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Abstract: The Tibetan Plateau (TP) vortex (TPV), one of the crucial weather systems triggering rainfall,
plays a key role in modulating precipitation over TP and downstream regions. The role of atmospheric
heat source in TPV development is explored by a case study in June 2016, using high-resolution
ERA5 reanalysis, black-body temperature (TBB) obtained from the Fengyun-2E (FY-2E) satellite, and
precipitation amount from the Tropical Rainfall Measurement Mission (TRMM). The evolutions of
TPV can be split into three stages, i.e., generation, development, and pre-moving-off stage. The
intensity of TPV increases with fluctuations, with weaker and shallower TPV in the generation
stage, strongest in the development stage and deepest in the pre-moving-off stage. Importantly, the
genesis of TPV is related to the surface warming center driven by surface sensible heating while its
development is primarily dependent on the latent heat of condensation. The main contributor of
the latent heat of condensation is further analyzed as a vertical transport of the water vapor that
promotes TPV development.

Keywords: Tibetan Plateau Vortex; different stages; atmospheric heat source; surface sensible heating;
latent heat of condensation

1. Introduction

The Tibetan Plateau (TP) Vortex (TPV), an essential weather system over the TP
that triggers rainfall, can create severe synoptic disasters in local and downstream ar-
eas [1,2]. Generally, the TPV is evident at 500 hPa isobaric surface with a horizontal scale
of 400–800 km and a vertical scale of 2–3 km [3,4]; moreover, previous studies [5,6] have
suggested that the TPVs are mostly born in the central and western part of the TP and die
out on the lower slopes of the eastern TP.

Heat sources have been reported to play a key role in TPV formation and develop-
ment [7]. Liu et al. [8] noted that TPVs genesis are favored in the lower troposphere with
a strong atmospheric apparent heat source over the TP, and vice versa. In summer, the
TP directly heats the middle troposphere through combined diabatic heating consisting
of sensible, latent, and radiative heating [9,10]. A positive correlation was found in the
frequency of TPV generation with surface sensible heating, while a negative correlation
with surface latent heating [11]. By employing the original equation, sensible heating acts
as an intensifier for TPV in middle TP but even inhibited the development of TPV in south-
ern TP [12]. However, a different result was found in simulations where surface sensible
heating weakens the development of TPV [13]. Using the WRF model, Zhang et al. [14] dis-
covered that daytime surface diabatic heating works on the development of both daytime
convection and nighttime TPV. Similar results for advection with positive relative vorticity
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at 500 hPa, in conjunction with the effect of surface sensible heating inducing TPV genesis,
while the latent heat released by condensation leading to TPV extinction was found in
Wu et al. [15]. Nevertheless, in Tian et al. [16], the association of the latent heat released
by condensation from precipitation in convective systems with the intensification of the
eastward TPV was highlighted. Overall, the specific effects of surface sensible heating and
latent heat of condensation on TPV are controversial, and an in-depth understanding of
the relevant contributions of surface sensible heating and condensation latent heat to TPV
remains notably absent.

Heat sources vary in different growth stages of the TPV. Li et al. [17] suggested
that the atmospheric heat source is the dominant factor for the eastward movement and
development of the TPVs in development stage, but its effect on TPVs become weaker in
decaying stages. The results of Dong et al. [18] showed that latent heat of condensation
primarily occurred before the downhill stage and later after the downhill stage. Therefore,
it is necessary to discuss the roles of atmospheric heat source in the TPV during its different
stages and further reveal the relative contribution of surface sensible heating and the latent
heat of condensation in the atmosphere.

A TPV formed in southern Bayingol, Xinjiang on 28 June 2016, with a long span and
moderate rain over the TP, and triggers strong rainstorms in the middle and lower reaches
of Yangtze River after moving out of the TP [19]. In this study, this typical case was selected
to determine the impact of the atmospheric heat source on the evolution of the TPV in
different stages, based on multi-source datasets, including the possible mechanisms.

