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Abstract: Accurate short-term forecasting of intensive rainfall has high practical value but remains
difficult to achieve. Based on deep learning and spatial–temporal sequence predictions, this paper
proposes a hierarchical dynamic graph network. To fully model the correlations among data, the
model uses a dynamically constructed graph convolution operator to model the spatial correlation,
a recurrent structure to model the time correlation, and a hierarchical architecture built with graph
pooling to extract and fuse multi-level feature spaces. Experiments on two datasets, based on the
measured cumulative rainfall data at a ground station in Fujian Province, China, and the correspond-
ing numerical weather grid product, show that this method can model various correlations among
data more effectively than the baseline methods, achieving further improvements owing to reversed
sequence enhancement and low-rainfall sequence removal.

Keywords: short-term intensive rainfall forecast; spatial–temporal sequence prediction; hierarchical
dynamic graph network; graph convolutional network; numerical weather prediction

1. Introduction

Short-term intensive rainfall is generally defined as a cloudburst event in which the
accumulated rainfall reaches or exceeds 30 mm within 3 h (Fujian Provincial Meteorological
Observatory) [1]. It is usually caused by strong convective weather and is characterized by
extreme suddenness, high destructiveness, and a short duration. It can easily cause natural
disasters such as mountain torrents, mudslides, and urban floods. The forecasting accuracy
of short-term intensive rainfall is usually lower than that of ordinary rainfall events in
China [2]. Inaccurate forecasts may lead to a serious loss of life and property. Therefore,
improving the accuracy of short-term forecasting is important.

We focus on two types of short-term intensive rainfall forecasting methods [3]. The
radar extrapolation method uses historical radar echo maps with a high spatial–temporal
resolution, as drawn by meteorological radars, to forecast the rain and cloud movement. It
uses the optical flow method [4], precipitation cloud extrapolation [5], or other methods [6]
to predict the movement. In addition, it subsequently uses rainfall rate–reflectivity rela-
tionships or other means to invert the results into rainfall data. The Numerical Weather
Prediction (NWP) method, based on historically accumulated observation data, uses numer-
ical calculations to solve the fluid mechanics and thermodynamic equations that represent
the weather evolution under certain conditions. The result is a computer-simulated NWP
product. Based on this, forecasters combine various monitoring products and their own
experience to conduct comprehensive analyses and corrections, thus finally obtaining
forecasting results.

With the increased scale of deployment of metering equipment and meteorological
data expansion, previous studies have integrated deep learning with meteorological fore-
casting methods. Recent extrapolation methods transform the problem into a video-like
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prediction, such that it is easier to model the long-range spatial–temporal relationship when
compared with that in traditional methods [7]. Some attempts have focused on using the
NWP products as input data for deep learning methods to perform prediction tasks [8,9].

However, forecasting short-term intensive rainfall using deep learning still faces
challenges: (1) the distribution of meteorological data is complex and involves multi-modal
dynamics, which are difficult to model; (2) statistics show that samples have a robust
scale-free structure in the atmospheric rainfall field [10], which indicates a data imbalance
problem; (3) when using data with a temporal resolution of 3 h, modeling is more difficult
than radar extrapolation at high spatial–temporal resolutions and small neighborhood
variations; and (4) NWP products are not the actual measured results, as their accuracy is
limited by the characteristics of the models they use.

To manage these challenges, based on our previous study [1], we combined rainfall
data from ground stations and related data from an NWP product to propose the Hierarchi-
cal Dynamic Graph Network (HDGN), a new model based on spatial–temporal sequence
prediction and a Graph Convolutional Network (GCN). By designing the corresponding
structure, we comprehensively captured the correlations among time, space, and features,
which facilitated the prediction of short-term intensive rainfall.

The remainder of this paper is organized as follows. Section 2 introduces the back-
ground related to this study, including the NWP, spatial–temporal sequence prediction,
study area, and data sources. Section 3 presents the methods applied for short-term inten-
sive rainfall prediction, which involve data preprocessing and the HDGN model. Section 4
presents the configuration of the experiments and interpretations of their results. Section 5
provides the conclusions of the study.

2. Background
2.1. Numerical Weather Prediction

Multi-scale forecasts are provided by operational NWP centers, which involve small
to planetary-scale emulations at time resolutions from the minute to seasonal scale. The
numerical calculation model in the NWP is frequently updated with the aid of new ob-
servation data and forecasting technologies, thereby improving the physical simulation
performance and uncertainty quantification of the model. This also improves the effect of
model forecasting and data assimilation.

We used fine-grid numerical forecasting products from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the Weather Research and Forecasting
(WRF) method, a unified mesoscale weather-forecasting model.

However, NWP has certain limitations related to the cumulative error resulting from
the high complexity of the simulation process. The ECMWF is disadvantageously char-
acterized by a weak intensity forecast [11]. The WRF model performs relatively poorly
when estimating the rainfall value [12]; its rainfall forecasting results may not be as optimal
as those of the ECMWF [13]. Generally, the performance of the NWP in the convective
period of a precipitation forecast is relatively poor, despite the occurrence of short-term
intensive rainfall during the convective period. The lifetime of convective storm cells is
generally <30 min [14], such that it is difficult to accurately predict short-term intensive
rainfall events using a single NWP simulation. In this study, we combined the measured
cumulative rainfall data from ground stations and related data from the NWP product
on the input side to overcome the limitations associated with a single set of NWP data.
Additionally, based on these data, the concept of spatial–temporal sequence prediction was
employed to predict future rainfall conditions.

