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Abstract: Downburst winds are strong downdrafts of cold air that embed into the atmospheric bound-
ary layer (ABL) and produce intense horizontal outflow upon impingement on the ground. They
are highly transient and three-dimensional extreme wind phenomena with a limited spatiotemporal
structure that often makes the anemometric measurements in nature inadequate for reconstructing
their complex flow fields. In the framework of the project THUNDERR, an experimental campaign
on downburst outflows has been carried out at the WindEEE Dome at Western University, Canada.
The present study analyzes the three-dimensional interaction between downburst (DB) outflows
produced as large-scale impinging jets and ABL winds. Most experimental, numerical and analytical
models in the literature neglect this flow interplay or treat it in an oversimplistic manner through
a vector superposition. We found that the generated near-surface outflow is asymmetric, and a
high-intensity wind zone develops at the interface between DB and ABL winds. The time variability
of the leading edge of the outflow was investigated by synchronizing all wind measurements across
the testing chamber. The three-dimensional flow structure was studied using a refined grid of Cobra
probes that sampled the flow at high frequencies. The passage of the primary vortex produced a sig-
nificant decrease in the height of maximum radial wind speed, predominantly in the ABL-streamwise
direction. The turbulence intensity was the highest in the region where DB propagates into oppositely
directed ABL winds.

Keywords: downburst wind; impinging jet; ABL winds; background wind; flow interaction; WindEEE
Dome; turbulence

1. Introduction

Downbursts are negatively buoyant downdrafts that emerge from cumulonimbus
clouds and diverge radially upon hitting the ground. These strong outflows can have a neg-
ative impact on low- and mid-rise structures [1]. Downburst outflows are non-stationary
phenomena associated with convective storms and their spatiotemporal scales are a few
kilometers and tens of minutes. However, their space and time characteristics are also
highly susceptible to atmospheric conditions and depend on the specific characteristics of
different climate regions around the globe [2]. These are only some of the reasons their
codification in wind-loading recommendations is challenging and steered numerous dis-
cussions inside the wind engineering community over the last few decades. In most cases,
design codes for all wind types, including downbursts, are still based on the Davenport
chain developed to determine the wind loading and response of structures subjected to
large-scale cyclones [3,4].
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While anemometers installed on a meteorological tower can capture the time evolution
of the phenomenon at a fixed location, these measurements are insufficient to reconstruct
the spatial structure of downburst outflows. The transient and dominant feature of a
typical downburst record, i.e., the signal’s peak, is usually well-defined and represents
the passage of the so-called primary vortex (PV) over or near the measuring instrument.
Vortical structures form at the base of the parent thunderstorm cloud, triggered by the
strong instability, namely the Kelvin–Helmholtz instability, between the cold and dense
buoyancy-driven downdraft and the surrounding environment. The formed vortical
structures are thus convected one after the other towards the ground at the contour edge of
the downdraft. The entrainment of ambient air into the PV that leads the downdraft front,
increases its size and negative buoyancy. The following vortical structures, named ‘trailing
vortices’ in wind engineering terms, partly lose the contribution of entrainment of ambient
air and are thus weaker. Upon reaching the surface, the vortical structure changes its
travelling direction from vertical to horizontal and propagates radially. The strong vorticity
inherent in the PV core produces the well-known nose-shaped profile with maximum
horizontal velocities underneath the vortex, in the range of 50–120 m AGL, and decreasing
velocities above [5,6]. Given the complexity of the flow, point measurements completely
miss providing information on the physical interactions in the flow. Therefore, the spatial
evolution of the outflow can be addressed only by integrating such measurements with
advanced measuring techniques, such as new generation doppler radars or LiDAR profilers
and scanners, which can provide a picture of the generated transient outflow field. However,
the poor time resolution of measurements and technical issues that, for instance, prevent
the instrument from acquiring useful information in rainy conditions [7] often limit the
related investigations. The project THUNDERR [8] aims at tackling these shortcomings by
means of advanced physical and numerical investigations that rely on a very large database
of downburst measurements, mostly acquired in the context of the two European projects
“Wind and Ports” (WP, 2009–2012) [9] and “Wind, Ports and Sea” (WPS, 2013–2015) [10].

Over the last years, several laboratories have emerged with the goal of reproducing
the transient dynamics of downburst winds [11–13]. To date, the largest geometric scales to
replicate downburst-like winds are achieved at the WindEEE Dome simulator at Western
University in Canada [14]. The present experiments use the impinging jet (IJ) technique,
widely adopted in the research community due to the simple mechanism of downburst-like
flow generation, suitability to produce high wind speeds, easy scalability and capability to
accurately replicate the vortex structures of real downbursts [12,13,15–20]. Nevertheless,
the impinging jet approach cannot capture the buoyancy-driven nature of the phenomenon
and thus partially misses the full physical representation of it. In this paper, however,
the focus is on the characterization of the flow field in the first layers (order of hundred
meters) of the atmospheric boundary layer (ABL) and, thus, the thermodynamic generated
downdraft is reproduced mechanically to produce the mean and fluctuating components
of the velocity field.

Thunderstorm winds are a non-linear superposition of processes at various scales,
mainly described by three components: the DB wind, the background ABL flow, and the
parent cloud translation. Little research has been conducted so far on how to properly
account for these interactions. The non-linear interplay of the three effects is often neglected
in literature or treated as the vector superposition in either analytical or numerical mod-
els [21–24]. The translation velocity of the thunderstorm cloud affects the intensity and
direction of surface winds. Consequently, the resulting outflow assumes an elliptical shape
with the intensification of the wind speed vectors on the downwind side and weakening
on the upwind side [25,26]. Furthermore, the translating downburst system is always
released into the already developed ABL flow characterized by pronounced wind shear
and directional change with height, favorable for the development of thunderstorms [27].

The literature provides many studies on impinging jets through crossflows, but only
very few apply to downburst winds [20]. The embedding of impinging jets in crossflows
gives rise to three different flow regions: (1) The potential core zone, which is the closest
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area to the nozzle where the interaction between the two flows is only minor; (2) The
zone of maximum deflection, characterized by high flow shear; and (3) the wall-jet zone,
where the flow is far from the source and dissipates horizontally onto the surface. Under
high jet-to-crossflow velocity ratios Vj/U0 and jet heights above the surface, typical of
thermal and thermodynamic applications, a number of studies (e.g., [28–30]) have found
that the interaction between the wall jet and the crossflow results in the formation of
a ground vortex which wraps around the jet like a scarf and is highly dependent on
Vj/U0. The flow here resembles the horseshoe structure observed due to the deflection of
a boundary layer by a solid obstacle despite its main origin being the upstream wall jet
and not the crossflow. However, all these studies consider a jet-to-crossflow velocity ratio
in the range Vj/U0 = 20− 50, which is much larger than what is experienced during a
downburst event.

The interaction between impinging jet and crossflow has been addressed recently in
relation to the superposition between DB and ABL winds. Mason et al. [31] numerically
simulated stationary, tilted, and translating downdrafts in a calm environment and embed-
ded in background winds, and used a sub-cloud model and a simplified cooling source
to approximate the evaporative processes that trigger the formation of the phenomenon.
The asymmetric outflow and the presence of environmental winds broke the formation
and development of the secondary vortex (SV), which typically forms ahead of the PV
and is observed in the case of the spatially stationary isolated downburst, and thus the
associated lifting of a high wind-speed area at the boundary between inner and outer
outflow regions [32].

