local name
for rising, small defunct volcanoes on Jeju Island, Republic of Korea). The oreums exhibit wide
biodiversity. However, their ecology is threatened by its associated climate change and their ecological
changes have rarely been monitored or recorded. We used three years of Sentinel-2 image data to
generate a normalized difference vegetation index (NDVI) map of the Geum-oreum area. We found
that the NDVI was highly associated with temperature, implying that Sentinel-2 images could be
utilized to monitor the temperature variation in the oreums to assist in planning and preparation
to conserve their ecosystems before they are jeopardized. The results indicated that the NDVI
maps derived from Sentinel-2 images were highly associated with temperature in Geum-oreum. We
expect this method could be applied in other regions to detect temperature variation for ecological
management planning in large areas (such as forests).

Keywords: climate change; satellite image; global warming; forest dynamics; NDVI; Geum-oreum;
Sentinel-2 image; ecological changes

1. Introduction

Sentinel-2, a program of the European Space Agency (ESA) designed for worldwide
high spatial-resolution monitoring [1], has several applications, including monitoring veg-
etation over a large area using the normalized difference vegetation index (NDVI) [2,3].
Recently, the NDVI obtained from Sentinel-2 images has been associated with tempera-
ture [4]. Therefore, it could be used to monitor temperature variations that cause changes
in surface vegetation. The accurate and effective monitoring and analyses of small or large
local, regional, or global climatic variations in time and space are important since they
impact biodiversity [5].

“Oreum” is the local name for the rising, small defunct volcanoes on Jeju Island,
Republic of Korea; they exhibit wide and unique biodiversity. The vascular plants of
the oreums around Jeju City represent 454 taxa, 116 families, 301 genera, 359 species,
3 subspecies, 78 varieties, and 14 forms including Cryptomeria japonica, Chamaecyparis obtusa,
Pinus thunbergii, Styrax japonicas, Cornus kousa, Carpinus laxiflora, Mallotus japonicus, Meliosma
oldhamii, and Acer palmatum [6]. The Geum-oreum possesses a wide variety of subtropical
trend temperate plants; its delicate but ecologically and biologically important environment
is endangered by global warming. However, the monitoring of global-warming related
changes in oreums have rarely been reported. Thus, we examined if the NDVI variations

Atmosphere 2022, 13, 576. https://doi.org/10.3390/atmos13040576 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13040576
https://doi.org/10.3390/atmos13040576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-2331-004X
https://orcid.org/0000-0002-3291-4320
https://orcid.org/0000-0003-3121-7600
https://doi.org/10.3390/atmos13040576
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13040576?type=check_update&version=1


Atmosphere 2022, 13, 576 2 of 7

were associated with temperature or not. If they are correlated, NDVI could be used to
monitor the temperature variations in oreums on Jeju Island and applied to other areas in
response to global warming.

2. Materials and Methods
2.1. Study Area

The study area was the Geum-oreum (33◦21′22′′ N, 126◦18′21′′ E; altitude 427 m),
located in Geumak-ri, Hallim-eup, Jeju-si, Jeju-do, Republic of Korea. This study used
the area range provided by the quantum geographic information system (QGIS) through
OpenStreetMap (Figure 1). The QGIS scope was between latitudes 3,693,824.0—3,694,154.0
and longitudes 249,174.2—249,443.6, respectively.
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2.2. Data Collection

As of December 2019, 96 automated synoptic observation systems (ASOSs) were op-
erating in the Republic of Korea, providing real-time weather and weather forecasting
information. We collected meteorological data, including average, highest, and lowest
temperatures, relative humidity, and total insolation at Geum-oreum from the Jeju Meteo-
rological Agency. The daily data collected ranged from 1 May 2018, to 30 November 2021.
For various reasons, 306 days were missing from the total 1310 days. The missing months
were 6, 8, 9, 10 and 12 in 2018; 7, 9 and 12 in 2019; 7 in 2020; and 9 in 2021.

We collected Sentinel-2 images from the Google Earth engine and the Sentinel hub
EO Browser to calculate the NDVI index of the Geum-oreum region. If the images for
certain dates were not available from one of these two resources, we retrieved the data
from the other. The downloaded satellite image dataset consists of an L1C image with a
geometric correction only and an L2A image with geometric and radiation corrections. We
could directly use the Sentinel-2 L2A data provided by the Sentinel hub EO Browser. The
L1C data from the Google Earth engine were downloaded and converted into L2A data
using the SEN2COR algorithm available on the Sentinel Application Platform (SNAP). We
collected image data from 2 May 2018, to 28 November 2019. Since the satellites cannot
image the ground surface if it is obscured by clouds, 1254 of the total 1306 days were
missing. The missing months were the same as those missing from the meteorological data
except for months one and two in 2020 that were unavailable from Sentinel-2 images.