2.2. Spatial–Temporal Sequence Prediction

As a sub-field of deep learning, spatial–temporal sequence prediction is suitable
for uncovering the spatial–temporal correlations among data, such as rainfall-related
information for forecasting tasks based on time-sequence prediction. Classical models
for time-sequence prediction include Long Short-Term Memory (LSTM) [15], which is a
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recurrent neural network with long- and short-term memory cells, and the Deep Belief
Network (DBN) [16], which is a multi-layered probabilistic generative neural network.
They have a simple structure with a low cost; however, they are poor in integrating spatial
information from our data. To enhance the performances of these methods, we can classify
the spatial–temporal sequence prediction problems into grid and non-grid scenarios [17].

Grid spatial–temporal sequence prediction uses fixed space coordinates to char-
acterize the spatial–temporal relationship among data [18–20]. Convolutional LSTM
(ConvLSTM) [21] combines LSTM and a three-dimensional (3-D) convolutional neural
network [22], which is a deep learning network for extracting information from spa-
tial data. It is portable and can be the building block of a predictive network, but it
lacks bidirectional information flow between the different layers in the temporal direction.
Sequence-to-Sequence (Seq2Seq) [23] is a basic recurrent architecture used in our model to
perform frame-by-frame predictions. PhyDNet [24] uses an encoder–predictor–decoder
architecture, which includes the mutual conversion of data and physical feature spaces.
Furthermore, a previous study developed a video prediction model based on a multi-level
feature space [25]; our study extends this idea to the graph domain. Multi-level feature
spaces increase the model complexity but facilitate the extraction of feature correlations
among data. Finally, a model for serially generating two-dimensional (2-D) convolutional
kernels, with a sliding window [26], inspired this study regarding the hierarchical genera-
tion of graph convolution operators.

Non-grid spatial–temporal sequence prediction uses additional structures, such as
graphs (a structure composed of nodes and edges), to characterize the spatial–temporal rela-
tionships among data [27–29]. The Attention-based Spatial–Temporal Graph Convolutional
Network (ASTGCN) [30] alternately calculates the temporal and spatial attention within the
data, which act as antecedent auxiliary transformations to the graph convolution operator.
However, its high cost of spatial attention prevents it from being used in large graphs,
where ours can be used. The Spatial–Temporal Graph Ordinary Differential Equation
(STGODE) network [31] models the semantic adjacency matrix of a graph via the dynamic
time-warping algorithm. Graph Convolution embedded LSTM (GC-LSTM) [32] uses the
Inverse Distance Weight (IDW) to calculate the weights of a graph; the graph convolution
operator selects one- to K-hop neighbors. In the HDGN, we also use semantic distances,
which are more indicative of the correlations between node pairs, as weights instead of
fixed geographical distance, and this method can increase the model dynamics at a low cost.
Our graph convolution operator has the same capabilities as those of the GC-LSTM. The
Dynamic Graph Convolutional Recurrent Network (DGCRN) [33] uses a highly dynamic
graph construction method, whereas we proposed a hierarchical graph generation process;
compared to the previous method, our approach trades a small reduction in flexibility for a
faster graph construction speed.

2.3. Study Area and Data Sources

Fujian Province is located in Southeastern China, with a total land area of 12.4 million km2.
It has a subtropical maritime monsoon climate characterized by an average annual tem-
perature of 15.0 to 21.7 ◦C, with hot summers and warm winters; its annual precipitation
ranges from 1132 to 2059 mm, where March to September accounts for 81.4% of the annual
precipitation. The topography of Fujian is high in the northwest and low in the southeast. It
has two mountain belts that trend from the northeast to the southwest: the Wuyi Mountains
in northwestern Fujian and the Jiufeng and Daiyun mountains in northeastern to central
Fujian. Owing to the influence of the terrain, these areas are the centers of heavy rainfall in
Fujian [34]. Figure 1 depicts the occurrence of short-term intensive rainfall in Fujian from
February 2015 to December 2018. Fujian is one of the areas of high-frequency intensive
rainfall in China, which often leads to severe flooding and geological hazards.
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Figure 1. Distribution of each ground station in Fujian Province. The colors indicate the total number
of observed short-term intensive rainfall events in February 2015 to December 2018 for each station [1].

The four original datasets issued by the Fujian Meteorological Observatory were used
in this study (see Table 1 for details); the grid points refer to a series of nodes arranged in
rows (latitude) and columns (longitude). These datasets can be divided into three categories.

Table 1. Details of the original datasets.

Dataset Stations ECMWF250 ECMWF125 WRF

Horizontal range 23.52◦–28.37◦ N,
115.84◦–120.67◦ E 23.5◦–28.5◦ N, 115.5◦–121.0◦ E 23.5◦–28.45◦ N,

115.5◦–120.99◦ E

Time range February 2015 to December 2018 January 2017 to
December 2018

Time resolution 3 h 1 h

Number of
stations/grid points 2170 23 × 21 45 × 41 62 × 56

Grid spacing — 0.25◦ × 0.25◦ 0.125◦ × 0.125◦ 0.09◦ × 0.09◦

Number of
available features 3 113 26 24

Starting time of
the forecast — 08:00 and 20:00 (UTC + 8)

Stations: A dataset of the observed rainfall, comprising data collected by 2170 available
ground stations in Fujian. It contains three features, i.e., the longitude, latitude, and
measured 3 h accumulated rainfall.

ECMWF: It comprises the ECMWF250 and ECMWF125 datasets for Fujian. With the
exception of a few features, such as the dew point temperature, their feature sets do not
overlap with each other.