Physical experiments on the interaction between downburst gust-fronts and ABL-like
winds were recently performed by Richter et al. [33], who conducted experiments at the
Laboratory of Building and Environmental Aerodynamics at the Karlsruhe Institute of
Technology, Germany. The authors used both continuous (steady) and pulsed (non-steady)
jets to simulate a down-gust immersed in ABL flow and impinging on a street canyon
model. They found horizontal velocities aligned with the background flow exceeding those
orthogonal to it by up to 77%. In the case of a pulsed jet, a ring vortex is formed ahead of the
outflow, which, during its passage, produces peak velocities up to three times higher than
those of the steady case. However, due to the nature of their experiments, the measured
flow field was highly affected by the presence of the buildings and the orientation of the
street canyon. Moreover, the small geometric scales involved in the study made the flow
fields more representative of small-scale gusts rather than of downburst winds.

In this regard, the WindEEE Dome can also produce straight, and steady flows, such
as ABL flows, that are representative of synoptic winds in nature. One of the advanced
modes of WindEEE enables the simultaneous generation of DB-like impinging jets and ABL-
like straight flows at large geometric scales, various Reynolds numbers, and momentum
ratios of the two flows [20]. Romanic and Hangan [34,35] demonstrated that the simple
superposition of flow fields as either vector or algebraic sum is physically wrong. Their
study showed that the interaction between the two flows highly depends on the position
in the outflow. For instance, analogous to the findings of Richter et al. [33], the combined
DB and ABL outflow is stronger than the pure DB (without ABL wind) at the azimuth
angle of 180◦ measured from the incoming ABL wind. In addition, at the front between
DB and ABL and close to the undisturbed downdraft touchdown, the same sign vorticity
between the primary vortex and ABL wind intensifies the wind in the upper regions of
the vortex, which, in turn, are brought down following the vortex circulation. It follows
that the associated radial velocities increase as well. The concordant vorticity between
the counter-directed flows also elevates the vortex above the ground and, consequently,
extends the high-velocity region below the vortex itself. This, in turn, returns quite clear
nose-shaped velocity profiles. However, their roundness is more pronounced for the
undisturbed downburst. The authors investigated only four radial positions, and they
could not provide a detailed representation of the flow interaction at the interface between
DB and ABL. This region is of major importance in wind engineering terms. The severe
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interaction between the two flows produces high flow-mixing and strong non-linearity of
the wind field. Therefore, it is at least challenging to investigate and model the flow in
this area with the perspective of characterizing the behavior of structures affected by the
passage of the DB–ABL front. The present study attempts to answer these crucial points as
it was never done before experimentally, and to describe the non-linear superposition of the
two flows in the region subjected to their mutual interaction. The number of radial positions
is here extended to 10, as well as the number of simultaneous along-height measurements,
facing both the outflow and ABL directions, by deploying a larger number of Cobra probes.
The evolution of the front between the two wind systems is here analyzed in detail and
compared to the case of isolated DB discussed in Canepa [32]. One of the novel features
of the WindEEE laboratory is the possibility to record the time of opening and closing
of the bell mouth installed on the ceiling of the testing chamber or, in other words, the
instant of jet releasement. Based on this, all signals across the chamber are synchronized to
draw a detailed investigation of the spatial and temporal development of the phenomenon.
This allows, on the one hand, to study the ensemble averages and variability of the test
repetitions in a deterministic manner and, on the other hand, to eventually inspect the time
scales of the experimentally produced downbursts, for instance, in terms of travelling time
of the primary vortex leading the DB outflow. Furthermore, the abrupt changes in the flow
features of wind profiles and turbulence fluctuations concurrently with the embedment of
the DB into the ABL flow can be addressed in detail.

The rest of this manuscript develops in the following manner: Section 2 describes the
WindEEE Dome, with a focus on the simultaneous generation of impinging jets and ABL
flows, along with the experimental setup. The results of this study and their discussion are
presented in Section 3. The transition of the outflow vertical profiles due to the combination
of DB and ABL winds, as well as the evolution of the front between the two systems, are
interpreted in terms of mean wind speed and turbulence intensity. The main findings of
this research, along with the future steps to be presented in upcoming studies, are outlined
in Section 4.

2. Experiment Setup

As mentioned in Section 1, in the framework of the project THUNDERR, a large
experimental campaign was conducted at the WindEEE Dome, at Western University in
Canada. The detailed description of the facility and the capability to produce large-scale
non-stationary three-dimensional wind fields, such as downburst winds and tornadoes, are
provided in [14], whereas Romanic et al. [20] previously analyzed a few combinations of
DB-like impinging jets in ABL-like flows when produced simultaneously at the laboratory.

In the current study, the flow was analyzed with the use of high-sampling-rate sensors,
i.e., Cobra probes, deployed in a three-dimensional grid of measurement positions (Section 2.2).
This allowed for high spatial and temporal resolution in the near-surface region.

2.1. DB in ABL Mode and Flow Intensities

The impinging jet was created by running the six large upper-plenum fans of nominal
power 220 kW. The upper plenum communicates with the main testing chamber through a
bell mouth. In the first stage, the upper room is pressurized by keeping the louvers at the
bell mouth in the closed position. Upon the sudden opening of the louvers, the pressure
differential between the upper and testing chambers produces a dynamic impinging jet
that travels downward and, upon hitting the chamber floor, expands radially. The diameter
of the bell mouth, i.e., jet diameter, was D = 3.2 m in the current study. The WindEEE
simulator can produce DB-like winds at large scales in the range of 1:100 to 1:500 [19,20,36]
and different H/D ratios (H = 3.8 m is the testing chamber height). In our experiments
H/D = 1.2 for which the confinement effects in impinging jet applications are proven
to be negligible [12,37]. Junayed et al. [19] tested different H/D ratios and demonstrated
that the primary vortex leading the downburst outflow fully develops for H/D > 1; the
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corresponding vertical profiles have a pronounced “nose” shape and, overall, show better
comparison with existing full-scale measurements.

In the present experiments, the DB wind was always embedded into the already
developed ABL-like flow. This latter was produced by the 60 fans displaced in a matrix
of four rows and 15 columns on one of the six peripheral walls of the hexagonal testing
chamber, i.e., the “60-fan wall”. Conversely to classical boundary layer wind tunnels, where
the ABL-like profile is naturally developed over the length of the tunnel, the WindEEE
Dome mechanically reproduced the shape of the profile by differentially controlling the
rpm configuration of the 60 fans. Figure 1 shows the schematic of the downburst in ABL
wind mode at the WindEEE Dome. The different “flow intensities” are given in terms of
the percentage of the nominal power per minute (% rpm) of the respective fans. With this
nomenclature, the intensity of the six upper fans generating the impinging jet was set to
30%, referred as to IJ30 (impinging-jet-30), whereas the two homogeneous intensities of
the 60 ABL-related fans were 20% and 30%, referred as to SF20 and SF30 (straight-flow-
20 and 30). This latter setup choice was adopted to replicate the ratio between the peak
and mean wind speed of respectively downburst and ABL outflows (vDB,max/vABL), which,
in nature, is usually found in between 3 and 5 [1,27,38]. The corresponding centroid jet
velocities at the exit of the bell mouth can be found in [20]; the inclusion of the background
wind produced the centroid jet velocity (SF30) to decrease to 11.8 m s−1 from that in the
absence of background wind, 12.4 m s−1. Such variation is due to the nature of the closed-
circuit simulator, which produced a momentum deficit in both flows when produced
simultaneously. Instead, the jet velocity in the lower-ABL case (SF20) is not reported
in Romanic et al., (2019). However, as the mean wind speed of SF20 was much lower
compared to the SF30 case, the centroid jet velocity was not expected to change significantly
compared to the base case without straight flow. The mean wind speeds of the ABL-like
flow 3 m downstream of the 60-fan wall, and at z = 25 cm are 2.5 m s−1 and 3.9 m s−1

for the SF20 and SF30 cases, respectively. The two jet-to-crossflow velocity ratios were
Vjet/U0 = 5.0 for IJ30-SF20 and Vjet/U0 = 3.0 for IJ30-SF30, respectively. Consistently
with the literature on impinging jets in crossflow, the two cases were named DBABL5.0 and
DBABL3.0 accordingly. The characteristic wind speeds involved in the experiments are
summarized in Table 1. The Reynolds numbers involved in the experiments are provided
in Table 2. Xu and Hangan [12] observed that for a Reynolds number Re > 1 × 106, the
flow can be considered as “fully turbulent”. The flows involved in the current experiments,
with the characterizing parameters reported in Table 2, presented Re in this flow regime or
slightly lower.