This paper is organized as follows: Section 2 presents the data and methodology;
Section 3 describes the evolution of the TPV in the different stages before moving off the TP;
and Section 4 investigates the impact of the atmospheric heat source on the TPV in different
stages and the related physical fields. A summary and discussion are provided in Section 5.

2. Data and Methods
2.1. Dataset

The following datasets are employed in this study:

(1) The fifth-generation reanalysis dataset ERA 5 (https://cds.climate.copernicus.eu/
#!/search?text=ERA5&type=dataset, accessed on 5 March 2022), provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF) [20], with a spatial
resolution of 0.25◦ × 0.25◦ and a temporal resolution of 1 h;

(2) The black-body temperature (TBB) data derived from FY-2E meteorological satellite
provided by the National Satellite Meteorological Center of the China Meteorological
Administration (http://satellite.nsmc.org.cn/portalsite/default.aspx, accessed on
5 March 2022), with a spatial resolution of 5 km and a temporal resolution of 1 h;

(3) Daily precipitation data from 2791 stations of the National Meteorological Information
Center of the China Meteorological Administration;

(4) Precipitation data provided by the Tropical Rainfall Measurement Mission (TRMM) [21],
with a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution of 3 h (https://disc.
gsfc.nasa.gov, accessed on 5 March 2022); and

(5) A dataset of TPVs based on ERA 5 reanalysis data was obtained using the objective
identification method [22,23], with a time interval of 1 h. The TPV center is defined as
the lowest point of the closed contour line of geopotential height at 500 hPa, and the
TPV radius is the average radius of the outermost closed contour line.

2.2. Methods
2.2.1. Potential Vorticity Tendency Equation

The potential vorticity (PV) tendency equation [24] without the friction effect can be
given as:

dPVe

dt
= ηa·∇Q = ηz

∂Q
∂z

+ ηs·∇sQ (1)

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
http://satellite.nsmc.org.cn/portalsite/default.aspx
https://disc.gsfc.nasa.gov
https://disc.gsfc.nasa.gov
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where PVe is the potential vorticity, and Q = dθ/dt is for diabatic heating. ηz
∂Q
∂z and

ηs·∇sQ represent the contribution of the uneven distribution of diabatic heating in the
vertical direction (PV1) and horizontal direction (PV2) to the variation of potential vorticity,
respectively.

2.2.2. Atmospheric Apparent Heat Source and Apparent Moisture Sink

The calculation of the atmospheric apparent heat source Q1 and the apparent moisture
sink Q2 adopts the inverse algorithm, proposed by Yanai et al. [25]:

Q1 = cp

[
∂T
∂t

+ V · ∇T + (
p
p0

)
κ
ω

∂θ

∂p

]
(2)

Q2 = −L(
∂q
∂t

+ V · ∇q + ω
∂q
∂p

) (3)

where cp is the specific heat at constant pressure, p0 = 1000 hPa; κ is the Poisson coefficient;
T is the temperature; θ is the potential temperature; ω is the vertical velocity; V is the
horizontal wind vector; L is a constant of the latent heat condensation; and q is the specific
humidity.

3. Characteristics of the TPV Evolution

At 16:00 on 28 June 2016 (Beijing standard time, BST, the same as below), a TPV is
generated in the south of Bayingol, Xinjiang, and Figure 1 shows the path of this TPV case.
Obviously, it moves southeastward out of the TP at 08:00 on 30 June, further shifts eastward
crossing Sichuan, Chongqing, and the middle reaches of the Yangtze River, and finally
arrives at Xiangyang, Hubei on 1 July. The lifespan of the TPV is up to 58 h with an average
moving speed of 14.1 m s−1, which is relatively faster compared to the climatological
moving speed of TPVs [26]. This TPV case keeps active on the TP for about 40 h, generating
little-to-moderate precipitation. More precipitation occurs in Sichuan, Chongqing, and the
middle reaches of the Yangtze River when TPV moves off the TP.
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Figure 1. Track of the Tibetan Plateau Vortex (TPV) and distribution of precipitation at 2791 stations
from 20:00 on 28 to 20:00 on 30 June 2016 in China.