WRF: A dataset containing the Fujian WRF grid data, which is divided into 3-h interval
groups; only the forecasting results from the third hour were used for alignment with the
other datasets.
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3. Methodology
3.1. Problem Description

Let the data obtained from the samplings performed at equal time intervals belong to
one frame. We set sequence prediction as the task of outputting the predicted sequence
data as close as possible to the ground truth based on the historical data, which can be
expressed as follows: {

X0, . . . , XTin−1
}
→
{

XTin , . . . , XTin+Tout−1
}

, (1)

where X represents a frame, and Tin and Tout represent the historical and predicted sequence
lengths, respectively.

The structure of X differs for different types of prediction problems. X ∈ RF represents
the time-sequence prediction, X ∈ RN×F represents the non-grid spatial–temporal sequence
prediction, and X ∈ RM×F represents grid prediction, where F, N, and M denote the
number of features, nodes, and measurement dimensions of the grid, respectively. When
the grid is 2-D, M = H ×W, where H and W represent the height and width of the
grid, respectively.

We set our object as a non-grid spatial–temporal sequence prediction problem, where
Xt,0 = Xt in the HDGN. The grid spatial–temporal sequence prediction was applied after
separating the latitude and longitude coordinates from the data points. The time-sequence
prediction methods can individually predict each node and then combine them.

3.2. Data Preprocessing

For the stations dataset, we used the IDW interpolation method [35] on each frame to
interpolate the rainfall values to the ECMWF250 and WRF grid points. Thus, the measured
cumulative rainfall and corresponding NWP features shared identical spatial coordinates,
which avoided forecasting difficulties caused by a lack of measured rainfall data. The
station dataset is important because the model will perform poorly if the percentage of
missing values is high. In this context, the observed rainfall data must usually be obtained
from multiple sources to prevent potential problems caused by missing data when the data
are obtained from a single source.

For the NWP datasets, we used the forecasting period between 12 and 33 h owing to
numerical instability in the first 12 h of the NWPs. We then selected the forecasting data
closest to the start time to reduce the influence of long-term forecasting errors. Because
each feature has a different impact on network training and prediction performance, the
Box Difference Index (BDI) was used for feature selection [36] to reduce the volume of
data and avoid feature overlap. The higher the index, the stronger the feature’s ability to
distinguish whether the data point was a short-term intensive rainfall event. The BDI of
each feature was calculated as follows:

BDI =
|m30 −m0|

σ30 + σ0
, (2)

where m0 and m30 represent the characteristic mean values of the rainfall for data points
between 0 and 30 and above 30 mm, respectively, and σ0 and σ30 represent the standard
deviations of the rainfall values for the data points between 0 and 30 mm and above 30 mm,
respectively. After calculation, a list of each feature in descending order of BDI value was
obtained, and the features with the highest BDI were selected in turn. Note that features
with a high percentage of missing data owing to equipment failure, etc., were not used
because they degrade the performance of the model; therefore, we manually skipped these
features and replaced them with features with lower BDIs. Table 2 lists the features that we
selected following the above process and used in the subsequent steps.
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Table 2. Description of the selected features.

Data Source Feature Name Meaning

ECMWF125

Q_850 Specific humidity 850 kPa

Ki k index

Td_850 Dew point temperature 850 kPa

GH_1000 Geopotential height 1000 kPa

Tt_850 Temperature 850 kPa

ECMWF250

TCWV Atmospheric water vapor content

MSL Sea-level pressure

2D Dew point temperature 2 m

WRF

TCDC Total cloud cover

RH_850 Relative humidity 850 kPa

LCDC Low cloud cover

CR Combined reflectance

GUST Wind gust

CAPE Convective avail pot energy

REFD_1000 Radar-derived reflectivity 1000 kPa

MSLP Mean sea-level pressure

After feature selection, we constructed the sequential datasets adapted to the HDGN
and other sequence prediction models, i.e., S-ECMWF and S-WRF, where S denotes the
sequence. Their construction methods are shown below: (1) As the ECMWF dataset
comprises two groups of data with different grid spacings, they must be merged. The
selected ECMWF125 retained only the features of the 23 × 21 grid points that overlapped
with ECMWF250. The features of both were then concatenated according to the grid points.
(2) The interpolated rainfall data were spliced into the two datasets using the operation
described in (1). (3) Linear interpolation was used to supplement the missing values. The
data were standardized with the z-score. (4) Sequence samples were generated using a
sliding window with a step size of one frame. (5) The graph, G0, was constructed according
to the grid of the data, where each grid point was treated as a node and each node formed an
edge with the nearest node in eight directions (N, E, S, W, NE, SE, SW, and NW); a direction
with no nodes in it was skipped. Graphs in the HDGN were stored as a compressed sparse
matrix structured as R2×E, where E represents the number of edges in the graph. The
edges of the graphs in the HDGN were all undirected edges, unless otherwise specified.
(6) S-ECMWF and S-WRF contained the sequence samples and G0, respectively.