Table 1. Experiment setups: Case name; Jet diameter (D); Jet velocity (Vjet); Straight flow velocity
(VABL); Azimuthal locations (α); Radial locations (r/D); Cobra probe heights (z/zmax); Repetitions
per experiment (Reps). The ditto mark (“) indicates that Cobra probe heights are to be considered the
same as the case above. IJ identifies the probes facing jet touchdown, and SF identifies those facing
incoming ABL direction.

Case D
[m]

V jet
[m s−1]

VABL
[m s−1]

α

[◦]
r/D
[/]

z/zmax
[m] Reps

DBABL5.0 3.2 12.4 2.5 0:30:180 0.2:0.2:2

30◦ ≤ α ≤ 180◦:
0.4, 0.7, 1.0, 1.25, 1.5, 3.0, 5.0, 7.0 (IJ)

0.4, 1.0, 3.0, 5.0 (SF)
α = 0◦:

0.4, 0.7, 1.0, 1.25, 1.5, 2.0, 3.0, 4.0, 7.0 (IJ)
α = 180◦:

0.4, 0.7, 1.0, 1.25, 1.5, 2.0, 3.0, 4.0, 5.0,
7.0, 10.0 (IJ)

10

DBABL3.0 3.2 11.8 3.9 0:30:180 0.2:0.2:2 “ 10
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Table 2. Reynolds numbers of DB- and ABL-like flows.

Case Re= V L
ν (*)

DBABL5.0 (DB-like flow) 2.7 × 106

DBABL5.0 (ABL-like flow) 6.4 × 105

DBABL3.0 (DB-like flow) 2.6 × 106

DBABL3.0 (ABL-like flow) 1.0 × 106

DBABL3.0 (DBABL-like flow) 1.4 × 105

DBABL3.0 (DBABL-like flow) 1.4 × 105

* V = Vjet and L = D for DB-like flow; V = VABL and L = H for ABL-like flow; V = Vmax (maximum
slowly-varying mean wind speed over the entire flow) and L = zmax for DBABL-like flow; ν = 1.48× 10−5 m2 s−1

is the kinematic viscosity.

2.2. Cobra Probes Setup

The flow field produced by the interaction between DB and ABL flows was measured
at seven different azimuthal (α) and 10 radial (r/D) positions using Cobra probes mounted
on a stiff mast that prevented vibrations of the instruments in the flow. Cobra probes are
multi-hole pressure systems designed to resolve three components of velocity in real-time
at a sampling frequency of fs = 2500 Hz. They acquire the incoming flow within a cone of
±45◦. The reported accuracy of the probes is ±0.5 m s−1 and ±1◦ yaw and pitch angles up
to approximately 30% of turbulence intensity. As shown in Section 3.6, only the peaks of
turbulence intensity had a magnitude of about 30% for which the accuracy of velocity and
inflow angle measurements may be slightly lower with respect to the values mentioned
above. However, this did not have any remarkable impact on the reported results.

Measurement and instrumentation uncertainties are reported in Table 3. Due to their
accuracy, all velocity measurements V < 1 m s−1 were removed from the analyses. The α
locations spanned a range from 0◦, corresponding to the direction of the incoming back-
ground ABL flow, to 180◦ in a clockwise direction and with incremental steps ∆α = 30◦.
Due to the assumed symmetry of the flow, the results can be mirrored to the other half
of the circle (α = 180◦ ÷ 360◦). The radial measurement locations covered a range from
0.2 to 2.0 with increment ∆r/D = 0.2; r/D = 0 identifies the position of jet impingement
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at the ground. For the sake of precision, the radial location r/D = 0.8 was actually moved
to r/D = 0.75 due to a small irregularity in the floor corresponding to the edge of the
turntable, which coincides exactly with r/D = 0.8, which did not allow for a proper
positioning of the Cobra probe mast at that location.

Table 3. Cobra probe instrument settings and uncertainties of measurements.

Acquisition frequency 2500 Hz

Cut-off frequency factor 0.5

Cut-off frequency 250 Hz

Accuracy of velocity measurements ± 0.5 m s−1 *

Accuracy of yaw and pitch angles ± 1◦ *

Measurement cone of incoming flow ± 45◦ **
* up to 30% turbulence intensity, ** with respect to the Cobra probes’ main axis.

For 30◦ ≤ α ≤ 150◦, eight Cobra probes were installed along the mast at heights
z = 0.04, 0.07, 0.10, 0.125, 0.15, 0.30, 0.50 and 0.70 m. Due to the tiny head (diameter
2.6 mm) of the Cobra probes deployed in the study and being 30 mm the minimum
distance between two subsequent probes on the mast, the disturbance produced by the
instrumentation itself on the recorded flow was negligible. Figure 2 shows the top (panel a)
and side (panel b) view schematics of the experimental setup, along with a photograph of
the testing chamber during the experiments at (α = 0◦, r/D = 1.4) (panel c) and a zoom-
in on the Cobra probes’ mast (panel d). As highlighted in Figure 2b,d, in this configuration,
all Cobra probes’ heads were oriented radially towards the downburst touchdown location
identified by r/D = 0. However, in addition to this and on the other side of the symmetry
plane with respect to the direction of the incoming ABL wind, four Cobra probes (not
shown here) were installed at heights of 0.04, 0.10, 0.30 and 0.50 m above the floor and
pointed towards the 60-fan wall to measure the ABL component. For α = 0◦ and 180◦,
additional probes pointing to the DB touchdown were added at z = 0.20 and 0.40 m, as
well as at z = 1.00 m for α = 180◦. At this latter azimuthal location of measurement, all
probes installed on the vertical mast also measured the ABL flow component, before the
downburst-like onset, due to its coincident direction with the radial DB outflow. Conversely,
no ABL flow measurements were taken at α = 0◦ where all probes faced the DB touchdown
position r/D = 0. Furthermore, at this location, the Cobra probe located at z = 0.50 m was
removed from the analyses due to malfunctioning. In the following paragraphs, the results
will be referred to radial and height locations normalized, respectively, by the diameter
D = 3.2 m and zmax = 0.10 m. This choice is convenient for comparing the outcomes
of the present analyses with those for the isolated vertical-jet case [32]. For every (α, r/D)
position, each experiment was repeated 10 times to inspect the repeatability of the tests and
draw limited statistical analyses of the results. Therefore, the overall number of velocity
records acquired in this set of experiments is 16,000 (2 velocity setups × 7 α × 10 r/D×
(9 to 12) probes × 10 repetitions).
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Figure 2. (a) Top- and (b) side-view schematics of the experimental setup with an indication of
the positive direction of the three-wind speed components; (c) WindEEE testing chamber during
recording at position (α = 120◦, r/D = 1.4) with measuring Cobra probes’ mast in red circle;
(d) zoom-in on the Cobra probes’ mast.

2.3. ABL Vertical Profiles and DB–ABL Scaling Considerations

Figure 3 reports the vertical profile of the ABL-like wind speed at each measurement
position in the horizontal plane (Figure 2). Here, the wind speed was averaged over the
time interval preceding the release of the IJ corresponding to the ABL portion of the velocity
signal. Differences are observed among the measured profiles; the wind speed tends to
decrease by moving away from the outer section (60-fan wall) of the incoming ABL wind
because of the loss of horizontal momentum of the flow itself and the widening of the
chamber due to its hexagonal shape. The radial positions closer to the center of the jet
impingement reasonably record similar wind speed profiles among the tested azimuth
locations, while the deviation appears larger at further distances from the IJ touchdown
because of the distance among the different azimuth lines increases.