To get insight into the vertical structure of the TPV, the time-height section of the
relative vorticity along the center of the TPV is given in Figure 2. It clearly shows that the
intensity of the vorticity varies considerably with time, and can easily be divided into three
stages. The first stage is from 12:00 on 28 to 23:00 on 28 June, when the TPV is located
in western TP with a weak vorticity center near the source region of the TPV. The TPV
then moves eastward to the central part of the TP and rapidly becomes much stronger
in the second stage, from 23:00 on 28 to 20:00 on 29 June. The positive vorticity region
extends upward to 350 hPa, with big value center (more than 18× 10−5 s−1) at 400–500 hPa,
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indicating that TPV becomes deeper in this stage. In fact, the intensity of the TPV fluctuates,
and is relatively weak in the late of this stage. During the third stage (20:00 on 29 to 08:00
on 30 June), TPV becomes strengthened again, with positive vorticity extending to 250 hPa
before moving off the TP. Therefore, it can be seen that the evolutions of the TPV over the
TP have distinct stages, with a fluctuating intensity of the TPV, including the generation
stage, development stage and pre-moving-off stage. Additionally, the peaks of the TPV
vorticity occur at night, which may be related to the daily variation in thermal conditions
over the TP [27].
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Figure 2. Vertical-time section of relative vorticity (shading, unit: 10−5 s−1) near the Tibetan Plateau
Vortex (TPV) center from 12:00 on 28 to 12:00 on 30 June 2016 (the black dashed lines are the boundary
of the three stages).

To facilitate this work, one epoch of TPV is selected from each stage to study the TPV
variations across the three stages. The characteristic quantities (vorticity, vertical velocity
and the TBB) are listed in Table 1. In the generation stage, the TPV is weak but has a robust
vertical velocity of 1.23 Pa·s−1. The development stage has the largest vorticity, radius and
lowest TBB, indicating that TPV strongly develops when moving eastward, with a larger
radius of vorticity and lower vertical velocity. For the third stage, the vorticity and the
radius rapidly become smaller before TPV moving off the TP.

Table 1. The characteristics of the Tibetan Plateau Vortex (TPV) at different stages. The vorticity,
vertical velocity and the TBB are all averaged over the 2◦ × 2◦ grid near the TPV center.

TPV Stage Representative
Time/BST

Latitude
/◦N

Longitude
/◦E

500 hPa
Radius

/km
TBB
/◦CVorticity

/10−5·s−1
Vertical Velocity

/Pa·s−1

Generation 16:00 on 28 June 35 87 0.8 −1.23 105 −17.2
Development 08:00 on 29 June 36 92 9.1 −0.67 176 −29.8

Pre-moving-off TP 06:00 on 30 June 31 102 2.6 −4.2 122 −21.5

To further explore the evolution of TPV at the different stages, Figure 3 displays the
distributions of the atmospheric circulation at 500 hPa isobaric surface and the TBB at six
epochs (every two epochs per stage). From Figure 3, we can see that in the generation
stage, the TP is controlled by an anticyclonic circulation of 500 hPa at 16:00 on 28 June
(Figure 3a,b). Then, the anticyclonic circulation retreats to the southeastern TP at 00:00
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on 29 June. In parallel, a cyclonic circulation appears in the western TP. Then a TPV is
formed, with a convective cloud appearing on its southeast edge. Both the intensity and
horizontal scale of the TPV are relatively weak at the first stage. For the second stage
(Figure 3c,d), the TPV moves eastward to the central TP at 08:00 on 29 June, with the
cyclonic circulation intensifying and convective cloud weakening. At 20:00 on 29 June
(Figure 3d), the TPV continues to move eastward and gradually becomes strengthened,
especially with a stronger convective cloud to the south of the TPV, which appears to be
the peak of TPV’s development over the TP. From Figure 3e (pre-moving-off stage), we can
see that TPV now is located in the eastern TP. The cyclone circulation is weakened, and the
large value center of the convective cloud has moved away from the TP, indicating that
the activity of the TPV over the TP is coming to an end. Until 12:00 on 30 June, the TPV
completely moves out of the TP (Figure 3f).
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Figure 3. Distributions of the 500 hPa wind field (vector, unit: m s−1) and black-body temperature
(shadow, unit: ◦C; “C” represents the TPV center; the red box represents the key area of the TPV
cloud, which is located 1◦ east of TPV and 1◦ south of TPV) at 16:00 on 28 (a), 00:00 on 29 (b), 08:00
on 29 (c), 20:00 on 29 (d), 06:00 on 30 (e), and 12:00 on 30 (f) June 2016.