As an optional step, we performed data augmentation on the S-ECMWF and S-WRF
datasets before training to improve the prediction performance. This involved two methods:
(1) Reversed sequence enhancement: the reverse form,

{
XTin−1, . . . , X0

}
, of the historical

sequence,
{

X0, . . . , XTin−1
}

, was generated and added to the training data; the related
sequence prediction task is shown in Equation (3). (2) Low-rainfall sequence removal:
10% of the training samples with the highest number of data points characterized by zero
rainfall in the historical sequence were removed. This configuration was used unless
otherwise specified. {

XTin−1, . . . , X0
}
→ {X−1, . . . , X−Tout} (3)

3.3. Hierarchical Dynamic Graph Network

We proposed an HDGN model for short-term intensive rainfall forecasting, which is
shown in Figure 2. We note that the structure of the Hierarchical Graph Convolutional
Network (HGCN) should correspond to the hierarchical graph generation process. The
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components of this model were implemented based on Multi-Layer Perceptron (MLP), a
trivial forward-structured artificial neural network, unless otherwise specified.
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Figure 2. The overall architecture of the proposed Hierarchical Dynamic Graph Network (HDGN)
model. It consists of three main modules: hierarchical graph generation, graph convolution operator
generation, and Hierarchical Graph Convolutional Network (HGCN). The model is dynamic in
nature because it uses different graphs for different sequences.

The steps of the sequence prediction were as follows. (1) The model read a historical
sequence and generated multi-level graphs based on it. It then generated the corresponding
graph convolution operators based on these graphs, finally using these results to initialize
the HGCN. (2) The HGCN read each frame on the historical sequence in chronological
order and output the corresponding predicted frames while updating its own state. When
the HGCN reached the end of the historical sequence, the last predicted frame was re-input
into the HGCN as the historical frame such that continuous prediction could be achieved.
(3) The model output the forecasting results for this historical sequence.

3.3.1. Hierarchical Graph Generation

Graph pooling was used to dynamically construct multi-level graphs, which serve as the
basis for the subsequent steps. Figure 3 shows the process of hierarchical graph generation.

We used a set of MLP encoders, C, A, and W , to extract the auxiliary information
according to the historical sequence. Each node cluster feature was ci, i ∈ {0, . . . , N − 1},
and the edge weight adjustment feature was ai, i ∈ {0, . . . , E− 1}. These were calculated
using C and A.
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EdgePool [37] was adopted to generate a new non-weighted graph based on edge
shrinking. The related process was as follows. (1) The correlation score of each edge
was calculated using Equations (4) and (5), where concat is the concatenate operation and
softmaxi is a normalization function on all adjacent edges of node i. (2) The edge with the
highest score was shrunk, followed by merging of its two adjacent nodes into a new node
with a clustering feature of max

(
ci, cj

)
. The adjacent edges of this new node no longer

participated in the shrinking of this layer. (3) Step (2) was repeated until all edges were
processed. We note that at least 50% of the nodes were always reserved for each pooling.
For a graph with numerous nodes, multiple EdgePools were arranged instantaneously to
reduce the number of layers.

si,j = MLP
(
concat

(
ci, cj, ei,j

))
(4)

sij = max
(
0.5 + softmaxi

(
si,j
)
, 0.5 + softmaxj

(
si,j
))

(5)

We generated the weights for this new graph using Equation (6), where di, j is the geo-
graphic distance between i and j, multiplied by a multiplier for correction. The multiplier
allowed learnable weights and aided in the modeling of the semantic distance between
the nodes based on di, j. We constrained the multiplier within (0.5, 1.5) by the sigmoid
function σ, to obtain more stable weights.

ei,j = di, j
(
0.5 + σ

(
W
(
ai, aj

)))
(6)

3.3.2. Graph Convolution Operator Generation

Based on a given graph, G, we generated a graph convolution operator, θ, using graph
Fourier transform theory [38].

First, we calculated the symmetric normalized Laplace matrix of the graph via Equation (7),
where A and D are the adjacency and degree matrices of the graph, respectively, and I is
the identity matrix corresponding to A.

Lsym = ID−
1
2 AD−

1
2 (7)

Next, eigenvalue decomposition was performed on Lsym; this step is complex, espe-
cially when there are many nodes on the graph. Therefore, the Chebyshev polynomial



Atmosphere 2022, 13, 703 9 of 19

approximation was used to accelerate the solution process [39]. The graph convolution
operator, θ, based on Lsym, was approximated as a superposition of K parts, with the
k-th part extracting relevant information from k-hop neighbors around the target node, as
shown in Equation (8), where λmax is the maximum eigenvalue of Lsym and Tk represents
the k-th term of the first type of recursive Chebyshev polynomial; i.e., Equation (9), where
T0(X) = I, T1(X) = X, and θk is the k-th learnable graph convolution kernel [40]. The
value of K is important; if it is small, the graph convolution operator does not have a good
mapping ability; if it is large, it causes over-smoothing, i.e., the data on the graph converge
rapidly, which severely affects the subsequent process.

θ
(

Lsym
)
=

K−1

∑
k=0

θkTk

(
2Lsym

λmax − I

)
(8)

Tk(X) = 2XTk−1(X)− Tk−2(X) (9)

In summary, we calculated {T0, . . . , TK−1} through G, followed by implementation of
the graph convolution process.