Figure 3 shows that the ABL free-stream height zG, namely the top of the boundary
layer, is reached approximately at zG,exp = 0.5 m or likely slightly above. In nature
at full-scale (FS), zG,FS has the order of magnitude O (103) m. If we now consider the
height of the primary vortex (PV) core as representative of the size of the downburst
outflow, this is found to lay at zPV,exp = 0.6− 0.8 m in the experimental measurements
at WindEEE [19], while at zPV,FS = 700− 1200 m in full-scale occurrences [6,39], which is
again O (103) m. The respective surface layers related to the background ABL wind and
to the downburst outflow thus appeared of comparable size both in nature and in their
experimental modelling at the WindEEE Dome.
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Figure 3. ABL-like wind speed vertical profiles at each azimuth and radial position of measurement
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2.4. DB Vertical Profiles

Figure 4 shows the slowly-varying mean wind speed (moving average window
∆t = 0.1 s) vertical profiles of the undisturbed DB-like wall jet, i.e., without the inclu-
sion of ABL flow, at r/D = 1.0 and different time instants (see vertical dashed lines in
Figure 4a). The data for the current analysis were extracted from a large dataset of velocity
measurements on isolated DB-like impinging jets that were previously carried out at the
WindEEE Dome [40]. Note that velocity measurements were taken only at α = 90◦, assum-
ing the radial symmetry of the horizontal outflow in the case of the undisturbed vertical
impinging jet. Contrary to the ABL-like profiles (Figure 3), the DB profiles’ magnitudes
appeared highly non-stationary during the time evolution of the phenomenon. The same
holds for the profile shape, which varied quite largely from segment to segment of the
velocity signal. During the ramp-up of the wind speed as the PV approached the instrument
(time instants (1) and (2)), the profiles appeared rather straight in their vertical development
with velocity magnitudes that varied little among the measurement heights. At the time of
the peak and during the plateau segment of the wind speed (time instants (3) to (6)), the
vertical profile assumed a clear, nose-like shape with maxima at the lowest heights due to
the recording of the PV and following trailing vortices. When the phenomenon dissipated
and wind speeds gradually returned to near-zero values (time instants (7) and (8)), the
velocity profile again seemed to be more uniform along the vertical.
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3. Results and Discussion

This section analyzes the effects of the interaction between the produced DB and ABL
winds. Upon the bell mouth opening, the descending jet embedded into the background
flow (Section 2.1), which deflected the jet and distorted the natural radial expansion of
the outflow generated upon the impingement. Section 3.1 focuses on the wind-speed
time histories recorded at different measurement positions in the flow field by the Cobra
probes. Section 3.2 reconstructs the resulting downburst outflows on both the horizontal
and vertical plane. The spatiotemporal evolution of the front between the two flows is
analyzed with regard to the Cobra probe measurements in Section 3.3. The propagation
of PV in the radial and the azimuthal plane is investigated in Section 3.4 by tracking its
convective velocity thanks to the new synchronization system at the WindEEE Dome.
Section 3.5 analyzes the rapid transition of the outflow vertical profiles and the effects
produced by their embedding into the background wind. Finally, Section 3.6 discusses the
main turbulence properties of the reproduced DB outflows, their time correlation with the
evolution of the wind speed and variation along the vertical profile.

For the sake of simplicity, the results presented in this paper will be mainly referred to
two spatial areas corresponding to the frontal region (α = 0◦ : 90◦) and to the rear region
(α = 90◦ : 180◦), following the frontal and rear interaction between the ABL and the DB
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and characterized by opposite and equally directed DB and ABL winds, respectively. Unless
otherwise specified, the analyses reported hereafter will refer to the radial component of
the wind speed V (Figure 2b).

3.1. Wind Speed Time Histories

Figure 5 shows the radial wind speed V time series at r/D = 1.0, three different
z/zmax as well as α measurement positions. The diagrams are shown in terms of ensemble
means (thick lines) and variability (error bars) of the related 10 repetitions. The number
of experimental repetitions performed may not be sufficient to thoroughly describe the
standard deviation of the experiments, whereas the mean part of the wind speed signals
seems well modeled, and the deterministic features of the downburst outflows are depicted.
However, an extension of repetition numbers would have overly increased the costs and
duration of the experimental campaign.
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Figure 5. Wind speed time series of the DB-like outflow for DBABL5.0 (blue) and DBABL3.0 (red)
cases at r/D = 1.0, z/zmax = 0.4, 1.0, 3.0 and α = 0◦, 90◦, 180◦. Thick lines and error bars
represent the ensemble mean and standard deviation of the 10 repetitions, respectively.

The maximum wind speeds are observed close to the surface at z/zmax = 0.4 and
1.0 with no significant differences, while a relevant wind speed decrease occurs above
at z/zmax = 3.0. This confirms what was observed in other experiments (see, for in-
stance, [19,32,35]) and resembles the nose-like shape profile typical of full-scale downburst
events [5–7,41]. The tip of the nose-shaped profile, namely the vertical region where max-
imum wind speeds are observed, appears to extend up to at least z/zmax = 1.0. As
widely discussed later in this paper, the PV, during its passage over the measuring in-
strument, squeezed the flow underneath its structure, causing its intensification at the
boundary between the vortex’s lower end and the surface. At the higher measurement
elevations that were inside the vortical structure, the flow did not benefit from the same
speed-up effect. This flow pattern gave rise to the well-known nose-like shape of the down-
burst vertical profile. When the DB was simulated without the inclusion of the ABL flow,
Canepa [32] showed that each experimental DB-like signal contained three different time
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phases (Figure 4a) in analogy to what is observed in real downburst events (e.g., [2,21,27]):
(1) PV phase, associated with the passage of the primary vortex PV by the Cobra probe
and, in turn, containing (1.1) the velocity ramp-up–PV approaching the instrument, (1.2)
the velocity peak–PV just passed over the instrument [6,19,42], and (1.3) the ramp-down
of the wind speed–PV moves away from the Cobra probe; (2) plateau phase, namely a
steady-state condition of the wind speed signal characterized by ensemble velocities rather
constant in time; (3) dissipation stage, corresponding to when the downburst system moves
away from the instrument or dissipates, and wind speeds gradually return to near-zero
values. However, the three different stages were not clearly detectable anywhere in the
spatial field when the DB outflow was embedded in the ABL flow. The azimuth location
α = 90◦ (panels d–f) was perpendicular to the direction of the incoming background
flow, and the wind speed records here are those apparently less affected by the interaction
between the two flows. Consequently, the three phases of the DB-like outflow were well
retained, and the variability of the repetitions seemed rather limited. The wind speeds
here were of comparable magnitude among the three heights, with the exception of the
velocity plateau stage at z/zmax = 3.0, weaker because of the flattening of the vertical
profiles at those heights [32]. Furthermore, the peak wind speeds here were clearly higher
with respect to the other two azimuth locations. At α = 0◦ (frontal region; panels a–c), the
head-on collision between the two flows provoked high mixing. Consequently, the peak
stage of the wind speed did not appear as pronounced as in the pure DB-like environment
but rather more time-shifted to smoothly merge in the plateau phase. Indeed, the wind
speed slowdown after the peak was practically absent. This is clearly visible in the case
of DBABL3.0 and even enhanced by the comparison with DBABL5.0, where the weaker
background flow did not affect the outflow in same proportions. This suggests that the
DB front in the case of DBABL3.0 was stopped by the opposite approaching ABL-like
wind around r/D = 1.0, which is closer to the DB touchdown with respect to DBABL5.0,
corroborating the observations provided by Romanic and Hangan [35]. However, in their
study, the authors adopted a weaker jet velocity, and thus a lower jet-to-crossflow velocity
ratio that corresponds approximately to DBABL2.2 in our notation. Interestingly, the case of
DBABL5.0 shows at z/zmax = 3.0 an ensemble peak wind speed of about 2 m s−1 higher
than that at the lower two heights. Similar behavior is observed at α = 90◦ for the case of
DBABL3.0. This suggests that the vortex was lifted up by the counter-directed ABL wind
in this region [35], provoking maximum velocities still underneath the PV structure but at
higher heights; the next sections will discuss this aspect in detail.