To sum up, the cloud system of the TPV evolves from the initial convective cloud
cluster to a spiral cloud system in the strong period, and finally weakens to a banded
cloud system. Throughout this process, the strong convections are mainly concentrated to
the southeast part of the TPV. From the variations of TPV moving velocities, the average
moving speed of TPV in three stages are found to be 7.6 m·s−1, 10.0 m·s−1 and 10.9 m·s−1

,
suggesting that the TPV moving speed accelerates with development, with the maximum
speed appearing at the downhill terrain in the eastern part of the TP.
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Considering that precipitation occurs mainly to the southeast of the TPV, Figure 4
shows the temporal evolution of precipitation (bars) averaged in the red-boxed in Figure 3,
also the vorticity (lines) averaged within a 2◦ × 2◦ grid near the TPV center in 500 hPa.
In the generation stage, weak rainfall is produced near the TPV, accompanied by a rapid
increase in relative vorticity. Then, during the development stage (23:00 on 28 June), the
vorticity achieves its maximum strength and sustains until 08:00 on 29 June, but less rainfall
is generated. Subsequently, the precipitation gradually increases, accompanied by further
strengthening in the vorticity. In the pre-moving-off stage (23:00 on 29 June), the rainfall and
vorticity peak in sequence. From 04:00 to 06:00 on 30 June, the vorticity rapidly weakens as
the TPV moves out of the TP. In general, three rapid growth stages are in the development
of vorticity, and the first two may be involved with the latent heat of condensation released
by precipitation.
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Figure 3 (bars, unit: mm·h−1) from 12:00 on 28 to 12:00 on 30 June 2016 (the gray dashed line is the
boundary of the three stages).

4. Effects of Diabatic Heating on TPV in Different Stages

The generation and development of the TPV are closely related to the thermal forcing
over the TP. This section will focus on the role of the atmospheric heat source in the TPV
during the three different stages.

4.1. Potential Vorticity Tendency Equation Diagnosis

PV reflects the thermodynamic and dynamic properties of the atmosphere, which can
more comprehensively describe the occurrence and development of the TPV. The change
of PV is mainly caused by diabatic heating (Equation (1)). Figure 5 shows the spatial
distribution of the total PV change and PV change induced by the vertical gradient of
diabatic heating (PV1) at 500 hPa in the three stages of the TPV.