3.3.3. Hierarchical Graph Convolutional Network

We proposed the HGCN, as shown in Figure 4, which is a multi-layered encoder–
predictor–decoder network. HGCN extracts the high-level features from the data to produce
a multi-level description of the data, which is useful for prediction. A feature space
consisted of a set of features used to describe the data. Layer 0 feature space, i.e., the
meteorological features within the dataset, and other feature spaces were latent spaces with
learnable anonymous features. The encoders were responsible for mapping the low-level
feature space to the higher space, whereas the decoders were responsible for performing
the opposite process.
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The components in the HGCN network are as follows. (1) The encoder, E , and
decoder,D, map feature spaces to higher- or lower-level hidden spaces through MLP. Based
on the residual connection [41], we proposed a cross-frame connection. When t > 0 and
l > 0, the encoder uses the form shown in Equation (10), where Yt−1,l represents the output
feature space of the same layer in the previous frame. The cross-frame connection aids in
stabilizing inter-frame and inter-layer information transmission, shortens the transmission
path of the high-level information, and alleviates the gradient explosion problem. (2) The
predictor, G, communicates information between the nodes in the graph and produces
data for the next moment, which are expressed by Equations (11) and (12). Mt,l was
used to adaptively adjust the update magnitude of Ht,l , and M−1,l is an empty matrix.
Tl,k was calculated from Gl , is the element-wise product, and Ul , Wl , θl, k, al , and bl are
learnable matrices. (3) Graph data pooling, P , and graph data de-pooling, P , convert the
data between the graphs in adjacent layers. P copies the corresponding lower-level node
with the largest rainfall as the new node, while P copies the node to every corresponding
lower-level node. (4) The fusion operation, F , was used to integrate the data, as shown in
Equation (13). To avoid learning of constant transformations by the model, we used the
maximum function to achieve F .

Ht,l = El(concat(Yt−1,l , Xt,l)) (10)

Mt,l = σ(Ul Mt−1,l + Wl Ht,l + al) (11)

H′t,l = (1−Mt,l)Ht,l + Mt,ltan h

(
K−1

∑
k=0

θl, kTl, k Ht,l + bl

)
(12)

Y′t,l = F
(

H′t,l , Yt,l+1

)
. (13)

According tohe number of nodes in the S-ECMWF and S-WRF datasets, we designed
the corresponding HGCN structures as shown in Figure 5.
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3.3.4. Loss Function

After obtaining the prediction results of the model, a loss function was used to evaluate
the degree of difference between the predicted values, x, and reference values, y, to guide
model training. Owing to the imbalance in the rainfall values, we implemented a set
of rainfall thresholds, φ = {0.1, 1, 5, 10, 20, 30}, and grouped all data points into seven
categories. The weighted mean absolute error was used as the loss function.

loss =
1
N ∑

i∈Ω

Ω
Ωk
|xi − yi|, (14)

where Ω represents the total number of data points involved in the evaluation and Ωk
represents the number of the k-th category, i.e., within the i-th data point. Categories with
smaller sample sizes had larger proportions of the prediction error.
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4. Experimental Settings and Results
4.1. Experimental Settings
4.1.1. Model Configuration

We implemented the HDGN model on PyTorch [42] 1.6.0 using an NVIDIA Tesla
P100-PCIE-16 GB GPU for experiments on a Windows workstation. After shuffling the
order of the sequence of samples in the S-ECMWF and S-WRF datasets, they were grouped
into three subsets: training, validation, and test sets at a ratio of 6:2:2. For all prediction
tasks, the length of the historical input sequence was 12 frames (spanning 36 h) and the
length of the forecasting results was 2 frames (spanning 6 h). In the training phase, the
model used an Adam optimizer: the initial learning rate was set to 0.0005; early stopping
was configured, which could adaptively adjust the learning rate during the training process
and stop training when the loss could not be reduced further. The batch size was set to
80 or 12, the number of layers was set to 4, and the term of the Chebyshev polynomial,
K, was set to 3. We fixed the parameters of the model for the validation and test phases;
the validation phase fine-tuned the parameters and the test phase output the evaluation
indicators for the forecasting results.

The selection of these hyperparameters was influenced by various aspects. If the
length of the historical sequence was short, it was difficult for the model to obtain sufficient
information, whereas longer sequences did not significantly improve the prediction effect
but increased the time and space cost of the model. The effect of the initial learning rate
was reduced after configuring early stopping. A larger batch size could accelerate model
training; owing to the large scale of the S-WRF dataset, the upper limit of the GPU load,
i.e., 12, was selected. Model performance degraded when K was 2 or 4. The number of
layers could significantly affect the prediction accuracy (see Section 4.2.3 for details).

4.1.2. Evaluation Index

We mainly focused on the classification performance of short-term intensive rainfall
events. Rainfall evaluation indicators were based on the following three categories of
statistical scoring methods: (1) Critical Success Index (CSI), which is a commonly used
indicator to measure the rainfall forecasting results. Its values range from [0, 1]; the higher
the value, the better the result. (2) Equitable Threat Score (ETS), which is used to measure
the degree of improvement in the rainfall forecasting results relative to random forecasting
results under the same configuration. Its values range from [−1/3, 1]; the higher the
value, the better the result. An ETS of 0 indicates that the model’s prediction results are
comparable to random results, whereas ETS ≤ 0 is not acceptable. (3) False Alarm Ratio
(FAR), which is the proportion of misclassified data included in the prediction results. Its
values range from of [0, 1]; the lower the value, the better the result.

Table 3 presents the rainfall classification with 1 and 30 mm as the threshold.

Table 3. Rainfall classification table.