At α = 180◦ (rear region; panels g–i) where the DB-like outflow and background ABL
wind pointed in the same direction, the wind speed peak was of comparable magnitude to
that of the plateau stage. At the higher heights, in fact, the ABL-like flow did not collide
against the counter-propagating low-level downburst outflow in the frontal region, but it
rather hit the descending jet, causing its deflection in the rear region towards α = 180◦, as
explained in the following sections. The stretching and deepening of the outflow in the rear
region was already observed in the numerical simulations by Mason et al. [31] and in the
experiments by Romanic and Hangan [35]. Consequently, the development of the PV and
the related wind speed peaks were somehow only appreciable starting from r/D = 1.2
(not shown here). However, the steady-state wind speed in the plateau stage does not show
any relevant change with respect to that at α = 90◦. This manuscript will later interpret
the influence of the ABL on the produced DB-like outflow based on the mutual direction of
the two flows.

3.2. Spatial Reconstruction of the Wind Field

Figure 6 shows the downburst outflow field at z/zmax = 1.0 and three different
time frames on the horizontal plane r− α: (1) t = 1.67 s (Figure 6a,d)—namely the time
occurrence of the absolute maximum of the slowly-varying mean wind speed Vmax among
all α and r/D positions in the case of DBABL5.0; (2) t = 1.74 s (Figure 6b,e)—same as (1)
but in the case of DBABL3.0; (3) t = 2.88 s (Figure 6c,f)—generic time during the plateau
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phase. t = 0 s corresponded to the instant of the opening of the nozzle releasing the jet.
The radial symmetry, characteristic of the isolated DB flow [32], appears here distorted.
This is very clear in the two scenarios shortly after the jet impingement (panels a,d and
b,e), where the outflow results hindered by the opposite directed ABL-like flow in the
frontal region, while it expanded further in the rear region, where the two flows pointed
in the same direction. In terms of wind speed, both cases showed the occurrence of Vmax
at α = 30◦ and r/D = 0.75 with very similar magnitudes of 21.2 m s−1 for DBABL5.0
and 21.0 m s−1 for DBABL3.0. Also supported by recent and parallel CFD simulations
reproducing the same experimental conditions at the WindEEE Dome, as well as by the
recent study of Romanic and Hangan [35], we believe that the occurrence of the wind speed
maxima in the region where the incoming ABL wind opposed the downburst outflow may
be explained as schematically outlined in Figure 7: due to the same relative circulation (i.e.,
same vorticity sign) in the frontal region, the radially-outgoing downburst PV entrains the
counter-directed ABL wind. Figure 7 shows that the ABL winds are ingested into the PV.
This intensifies the flow in the PV and the winds near the surface [35], as schematized in
Figure 7. The augmented velocity in the PV produces an intensification of the maximum
radial wind speeds in the lower regions of the vortex. We speculate that the lower part
of the ABL wind clashes with the counter-directed DB outflow underneath the PV and a
critical point S forms (Figure 7). The SV, which forms ahead of the radially advancing PV
and has an opposite circulation, may form underneath this point and is squeezed to the
ground under the leading edge of the outgoing PV. For this reason, it has limited interaction
with the counter-directed ABL. However, Mason et al. [31] inferred that the asymmetric
outflow and the presence of background ABL wind may break the formation of the SV.
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plane as seen from α = 270◦). +/− indicate the sign of vorticity. S is the saddle point where the flow
possibly diverges and the SV onsets.

The PV structure appears deteriorated for r/D > 1.0 and so the related maximum
in the wind speed time histories. It follows that the PV likely remains in a “locked-in”
regime around r/D = 1.0, which explains the maximum radial wind speeds experienced
at r/D = 0.75, behind the actual vortex location, as found by Hjelmfelt [6] and Junayed
et al. [19]. Despite Vmax occurs at the same location for the two cases, a short time delay
(∆t = 0.07 s) between them is noticed. Accordingly, the comparison between panel (a)
and (d) as well as panel (b) and (e) shows a radial shift ∆r/D between the location reached
by the primary vortex when opposed by two different-intensity ABL flows. Analogous but
reverse reasoning can be addressed to the rear region of measurements, where at both times
(panels a,d and b,e) the outflow reached further radial locations in the case DBABL3.0. This
is due to the stronger ABL flow causing a shift of the touchdown center beyond r/D = 0
and of the overall radial outflow in the direction of α = 180◦ [29,30]. Panel (f) shows that
the radial symmetry is also not yet achieved during the plateau segment of the wind speed.

Figure 8 shows the flow vortex dynamics in the r− z plane. The flow field is shown
only at time t = 1.74 s (Figure 6b,e) and at the three different azimuths α = 0◦, 90◦ and
180◦. Similar to what was observed in Figure 6, the outflow reaches radially outwards by
moving from the frontal to the rear region, i.e., from α = 0◦ to 180◦. To summarize the
overall DB–ABL wind interaction, the PV was compressed at the front between the two
flows (frontal region), while it was elongated in the rear region where the two flows had
same direction. At α = 90◦ the flow presents similar features to the isolated vertical DB.

The wind speed vectors in Figure 8, identifying the Cobra probe measurement loca-
tions, clearly depict the descending jet and the passage of the PV. In fact, we observed the
respective downward and upward components of the annular vortex right before and after
the recording of the maximum radial wind speed [7,32]. This was only partly observed
at α = 180◦ where the reverse flow component above the vortex does not overcome
the presence of ABL-like wind [31], particularly in the case of stronger ABL-like wind
DBABL3.0. Ahead of the outflow front, where the vortex had not yet passed, the flow had
near-zero velocities or was slightly positive due to the air being pushed outwards by the
expanding outflow.
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3.3. Gust Front Evolution

Figure 9b depicts the frontal region of the outflow at z/zmax = 1.0, namely the region
subjected to the front between DB and ABL flows. Each colored line in panel (b) refers to a
specific instant in time (see panel a) and is based on four observations, one per azimuthal
location. Each observation identifies the first radial position r/D (from r/D = 0.2) at
which the wind speed decreased 30% or more with respect to the wind speed at the previous
α and the same r/D. If the DB outflow was not confined by the oppositely directed ABL,
the wind speed at a given time and r/D would be identical across the α locations, which
implies a radial symmetric outflow. At the front DB–ABL, the momentum of the two flows
changed from horizontal to vertical, and the radial wind speed V decreased accordingly.
The analysis is developed in a counterclockwise direction starting from α = 90◦, which is
the azimuthal reference location where the outflow is ideally perpendicular to ABL and
hence not relevantly affected by it. The threshold of 30% was chosen arbitrarily based on
the subjective judgment that this percentual reduction of wind speed may be indicative
of the onset of the front DB–ABL. Therefore, Figure 9 highlights the 2D time-evolving
asymmetric nature of the DB outflow when produced in combination with the ABL flow.