It can be seen that positive changes in PV exist near the TPV during the three stages.
And the peaks of the PV occur in the development stage (Figure 5c), while it is relatively
scattered in the pre-moving-off stage (Figure 5e). The magnitude and horizontal distribution
characteristics of PV1 (Figure 5b,d,f) show that the distribution of PV1 is very similar to the
total PV changes in three different stages, indicating that PV1 is the main contributor to the
PV variation, while the contribution of PV2 is not apparent (figure omitted).
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Figure 6 presents the longitude–altitude profile of the diabatic heating and PV1 along
the TPV center. In the generation stage, positive diabatic heating exists around the TPV
center with a maximum near 350 hPa (Figure 6a), but the PV is weak at this stage (Figure 6d).
In the development stage, diabatic heating mainly appears below 300 hPa with no marked
changes in value and a maximum center; resulting in a large vertical gradient and further
forming a positive PV1 area below 350 hPa, and a negative PV1 area above 350 hPa
(Figure 6e), according to Equation (1). And this favors to the development of low-level
cyclonic circulation and high-level anticyclonic circulation, favoring the development and
enhancement of the TPV to some extent. In the pre-moving-off stage (Figure 6c,f), the
diabatic heating over the TP obviously enhanced, corresponding to the stronger PV1 at a
lower and higher level. At this stage, the maximum of diabatic heating is mainly located
at the eastern part of the TP (105◦ E–110◦ E). Therefore, the diabatic heating has a great
influence on the intensity and moving direction of the PV [28], which is also favorable for
the TPV developing and moving eastward out of the TP.
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4.2. Effects of Q1 and Q2 on the TPV

Atmospheric diabatic heating, including apparent heat source and apparent water
vapor sink, has important influences on the development and movement of the TPV. Here
we further examine the specific effects of these two components of the diabatic heating on
the evolution of the TPV, and compare their relative contributions.

In Figure 7, it can be seen that both Q1 and Q2 are relatively weak in the genera-
tion stage. After that, Q1 and Q2 gradually increase with two maximum centers around
350 hPa, respectively (Figure 7a), which provide a favorable thermal condition for the
rapid development of the TPV. Clearly, the distribution of the vertical transport terms of
temperature (∝ ∂θ

∂p ) for Q1, and humidity (∝ ∂q
∂p ) for Q2, is very similar to Q1 and Q2, respec-

tively (Figure 7b). Meanwhile, the magnitude of the advection terms (V·∇T and V·∇q) is
much smaller (figure omitted), indicating that the vertical transport term is the dominant
contributor of Q1 and Q2.

There is a large positive value of temperature local variation term (Figure 7c) at
400–500 hPa in generation stage comparing with that in the development stage and pre-
moving-off stage. Importantly, this local positive temperature center occurs 1–3 h earlier
than the generation of the TPV (16:00 on 28 June). Meanwhile, the local variation term of
water vapor is negative, indicating that the evaporation is greater than the condensation
at this time. Thus, the increase in local temperature is probably due to surface sensible
heating instead of the latent heat of condensation. Additionally, the local variation of
near-surface temperature is negative after 00:00 on 29 June (Figure 7c), while the lower
atmosphere is relatively cold (Figure 8). This may be due to precipitation and development
of the convective cloud system [29,30], which leads to the decrease in net radiation and the
reduction in surface temperature.
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Figure 8. Vertical time sections of zonal deviation of temperature (shading, unit: K) and geopotential
height (contours, unit: gpm) in the TPV center from 12:00 on 28 to 12:00 on 30 June 2016.

Figure 9 shows the distributions of the vertically integrated atmospheric apparent heat
source <Q1> and apparent moisture sink <Q2> during these three stages. In the generation
stage, <Q1> is positive on the whole TP (Figure 9a), while <Q2> is negative in most areas of
the TP, except the region near the TPV (Figure 9b). In general, <Q1> is composed of surface
sensible heating, latent heat of condensation and radiation heating, of which radiation
heating is of little importance. At the same time, <Q2> mainly reflects the role of latent heat
of condensation. Therefore, the surface sensible heating is the main contribution term of
<Q1> at this first stage. In the development stage and pre-moving-off stage, the center of
<Q1> is located to the east of the TPV center and is significantly enhanced (Figure 9c,e). The
distribution of <Q2> is similar to <Q1>, but with bigger positive area expands significantly,
indicating that the latent heating term is the main contribution of the atmospheric heat
source after the TPV being formed and becoming stronger.
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Figure 9. Distribution of apparent heat source <Q1> (a,c,e) and apparent moisture sink <Q2> (b,d,f) in
the generation stage ((a,b): 16:00 on 28 June), development stage ((c,d): 08:00 on 29 June) and pre-
moving-off stage ((e,f): 06:00 on 30 June) (unit: W·m−2; “C” represents the TPV center).