Actual Class Predicted Class

0–1 mm 1–30 mm >30 mm

0–1 mm D B1 B2

1–30 mm C1 A1 B2

>30 mm C2 C2 A2

With 1–30 mm as the first category and >30 mm as the second category, the indicators
for each category were calculated as follows:

CSIk =
Ak

Ak + ∑ Bk + ∑ Ck
, (15)
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ETSk =
Ak − Rk

Ak + ∑ Bk + ∑ Ck − Rk
, (16)

FARk =
∑ Bk

Ak + ∑ Bk
, (17)

where A, B, C, and D represent the number of event hits, empty reports, missed reports,
and number of successful predictions of non-events, respectively, and R represents the
result of the random forecasting model evaluated as follows:

Rk =
(Ak + ∑ Bk)(Ak + ∑ Ck)

Ak + ∑ Bk + ∑ Ck + D
. (18)

We referred to each indicator with a k of 1 as a type 1 indicator and that with a k of
2 as a type 2 indicator. The CSI2 and ETS2 indicators generally had values <0.1 in Fujian;
values >0.1 were considered major breakthroughs. Repeated comparison experiments
revealed that for each deep learning method considered herein, the first four decimal places
of the type 2 indictors remained unchanged, while the subsequent decimal places showed
fluctuations; thus, we retained only the initial four decimal digits to make the results
reasonable. Because of the same reasons, we retained three decimal digits for the type 1
indicators. We consider that a model with only one or two stable decimal digits for type 1
indicators may be unstable or ineffective, and a better one can be trained using our data
because our data corresponding to 1–30 mm of cumulative rainfall are adequate in terms of
scale and diversity.

4.2. Results
4.2.1. Comparison

We implemented several baselines and our proposed method on the S-ECMWF and
S-WRF datasets; Tables 4 and 5 show the results. We adjusted the hyperparameters in the
data for all non-NWP baselines; other configurations were set at the default settings.

The simulation results of the ECMWF and WRF were obtained from the original data;
their related indicators were directly calculated as experimental results for predicting the
first frame. The History Average (HA) uses the average frame in the historical sequence
as the prediction result. The LSTM and DBN are time-sequence prediction methods.
ConvLSTM belongs to the grid spatial–temporal prediction method, whereas ASTGCN
and our HDGN model are non-grid methods. As there is no artificially definable period
of short-term intensive rainfall, we only used the proximity sub-module in the ASTGCN
network to fit the data.

Table 4. Short-term intensive rainfall prediction performance of the baseline and proposed methods
on the S-ECMWF dataset in the future first and second frames.

Methods Predict of First Frame Predict of Second Frame

CSI1 ETS1 FAR1 CSI2 ETS2 FAR2 CSI1 ETS1 FAR1 CSI2 ETS2 FAR2

ECMWF 0.205 0.159 0.722 0.0020 0.0018 0.9937 — — — — — —

HA 0.102 0.086 0.578 0.0000 0.0000 1.0000 0.088 0.067 0.862 0.0000 0.0000 1.0000

LSTM 0.130 0.095 0.830 0.0043 0.0019 0.9963 0.110 0.073 0.867 0.0019 0.0008 0.9968

ConvLSTM 0.173 0.139 0.815 0.0059 0.0031 0.9940 0.163 0.131 0.814 0.0031 0.0016 0.9972

DBN 0.180 0.145 0.791 0.0069 0.0047 0.9923 0.165 0.131 0.805 0.0035 0.0022 0.9968

ASTGCN 0.157 0.074 0.841 0.0114 0.0105 0.9787 0.138 0.052 0.860 0.0051 0.0034 0.9913

HDGN 0.115 0.026 0.885 0.0211 0.0202 0.9576 0.107 0.018 0.892 0.0086 0.0068 0.9790
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Table 5. Short-term intensive rainfall prediction performance of the baseline and proposed methods
on the S-WRF dataset in the future first and second frames.

Methods Predict of First Frame Predict of Second Frame

CSI1 ETS1 FAR1 CSI2 ETS2 FAR2 CSI1 ETS1 FAR1 CSI2 ETS2 FAR2

WRF 0.143 0.076 0.839 0.0047 0.0037 0.9953 — — — — — —

HA 0.174 0.143 0.513 0.0000 0.0000 1.0000 0.088 0.067 0.561 0.0000 0.0000 1.0000

LSTM 0.151 0.135 0.823 0.0057 0.0019 0.9944 0.124 0.110 0.853 0.0025 0.0008 0.9980

ConvLSTM 0.233 0.201 0.691 0.0088 0.0050 0.9851 0.217 0.188 0.722 0.0049 0.0027 0.9959

DBN 0.214 0.179 0.741 0.0090 0.0061 0.9805 0.195 0.164 0.763 0.0042 0.0029 0.9954

ASTGCN 0.146 0.052 0.851 0.0004 0.0004 0.9374 0.128 0.031 0.869 0.0002 0.0001 0.9762

HDGN 0.134 0.037 0.865 0.0343 0.0336 0.9219 0.123 0.025 0.876 0.0140 0.0003 0.9604

Our model achieved better results for short-term intensive rainfall prediction than the
other models, thus reflecting the advantages of the proposed method. The CSI2 and ETS2
of HA are equal to 0, indicating that it could not forecast the short-term intensive rainfall
events. This indicates that they were rare and short in duration; hence, it was necessary to
comprehensively consider the adjacent spatial–temporal information. The prediction effect
of ConvLSTM was better than that of LSTM, indicating that adjacent spatial information
is valuable. DBN had a higher density of network connections than the previous models;
hence, its learning ability was stronger. However, the stronger the modeling capability, the
higher the training time cost of the model.

ASTGCN uses a structure, with a space complexity of O
(

N2), to directly model the
relationship between pairs of nodes, thus achieving a spatial attention mechanism; therefore,
running ASTGCN on a large dataset, such as the S-WRF, was difficult. We employed the
dynamically designed graph convolution operator implemented using the compressed
sparse matrix to model the spatial correlation, which significantly reduced the number of
parameters to O (E). ASTGCN and HDGN showed better prediction for type 2 indicators
owing to the use of graph representation and spatial–temporal modeling methods with a
greater complexity. However, their performance in terms of the first category decreased
with improvements in the second category, indicating that the performance of the model
was limited by the data after partial improvement. In other words, there was a trade-off in
the forecasting accuracy between the different categories. These methods also had more
training time than the other sequence prediction models. The training time for HDGN was
slightly higher than that of ASTGCN because the latter was static in nature, whereas the
former was dynamic. In the testing phase, the forecasting time of each sequence prediction
model was lower than their training time because their parameters were fixed.