The interaction appears to weaken as we move forward in time. During the PV
segment (corresponding to t = 1.68, 1.76 s), the curves show a change with respect to
the radial symmetry. The decrease of wind speed for 30% or more between subsequent
azimuthal locations occurs radially closer and closer to the ideal touchdown position
r/D = 0 by moving counterclockwise towards α = 0◦, in analogy to what was observed in
Figure 6. During the plateau of the wind speed signal and spatially far from the touchdown
position, the 30% wind speed decrease often occurs at the same radial location between
subsequent azimuths. This implies that during the plateau, the radial symmetry is retrieved
as the outflow has mostly overcome the influence of the opposed ABL flow and can expand.
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the maximum radial velocities were confined within the ideal geometrical boundaries of 
the downdraft, i.e., 𝑟𝑟/𝐷𝐷 ≤ 0.5, and were not due to the travelling PV, with the exception 
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Figure 9. Case DBABL3.0: (a) Time history of the slowly-varying mean wind speed at α = 90◦,
r/D = z/zmax = 1.0; (b) gust front between downburst and ABL outflows (colored lines): for
each α, position r/D where wind speed decreases by 30% or more compared to the same r/D at the
previous α (counterclockwise). ABL is here directed from the top.

Figure 10 shows the DB slowly-varying mean wind speed as a function of r/D, cap-
tured at different time instants (with reference to Figure 9) in the frontal region. From a
different perspective, it shows the time evolution of the DB outflow at the front with the
counter-directed ABL flow. The drastic drop in the DB wind speed can be considered repre-
sentative of the location of the dynamic stagnation point that characterized the collision
between PV and ABL wind. A common trend, at least in the PV phase, is highlighted up
to t = 1.92 s (panels a–e): the wind speed increases up to a certain radial location where,
upon reaching its maximum value, is followed by an abrupt decrease of magnitude. Indeed,
the recording of the passage of PV over the generic radial location (r/D)i produced: peak
wind speed at (r/D)i; ramp-up signature of the wind speed at locations r/D < (r/D)i
where PV has already passed through; wind speed slowdown at locations r/D > (r/D)i
where PV has not reached yet. The shift ∆r/D in the radial occurrences of Vmax between
the investigated α locations corroborated again the non-symmetric behavior of the outflow.
At t = 1.44 s (panel b), the jet had just impinged down to the ground into the background
flow, which prevented the outflow from spreading out freely. Here, the maximum radial
velocities were confined within the ideal geometrical boundaries of the downdraft, i.e.,
r/D ≤ 0.5, and were not due to the travelling PV, with the exception of α = 90◦ where the
flow expanded further for the reasons mentioned above. Later on (panels c–d), the passage
of PV were recorded at every α. However, ∆r/D

(
Vmax

)
was conserved with rather the

same clockwise order: in terms of r/D, Vmax occurs first at α = 0◦ and last at α = 90◦.
In other terms, the more oppositely directed are DB and ABL flows and the closer to the
jet touchdown (r/D = 0) Vmax occurs. In the time frames shown in panel (e) and panel
(f), PV lost its symmetric structure and thus the benefits of the entrainment of background
air, while α = 90◦ records the wind speed maxima. During the plateau stage (panels
g,h), the wind speed became steadier after the initial ramp-up in the touchdown region.
Here, analogous wind speed magnitudes were recorded across the azimuthal locations
for r/D > 0.5 and are produced by trailing vortices following the PV. Depending on α,
however, such wind speed is reached at different r/Ds following rather accurately the same
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pattern observed above. Analogously, after the plateau, the wind speed decreased starting
from α = 0◦ and in clockwise order. Indeed, the wind speed at α = 90◦ did not decrease
as drastically as for α < 90◦, at least until the end of the radial domain of observations.
After t = 3.36 s (not shown here), the plateau of the wind speed expanded radially further
also for α = 0◦ and 30◦. In other terms, the downburst outflow somehow overcame
the opposite force induced by the ABL wind as time passed. However, at these azimuth
locations, the radial symmetry was still not retrieved, as shown in Figure 9. During the
dissipation segment of the wind speed record, i.e., t > 5 s approximately, the downburst
outflow waned and the ABL flow pushed it back towards r/D = 0. A reverse trend of the
wind speed pattern along the azimuth and radial locations is expected by incrementing the
observational time in this stage, with clearly lower magnitudes as downburst outflow had
no more horizontal momentum in the radial outward direction.
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3.4. Primary Vortex Propagation 
The synchronization of all signals across the chamber allowed for the evaluation of 
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Figure 10. Downburst outflow wind speeds as a function of r/D at α = 0◦, 30◦, 60◦, 90◦,
t = 1.28 s, 1.44 s, 1.68 s, 1.76 s, 1.92 s, 2.24 s, 2.72 s, 3.36 s (a–h) and z/zmax = 1.0 for DBABL3.0 case.

3.4. Primary Vortex Propagation

The synchronization of all signals across the chamber allowed for the evaluation
of the convective velocity (or travelling time) of the primary vortex. To do so, at each
r/D and α location, the first wind speed peak of the ensemble mean of all repetitions at
z/zmax = 1.0 was assumed to occur simultaneously with the passage of PV (Section 1).
The calculation of the PV convective velocity is thus straightforward: the distance between
two subsequent radial locations is known (∆r/D = 0.2) and by dividing this quantity by
the time difference between the respective wind speed peak occurrences, we obtained UPV:

UPV =
∆ r

D × D
t r

D |i
− t r

D |i−1

(1)

The procedure was applied starting from r/D = 0.6, where the passage of PV was
measurable. In the case of vertical isolated DB [32], the jet widened in the radial direction
upon exiting the bell mouth and the radial positions up to r/D = 0.8 were thus still
inside the downdraft area. In the case investigated here, however, the jet deflected towards
α = 180◦ by the cross-ABL flow. The frontal boundary of the jet moved closer to r/D = 0
while, conversely, the rear part of the downdraft edge moved away from r/D = 0 in
the direction of the ABL wind (i.e., α = 180◦). This is clearly portrayed in Figure 11,
which shows the variation of UPV across the radial positions r/Ds as a function of the
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azimuth angle α in the case of DBABL5.0. Note that the velocities here are normalized
by the maximum convective velocity UPVmax at each azimuthal location to draw a better
comparison of the PV evolution along the radial direction. The PV in the frontal region
exhibited maximum translational speeds again at r/D = 0.75. Indeed, the maximum wind
speed is the result of the superposition of advection velocity and PV circulation relative to
the PV center [32]. Moving to the rear region, UPVmax occurred further away from the jet
touchdown position.
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Figure 11. Primary vortex (PV) convective velocity, normalized to UPVmax at each azimuthal location
α, in the case of DBABL5.0 and z/zmax = 1.0.

In the frontal region, upon the occurrence of UPVmax at r/D = 0.75 the downburst
front is observed to slow down considerably, which suggests that the two wind systems
were “competing” against each other and PV was in a sort of “locked-in” position.

At the rear region, the location of UPVmax appears to shift to higher radii due to the
jet impingement that shifted beyond r/D = 0 in the downwind direction. Here, despite
the PV may not be fully formed, the velocity of the front was maintained to be rather
high due to the vertical squeezing and consequent speed-up effect. Here, the ABL flow
gained downward momentum from the DB flow and thus acted as a downward force on
the expanding outflow.