2.3. NDVI Map Generation

The NDVI can be obtained using the optical index extracted from satellite images.
We used band 4 (red light, RED) and band 8 (near-infrared light, NIR) from the Sentinel-2
image dataset in Equation 1 to calculate the NDVI.

NDVI =
NIR− RED
NIR + RED

(1)

Healthy vegetation (chlorophyll) emits more near-infrared light compared to other
wavelengths. When vegetation becomes sick, the lower layer deteriorates and the chloro-
phyll absorbs more red light. In this regard, we are able to identify vegetation by consid-
ering the difference between the near-infrared light and the red light. The NDVI ranges
from −1.0 to 1.0; it was greater than 0 in the study area. Figure 2 shows the NDVI in
the Geum-oreum region from 2019 to 2021 for April. Changes in the vegetation were
determined based on the NDVI.
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2.4. Data Preprocessing

The NDVI data obtained using the satellite images were aligned by date with the me-
teorological data (temperature, humidity, and total insolation) to identify the relationships
between them. We grouped the various parameters from the two datasets by month and
calculated the average values. The resultant monthly data sets were for months 5, 7, and 11
in 2018; 1–6, 8, 10 and 11 in 2019; 3–6 and 8–12 in 2020; and 1–8, 10 and 11 in 2021.

2.5. Statistical Analysis

We conducted Pearson’s correlation analysis to exclude highly correlated meteorolog-
ical features. Figure 3 shows the correlation coefficient matrix. The Pearson correlation
coefficients were all significant (p < 0.05). The average, lowest, and highest temperatures
were highly correlated, and the average ground temperature was correlated with the av-
erage temperature. We exclude the lowest and highest temperatures and average ground
temperature. The average relative humidity was highly correlated with the average tem-
perature. We also examined the relationship of the average relative humidity to NDVI from
various perspectives.
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3. Results and Discussion

The meteorological parameters were plotted for each year and compared to the NDVI.
In Figure 4, the NDVI (red line) is represented on the y-axis. It is shown correlated with the
three meteorological features represented by green (average temperature), blue (average
relative humidity), and yellow (total insolation) lines. Time is represented on the x-axis.
Although there were missing data, we could capture the associated trend variation between
the NDVI (red line) and the three meteorological parameters; therefore, we performed
multivariate regression analysis to further examine the associations. We set the NDVI
value as the dependent variable and the other three meteorological features as independent
variables and conducted 31 observations. Table 1 shows the results of the multivariate
regression analysis using the ordinary least squares method. The adjusted R-squared score
was 0.908, and its p-value was 1.08 × 10−14, which is less than 0.05, indicating that the
results were statistically significant.
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Table 1. Multivariate regression.

Coeffient Standard Error T Pr (>|t|)

Constant 0.2998 0.092 3.247 0.003
Average Temperature 0.0223 0.002 10.344 0.000

Average Relative Humidity 8.98 × 10−5 0.002 0.059 0.953
Total Insolation −0.003 0.003 −1.199 0.241

Of the three independent variables, only the average temperature was significantly
different; the p-values of the other two variables were > 0.05. The fitted model is shown
in Figure 5. The blue line corresponds to the fitted model, and the red point represents an
observation with the label (year, month). As shown in Figure 5, the NDVI can be used to
predict the average temperature, and the same results with ours can be found in [7].
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The results indicated that the NDVI maps derived from Sentinel-2 images were
highly associated with temperature in Geum-oreum. Although this study was on an ideal,
isotropic, small-scale forest area, it is expected that the same methodology could be applied
to asymmetric complex forest areas for use in temperature monitoring and analyses.

4. Conclusions

Radical climate change can cause significant changes in biological ecosystems. Con-
sequently, immediate and broad monitoring is essential for environmental conservation
planning in valuable environments. However, high human resource and budget require-
ments are obstacles to research in this area. Here, we present the use of the NDVI derived
from Sentinel-2 images as a tool to observe temperature variations. Since rising tempera-
tures can alter ecosystems, temperature changes should be monitored closely. Therefore,
the NDVI, as an indicator of temperature variation, would be an efficient and cost-effective
tool to monitor valuable small-scale forest areas. We expect this method could also be
used to detect the effects of temperature variation over large forested areas for temperature
monitoring, analyses, and ecological management planning.
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