We then analyzed the overall results. (1) The S-WRF dataset had a higher spatial
resolution and generally provided more information than S-ECMWF; therefore, HDGN had
a better prediction effect on it. (2) Over time, the performance of all sequence prediction
models decayed. As frame-by-frame prediction models reached the end of the historical
sequence, the last predicted frame was re-inputted, following which the forecasting errors
accumulated over time. Additionally, the decay for type 2 indicators was generally larger
than that for type 1 indictors, implying that predicting short-term intensive rainfall events
was more difficult. (3) The FAR values of all results were unsatisfactory. This was because
short-term intensive rainfall prediction is difficult and reducing FAR2 is complex. However,
the methods adopted in this study were biased to enhance short-term intensive rainfall
forecasting. For example, we selected 30 mm as the threshold of the BDI in the feature
selection, resulting in a corresponding increase in FAR1. An alert analysis method can be
used to reduce FAR2; specifically, all short-term intensive rainfall prediction results can be
input into a downstream module, which will analyze these data and reject misreported
predictions. This module can be implemented using specially designed meteorological
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or deep learning models or by manual analysis. (4) Further inspection revealed that the
classification errors were concentrated at the marginal area within our data. Our observed
rainfall data originated from ground stations in Fujian Province, such that the interpolation
of rainfall for nodes outside Fujian Province was relatively inaccurate. Better results may
be obtained by combining data around Fujian Province.

4.2.2. Reversed Sequence Enhancement

Traditionally, data enhancement increases the amount of data to improve the model
performance. For oversampling, learning rules from a sparse number of >30 mm data
points and generated data similar to actual situations were not easier than the prediction
task owing to the complexity of our data. Moreover, there was a greater probability of data
overfitting. For undersampling, separating the 0–30 mm data was difficult.

Assuming that meteorological thermodynamics is a reversible process, the display of
the reverse process aids in model learning [43]. This is especially the case for the increase
in and attenuation of rainfall, as they are important characteristics that affect short-term
intensive events. The experiments revealed that, after reverse sequence enhancement,
the proportion of each classification was almost invariable; but, the results improved, as
shown in Table 6. This provides another means of improving the forecasting accuracy: data
should be available to input more valuable information into the model, thereby reducing
the difficulty associated with model learning.

Table 6. Data processing to demonstrate the effectiveness of reversed sequence enhancement. The
improvement with the S-ECMWF dataset was more significant than that with the S-WRF dataset. The
symbol ‘—’ indicates that the model did not function owing to excessive number of parameters.

Methods S-ECMWF Predict of First Frame S-WRF Predict of First Frame

CSI1 ETS1 FAR1 CSI2 ETS2 FAR2 CSI1 ETS1 FAR1 CSI2 ETS2 FAR2

ASTGCN 0.157 0.074 0.841 0.0114 0.0105 0.9787 0.146 0.052 0.851 0.0004 0.0004 0.9374

ASTGCN
+ reverse 0.166 0.085 0.830 0.0153 0.0147 0.9714 — — — — — —

HDGN 0.115 0.026 0.885 0.0211 0.0202 0.9576 0.134 0.037 0.865 0.0343 0.0336 0.9219

HDGN
+ reverse 0.123 0.035 0.877 0.0254 0.0252 0.9442 0.152 0.060 0.845 0.0401 0.0395 0.9457

However, the reversed sequence enhancement method doubles the amount of data,
which almost doubles the training time and increases the space cost of the model. Therefore,
there is a trade-off between effectiveness and cost.

4.2.3. Low-Rainfall Sequence Removal

Before training, we removed a portion of the training samples with the least number
of data points characterized by non-zero rainfall in the historical sequence. The results in
Table 7 indicate that, owing to the complexity of the rainfall data, this type of elimination
could not fundamentally change the imbalance in the data; however, it still improved the
prediction performance for short-term intensive rainfall forecasting.

For type 2 indicators, the HDGN model achieved the highest performance when 10%
of the data were removed; moreover, the proportion of the >30 mm data points was the
highest. Above 10%, the negative effect of the simultaneous decrease in the proportion and
volume of the >30 mm data points was observed, which led to underfitting of the model
and a reduced model learning ability. Significant performance degradation occurred when
the removal ratio exceeded 20%.
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Table 7. Ablation experiment investigating the effect of low-rainfall sequence removal on the perfor-
mance of the HDGN model.

Settings Data Proportion S-ECMWF Predict of First Frame

1–30 mm >30 mm CSI1 ETS1 CSI2 ETS2

del 0% 0.1240 0.001399 0.113 0.024 0.0204 0.0196

del 5% 0.1239 0.001398 0.118 0.030 0.0202 0.0195

del 10% 0.1281 0.001544 0.115 0.026 0.0211 0.0202

del 15% 0.1246 0.001511 0.115 0.026 0.0202 0.0194

del 20% 0.1241 0.001495 0.115 0.027 0.0199 0.0191

del 50% 0.1196 0.001423 0.117 0.029 0.0179 0.0173

For type 1 indicators, the correlation between the removal ratio and indicators was
low. Both the proportion and number of the 1–30 mm data points were significantly higher
than those of the >30 mm data points; hence, the effect of removing 10% of the data points
was relatively smaller. However, it exceeded the effect of not removing data points.