3.5. Vertical Profiles of Radial Wind Speed

Figure 12 provides a characterization of the slowly-varying mean wind speed field
V = V(α, r, z, t) evaluated as V = V(z, t) at α = 0◦, 90◦, 180◦ and r/D = 0.6, 1.0, 1.4, 1.8.
The analysis is shown only for DBABL3.0 and the remaining spatial positions of measure-
ment are omitted for briefness. By moving from the frontal to the rear region, i.e., from
α = 0◦ to 180◦, the interaction between the DB and ABL flows changed drastically, as
reported above. The stagnation condition at the front between the two wind systems led to
maximum wind speeds for r/D < 1.0; conversely, the same direction of propagation of DB
and ABL outflows in the rear region of the domain shifted the region of absolute maximum
wind speeds at r/D > 1.0. At α = 90◦, where DB and ABL were directed perpendicularly
to each other and the ABL seemed to have the least influence on the DB outflow, the wind
speed vertical profiles were observed to resemble the case of isolated DB [32] to a very
good extent. Here, the maximum wind speeds were still observed around r/D = 1.0, as
widely found in the literature in the case of axisymmetric jet [13,16,23].
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Furthermore, the time at which the Cobra probes started to record non-zero wind
speed values changes according to the mutual interaction DB–ABL: the DB outflow reached
first the rear region and later the frontal region. This was very evident at the location
(α, r/D) = (0◦, 1.8) where the signature of the passage of the DB outflow was basically
absent. Throughout the evolution of the event, and outside of the downdraft region, the DB
vertical profile remained nose-shaped in agreement with the observations of Canepa [32]
on the isolated DB case: at the time of the passage of PV, the vertical extension of the
area of Vmax was quite high, while during the plateau segment of the wind speed records,
where the outflow was dominated by smaller trailing vortices following PV, the nose of the
vertical profile was more constrained to the ground. The spikes in the vertical profiles of V
were inherently related to the frequency of the vortex detachments from the nozzle [32].
The large values of V at α = 180◦ during the dissipation stage of the wind speed were
due to the asymmetrical closing of the bell mouth and thus not related to any meaningful
physical interpretation.

Figure 13 reports the time variation of the height of maximum slowly-varying mean
speed, z

(
Vmax

)
, at α = 0◦, 90◦ and 180◦. All wind speed signals were first synchronized

based on the time occurrence of the absolute maximum wind speed along with the vertical
profile, for each repetition. Hence, the ensemble average of z

(
Vmax

)
was calculated as the

mean across all 10 repetitions at each azimuth angle and each radial position r/D ≥ 1.
The comparison with the case of vertical DB (green dots) [32], clearly highlights the role
played by ABL on the DB outflow. Figure 13 shows that at α = 0◦ the decrease of
z
(
Vmax

)
related to the passage of the PV is generally not as pronounced as for the other

two azimuths. This is due to PV being lifted up by the entrainment of ABL wind (Figure 7).
Beyond r/D = 1.6, the interaction between DB and ABL flows produced a decrease in
radial wind speeds towards zero and the related values of z

(
Vmax

)
lost significance. At

α = 90◦, the evolution of z
(
Vmax

)
resembled, to a good extent, that of the case without

the inclusion of background wind. For α = 180◦, very high z
(
Vmax

)
were observed
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close to the top measurement height, before and after the embedding of the DB into the
developed ABL wind, in agreement with the ABL logarithmic-like profile. Here, therefore,
the transition of z

(
Vmax

)
appears much more remarked. However, the height of maximum

wind speed matches well with that of the isolated DB for the plateau segment. This suggests
that the height of the vortex core, which lost its symmetric and coherent structure due to
the presence of ABL wind, did not increase due to the downward force exerted by the
ABL flow.
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3.6. Turbulence Properties

In wind engineering terms, turbulence intensity is defined as IV = σV/V where σV is
the time-dependent standard deviation of the instantaneous velocity V with respect to its
slowly-varying mean value V. The reliability of the IV values obtained in our experimental
campaign is assured by the high sampling frequency of the Cobra probe measurements,
i.e., 2500 Hz.

Canepa [32] analyzed a large set of experimentally produced downburst outflows and
found that the usual hypothesis adopted in literature, i.e., turbulence intensity assumed
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constant in time IV = IV (where IV is the temporal mean of the slowly-varying turbulence
intensity IV), loses validity in controlled conditions. However, this was also noticed in
the full-scale environment by several authors [1,7,43,44], who found an asymmetry of the
parameter µ(t) = IV(t)/IV in correspondence to the peak wind speed or, in other words,
concurrently with the passage of PV by the measuring instrument. Specifically, µ showed a
local maximum and minimum, respectively, before and after the recording of the maximum
wind speed. The three orders of magnitude or so lower Reynolds numbers Re involved in
the experiments at the WindEEE Dome returned a much smoother environment compared
to full-scale conditions and thus, the off-mean values of the turbulence intensity were
overall magnified. The current study shows that the overall time evolution pattern of the
turbulence intensity, particularly in the neighborhood of the wind speed maximum (grey
dotted line in Figure 14), is often analogous to that of the isolated jet case [32]. Turbu-
lence intensity is here still defined from the radial wind speed component and is named
IV accordingly. Figure 14, however, shows that µ generally assumes values below 1 at the
beginning of the wind speed signal. The embedding of the DB wind actually contributed
to adding turbulence to the ABL-like environment. In this situation, µ generally increases
rapidly and assumes the maximum value slightly before the occurrence of the maximum
wind speed, t

(
Vmax

)
. This is followed by a local minimum few instants later than t

(
Vmax

)
and by a plateau of roughly constant µ = 1 during the plateau segment of the wind speed.
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At α = 0◦, the strong flow mixing between ABL and DB outflows causes the pa-
rameter µ to fluctuate significantly. Here, the maximum values are observed aloft at
z/zmax = 7.0 for r/D < 1.4, likely due to the embedding of the ABL air into the vortex
structure at this elevation. At α = 90◦, where the outflow fairly conserved the radial sym-
metry, the asymmetric behavior of µ was highlighted near the surface where the maximum
wind speeds during the passage of PV were recorded, in analogy to what was found by
Canepa [32]. Starting from r/D = 1.6, the maximum of µ was observed earlier in the time
history; the time occurrence suggests its correlation with the detachment of the boundary
layer from the surface and consequent formation of the SV [7,45,46]. Here, the interaction
and friction between PV and SV increased the turbulence level significantly. At α = 180◦,
the passage of the front was only evident from r/D = 1.2 due to the deflection of the
jet at the ground. Here, the spike of µ is observed slightly after, rather than before, that
associated with V likely due to the PV being elongated and deteriorated by the action of
the ABL flow. This effect slowly vanished with the possible near-surface onset of the SV
beyond r/D = 1.4 and the trend of µ appears thus retrieved.

Figure 15 shows distributions of the slowly-varying turbulence intensity IV = IV(α, r, z, t)
in the case of DBABL3.0 at the same measurement locations shown in Figure 12. The maxi-
mum values were found at the front between DB and ABL flows as a consequence of the
high flow mixing that developed from their interaction. Due to the modulation of the mean
wind speed and to its large values at the lower elevations (see Figure 12), IV showed lower
values compared to the rest of the vertical profile.
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Figure 16 shows the time evolution of the height of maximum turbulence intensity at
the different (α, r/D) locations, in analogy to Figure 13, for both DBABL3.0 and DBABL5.0
cases with respect to the case of isolated vertical DB. In agreement with the observations of
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Canepa [32], the rapid shift of z(IVmax) concurrently with the passage of the PV appeared
from the lower to the higher heights. At α = 0◦, however, this is only slightly noted for
r/D ≤ 1.4 due to the outflow being deteriorated by the opposed ABL flow at further radial
locations. At α = 90◦ and 180◦, the change of z(IVmax) was much more remarked and
followed the observations pointed out in Canepa [32]. At α = 180◦, the higher heights
of occurrence of IVmax before the wind speed ramp-up are likely due to the shear between
the ABL and the approaching outflow and, starting from r/D = 1.4, to the onset of the
SV. The higher values of z(IVmax) in the last part of the velocity plateau are related to the
mechanical asymmetric closing of the bell mouth louvers, which cause the wind speed and
the turbulence intensity to increase at these azimuths and at the higher heights.
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Figure 16. Ensemble averages of 10 time series (experiment repetitions) of the height of maximum
turbulence intensity z(IVmax ), normalized by zmax = 0.1 m, at α = 0◦, 90◦ and 180◦ and r/D ≥ 1
for DBABL5.0 (black dotted line), DBABL3.0 (red dotted line) and isolated vertical DB (green dotted
line) cases. Orange dotted lines show the ensemble average of the 10 mean wind speed repetitions at
z/zmax = 1.0 in the case of DBABL3.0. Vertical gray dotted lines show t

(
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)
.