The regional averaged <Q1>, <Q2> and quantitative comparisons of their contributions
to TPV in the three stages are shown in Table 2. In the generation stage, <Q1> is three times
larger than <Q2>. As the TPV moves eastward, a marked increase in <Q2> is noted. In
the next two stages, <Q2> is comparable to <Q1>, both reaching more than 1200 W m−2 in
the pre-moving-off stage. It is worth noting that the surface sensible heating is primarily
accountable for the high value of the <Q1> in the first stage, favoring the TPV genesis.
However, in the latter two stages, the latent heat of condensation becomes the dominant
heating term as it gradually strengthened, playing a key role in the development and
enhancement of the TPV.

Table 2. The intensity of atmosphere apparent heat source <Q1> and apparent moisture sink <Q2>
averaged over the 2◦ × 2◦ grid surrounding the TPV center at different stages (unit: W·m−2).

Heat Source Generation Stage Development Stage Pre-Moving-Off Stage

<Q1> 625 555 1375
<Q2> 215 571 1267

(S + LE)/<Q1> 59% −5.4% 12.4%
<Q2>/<Q1> 35% 103% 92%

In summary, <Q1> is noticeably greater than <Q2> in the generation stage of the TPV.
And the effect of surface sensible heating is the strongest in this stage, which weakens
the stability of the atmosphere, and accumulates energy to trigger the generation of the
TPV. In the development and pre-moving-off stages, latent heat of condensation gradually
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intensifies, becomes the dominant heating term, acting as a prime role in the development
and enhancement of the TPV.

5. Conclusions and Discussion

A case study in June 2016 is conducted to investigate the characteristics of the TPV
evolution during different growth stages and the impacts of atmospheric heat source in
TPV development, using hourly ERA5 reanalysis, black body temperature (TBB) obtained
from the Fengyun-2E (FY-2E) satellite, and precipitation amount from the Tropical Rainfall
Measurement Mission (TRMM). The main conclusions can be summarized as follows:

(1) The evolution of TPV can be divided into three stages, including the generation,
development and pre-moving-off stages. The TPV intensity fluctuates throughout
its evolution, with vorticity intensification during the nights of 28 and 29 June, re-
spectively. The TPV is weak and shallow in the generation stage, strongest in the
development stage, and deepest in the pre-moving-off stage. The moving speed
of the TPV gets enhanced gradually with its development, while the highest speed
appearing at the downhill terrain in the eastern part of the TP.

(2) The vertical gradient of diabatic heating is the main factor causing the development
of the TPV, i.e., a positive (negative) potential vorticity is produced below (above) the
height where the maximum center of diabatic heating is situated; strengthening the
low-level cyclonic circulation and high-level anticyclonic circulation, further favoring
the development of the TPV.

(3) The generation of the TPV is related to the surface warming center driven by surface
sensible heating. After TPV generation, the development and enhancement of the
TPV is primarily dependent on the latent heat of condensation, and further analysis
suggests that the vertical transport of the water vapor is the main contributor to latent
heat of condensation, thus promoting the development of the TPV.

In this study, the evolution of the TPV over the TP is divided into three stages by
using high-resolution data, deepening the understanding of TPV evolution processes and
characteristics. Also, the critical roles of vertical structures and atmospheric heat source
in different stages are examined, as well as the relative contribution of surface sensible
heating and the latent heat of condensation to the TPV at different stages. Evidently, the
present work is different from Wu et al. [15], which is mainly focus on the investigation of
different TPV cases and different stages.

One should note that the results in this work are obtained from an individual case
study. More cases are still needed to enrich the mechanistic theory of TPV formation and de-
velopment. Here we selected the period when TPV was targeted on TP for discussion. The
evolutionary features of TPV moving out of TP and its relationship with the atmospheric
heat source remain to be explored.
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