4.2.4. Ablation Study of HDGN

We conducted ablation experiments to analyze the optimal means of designing the
HDGN architecture. From Table 8, the use of a greater number of layers yielded enhanced
performance benefits, which aided in the extraction of the correlations between the data.
However, this benefit was marginal and restricted by the complexity of the model. Although
the spatial size of the high-level feature space was smaller, it corresponded to a larger
number of hidden features. The use of a greater number of layers increased the model’s
time and space costs. Therefore, we selected a suitable value that yielded satisfactory
prediction effects at a low cost.

Table 8. Ablation experiments conducted on two datasets to examine the relationship between the
number of layers and prediction effect of the HDGN model.

Settings S-ECMWF Predict of First Frame S-WRF Predict of First Frame

CSI2 ETS2 FAR2 CSI2 ETS2 FAR2

4 layers 0.0211 0.0209 0.9576 0.0343 0.0341 0.9219

3 layers 0.0186 0.0181 0.9631 0.0237 0.0229 0.9390

2 layers 0.0007 0.0000 0.9976 0.0016 0.0011 0.9809

1 layer 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Another issue was the degree of influence of each dynamic building block on the final
result of the HDGN. We compared several schemes under the same premise used for the
other configurations, whose results are shown in Table 9, where the w/o multiplier denotes
the case where the actual distances between the node pairs were used as the weights of the
graphs, while the w/o dynamic graphs denote the case where the dynamic graph genera-
tion process was replaced with the supplied fixed graphs. The experimental results showed
that the dynamic graph construction scheme was effective. The semantic weights slightly
improved the results, whereas removing the entire dynamic graph pooling, including the
semantic weights, resulted in serious performance anomalies. Similar to the HDGN model
with one layer, their CSI2 and ETS2 are smaller than 5 × 10−5. Significant overfitting of the
HDGN model was observed because of the higher decrease in modeling ability than in
model complexity in the case where modules were removed. We argue that, in this case,
the model can be considered as one that does not have a relevant predictive capability.
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Table 9. Influence of the configuration of each dynamic building block on the forecasting results of
the HDGN model.

Settings S-ECMWF Predict of First Frame S-WRF Predict of First Frame

CSI2 ETS2 FAR2 CSI2 ETS2 FAR2

HDGN 0.0211 0.0209 0.9576 0.0343 0.0341 0.9219

w/o multiplier 0.0205 0.0203 0.9573 0.0088 0.0082 0.9647

w/o dynamic graphs 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

5. Conclusions

In this study, we aimed to improve the prediction performance of a short-term inten-
sive rainfall prediction model. To achieve this goal, we described the short-term intensive
rainfall prediction task as a spatial–temporal sequence prediction problem and then pro-
posed a non-grid spatial–temporal sequence prediction model, HDGN, which can optimally
extract the potential correlations between meteorological data and obtain more accurate
prediction results. It consists of three modules: hierarchical graph generation, which is
responsible for dynamically generating graphs for multi-level representation of the data
from the historical sequences; graph convolution operator generation, which generates the
graph convolution operators corresponding to these graphs; and hierarchical graph con-
volution network, which performs hierarchical feature space extraction and fusion based
on the results of the first two modules, followed by frame-by-frame short-term intensive
rainfall prediction. The design of the HDGN draws on relevant experience in the field of
sequence prediction. To further improve the prediction performance, we also proposed two
data enhancement methods for spatial–temporal sequences, namely, reversed sequence
enhancement and low-rainfall sequence removal. They are relatively simple to implement,
and the training effect is optimized by adding or removing training samples strategically.

The proposed method involves interpolation of rainfall, feature selection for NWP,
construction of sequence datasets, data augmentation (optional), training of the HDGN
model, and, finally, prediction using the trained model. Compared with the baselines, which
included several sequence prediction methods based on deep learning, the experimental
results obtained with real-world data from Fujian Province showed that our proposed
method significantly improves the short-term intensive rainfall forecasting performance
beyond that achieved with pure NWP simulations. On the first prediction frame of the
S-ECMWF and S-WRF datasets, CSI2 improved by 9.55 and 6.30 times, and ETS2 improved
by 10.22 and 8.08 times, respectively, compared with those of ECMWF and WRF. This
method also outperforms the graph-based spatial–temporal sequence prediction model
ASTGCN, with improvements of 85.09% and 92.38% in CSI2 and ETS2, respectively, on
the first prediction frame of S-ECMWF. On S-WRF, ASTGCN cannot make predictions
because of the large size of the graph, whereas HDGN can. Additionally, the proposed
reversed sequence enhancement and low-rainfall sequence removal further improved the
performance of the HDGN.

The HDGN has the following advantages: (1) It treats different features equally across
time and space; thus, the data do not require additional processing. (2) The model’s
structure can be adjusted to adapt to different dataset sizes. (3) The prediction speed of the
model is high after training.

However, our proposed method has some disadvantages: (1) The HDGN has diffi-
culties when modeling the meteorological evolution at sub-grid and inter-frame scales,
characterized by poor predictions for margin regions. (2) Additional measures are needed
to further reduce the relatively high FAR of our model. (3) The cost-effectiveness of the
reversed sequence enhancement is low.

Owing to this issue, there is much work needed before achieving an ideal short-term
intensive rainfall prediction model. Future research should focus on the following aspects:
(1) achieve learnable data fusion based on the nature of graphs to avoid errors introduced
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by the interpolation process; and (2) enhance the modeling capability and response to
special regions without losing the generalization ability by combining, for example, the
meteorological physical rules.
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