Figure 17 shows the azimuth and radial (r/D ≥ 0.6) development of the vertical
profiles of IV in the case of DBABL3.0. IV is evaluated as the mean over the duration
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of the DB-like flow, i.e., from opening to closing of the bell mouth releasing the jet. The
magnitude of IV is observed to generally increase along with the first few radial locations
and to remain approximately constant beyond. In the area 120◦ ≤ α ≤ 180◦ (panels e–g),
IV decreased along the vertical profile starting from approximately z/zmax = 3.0 for
higher r/D values. In addition, at r/D = 2.0 IV was generally found to be lower at the
higher heights compared to the previous radii. At α = 0◦ (panel a) and for r/D > 1.4,
the vertical profiles of IV showed the clear off-mean maximum values at z/zmax = 2.0,
which are again unphysical due to the deterioration of the DB outflow and PV at those
measurement locations. However, a weaker spike in the vertical profile of IV was also
observed and located at z/zmax = 1.25 for the remaining α positions. This is likely to be
produced by the interaction PV–SV. The overall values of IV appear higher in the frontal
region (panels a–d), with values between 0.1 and 0.2, while they decrease even below 0.1 in
the rear region (panels e–g), for the reasons mentioned above. Finally, the IV values were
in good overall agreement with those evaluated for large sets of downburst records from
ultrasonic measurements [1,43,44] and also in relation to the vertical profiles recorded by
means of LiDAR profilers [7], as well as to the experimental investigation of Canepa [32].
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Figure 17. DBABL3.0 case: Vertical profiles of the mean slowly-varying turbulence intensity IV at the
seven azimuthal α locations and for r/D ≥ 0.6.

The statistical properties of the reduced turbulent fluctuation Ṽ′(t) = V′(t)/σV(t),
being V′(t) the residual fluctuation (V′(t) = V(t)−V(t)) and σV(t) its mobile standard
deviation, confirm that this quantity can be reasonably treated as a stationary random
process with zero mean and unit standard deviation, as widely proved by literature. In
accordance with the experimental investigation on vertical isolated impinging-jet down-
bursts [32], the power spectral density (PSD) of Ṽ′ (not shown here) follows the law n−

5
3

(where n is the frequency) in analogy to full-scale synoptic-scale ABL winds and also to
real downburst occurrences [1,21,27].
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4. Conclusions and Prospects

This paper presents a comprehensive analysis of a large and unique set of experiments
performed at the WindEEE Dome at Western University in Canada on the interaction
between downburst (DB) and background ABL winds. The interplay between the two
flows has only recently been addressed in literature where, however, the superposition
is usually dealt with through a simple vector summation. Our findings confirm what
was already concluded by Romanic and Hangan [34,35] on the unfeasibility of this hy-
pothesis and discuss in detail the evolution of this interaction. In our experimental study,
wind speed measurements were recorded on a refined spatial and temporal grid in or-
der to reconstruct the detailed flow field dynamics. There are no experimental studies
in the literature that describe in either qualitative (flow pattern) or quantitative (wind
speed values) manner the evolution of the front between DB and ABL flows. This region
is proved by our investigation to be of crucial importance in terms of enhanced wind
speed magnitudes due to the flow speed-up effect and heavy non-linearity produced by
the interaction.

The new integrated system installed at the WindEEE Dome enabled the recording of
the time of opening and closing of the nozzle, releasing the jet into the testing chamber. This
allowed for the synchronization of all signals across the chamber to reconstruct the time
evolution of the front between DB and ABL flows. The maximum radial wind speeds are
found at the front between the colliding flows where the radially advancing vortex, upon
the jet impingement on the ground, entrains the counter-directed ABL air taking advantage
of the same sign of horizontal vorticity (Figure 7). This causes the vortex to increase
its momentum and vorticity and the horizontal flow constrained underneath the vortex
structure to accelerate accordingly. Overall, the interaction between the two flows triggers
a highly asymmetric behavior of the expanding outflow. In the frontal region, where the
two fronts collide against each other, the DB outflow is slowed down by the ABL flow up
to an azimuth angle approximately equal to α = 60◦ with respect to the ABL incoming
direction (α = 0◦). In the rear region, the background ABL impacts the embedded vertical
downdraft provoking an inclination of its axis with respect to the vertical. This causes the
jet touchdown position to shift further downstream. Overall, this results in a “locked-in”
outflow at the front between DB and ABL systems, while the development of the PV and
the DB outflow is speeded-up in the rear region compared to the pure DB mode analyzed
in Canepa [32]. The DB outflow is therefore shifted in time and along the radial coordinate
based on the mutual interaction between DB and ABL, which in turn depends on the
azimuth location of observation.

The time variation of the height of maximum wind speed was observed to change
abruptly at the passage of the primary vortex (PV). The entrainment of ABL flow into
the PV structure in the frontal region raised the vortex up above the surface. This might
explain the more gradual drop of z

(
Vmax

)
at the time of the PV passage with respect to the

other azimuths. At α = 90◦, where the DB outflow was less influenced by the ABL wind,
z
(
Vmax

)
showed a spike at the beginning of the velocity ramp-up, which is an indicator of the

formation of the SV due to the detachment–reattachment of the surface layer at the surface.
The maximum wind speeds occurred at the boundary between the inner and outer layers of
the outflow. The same spike was not observed at the front between the two flows where the
ABL may break the formation of the secondary vortex (SV). The decrease of z

(
Vmax

)
was

much more pronounced in the ABL-streamwise direction due to the wind speed vertical
profile that switched from the ABL logarithmic-like shape to the DB nose-like shape.

The turbulence characteristics of the flow were found to be in good agreement with
those evaluated for large datasets of real thunderstorm events [1,43,44] and also with
reference to their vertical profiles [7]. We found higher turbulence at the front between DB
and ABL due to the high flow mix generated by the collision. The temporal evolution of
the turbulence intensity showed a maximum right prior to the maxima of the wind speed.
The maxima of the turbulence intensity generally occur at lower heights and are associated
with the passage of the PV and likely with its interaction with the inner layer dominated
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by the secondary vortex. Overall, the embedment of the downburst wind into the already
developed ABL caused an augmentation of the turbulence intensity.

Analogous observations are reported in the analysis of full-scale events by Zhang
et al. [43,44] and Canepa et al. [7], as well as in controlled conditions [32]. The assumption
IV = IV usually adopted in literature, namely turbulence intensity invariant with time, is
invalidated by the present study with wind–structure interaction implications.

Despite the high-density grid of Cobra probes used in this study to track the dynamics
of the downburst phenomenon, the complexity of the DBABL flow interaction possibly
makes the space reconstruction somehow lacking. To this end, the point measurements
here presented and analyzed will be integrated with “continuous” 3D investigation by
deploying large-scale PIV measurements. The upcoming study will aim at describing the
DB–ABL front evolution at three different heights above the chamber floor. A decisive
support in this sense will also come from ongoing numerical simulations modeling the
experimental downburst scenario at the WindEEE Dome that was discussed in the current
study. As described in Section 1, numerical studies on the DB–ABL interaction have
already been performed in recent years (e.g., [31]) and give important insights into vortical
structure dynamics, also taking advantage of the Lagrangian vortex method [47,48]. The
meshless approach by means of Large Eddy Simulation (LES), for instance, appears very
promising in reconstructing the spatial evolution of such a complex flow interaction, where
the experimental grid of measurement locations assessed in this study still seems coarse for
this purpose.

Furthermore, in terms of experimental activities at the WindEEE Dome, the possibility
to release the jet at non-vertical angles will provide a qualitative and quantitative measure
of the effect of thunderstorm cloud translation during the event.

The outcome of this thorough investigation will allow us to build an experimental
model to describe the structural behavior of downburst winds.
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