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Supplementary Materials: 
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In this report, Sections 2 and 3 provide comments on the analysis in Palmer et al., 
2014 [1] and related mathematical concepts, respectively. Key points include the follow-
ing: (1) An analysis of the Lorenz 1963 model (Lorenz, 1963 [2]) by Palmer et al., 2014 [1], 
which did not take the sensitive dependence of initial conditions (SDIC) into considera-
tion, is inaccurate. (2) The newly invented “real butterfly effect” is fundamentally based 
on the findings of Lorenz, 1969 [3] who proposed a closure-based, physically multiscale, 
mathematically linear, and numerically ill-conditioned model. The Lorenz 1969 model is 
not a turbulence model and, therefore, the model’s features should be interpreted with 
caution. As a result, (3) the mechanism of finite predictability associated with the “real 
butterfly effect” is different from that associated with the original butterfly effect (i.e., 
SDIC) within the Lorenz 1963 model. 

2. Comments on the Analysis of Palmer et al. (2014) 
In Section 2 of the Supplemental Materials, we provide illustrations to show that: (1) 

the analysis of the Lorenz 1963 (L63) model [2] by Palmer et al., 2014 [1] is inaccurate (e.g., 
SDIC is not considered), and (2) the newly invented “real butterfly effect” is fundamen-
tally based on the findings of Lorenz,1969 [3] who proposed a closure-based, physically 
multiscale, and mathematically linear model that is ill-conditioned. 

Palmer et al., 2014 [1] introduced the term “the real butterfly effect” based on the 
following feature of Lorenz,1969 [3]: 
“Two states of the system differing initially by a small observational error will evolve into two 
states differing as greatly as randomly chosen states of the system within a finite time interval, 
which cannot be lengthened by reducing the amplitude of the initial error”. 

As a result, the view of Palmer et al., 2014 [1] suggested that the concept of finite 
predictability (in weather) is solely derived from the Lorenz 1969 study but not the Lorenz 
1963 study. Palmer et al., 2014 [1] performed a mathematical analysis for the L63 model, 
which is not accurate, and did not discuss the ill-conditioning and numerical instability, 
presented in the main text, within the Lorenz 1969 model. Below, their analysis of the L63 
model (e.g., in Lists S1 and S2) is examined. To facilitate discussions, we have added labels 
(A) and (B) in List S2 to refer to specific equations. 

 
List S1: Boundedness but no SDIC [1]. 
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In List S1, Palmer et al., 2014 [1] discussed the continuous dependence of solutions 
on initial conditions (CDIC) and solution boundedness within the L63 model. As dis-
cussed in Section 3 and in Shen, 2021 [4], CDIC is one of the major features of smooth 
dynamic systems, and boundedness is one of two features that define a chaotic system. 
However, as illustrated below, List S1 did not take into consideration the sensitive de-
pendence of solutions on initial conditions (SDIC). 

The first equation does not necessarily lead to boundedness in the second equation 
provided in List S1. When the length of a state variable, |𝑋|, is considered, the time evo-
lution of length cannot represent the rapid divergence of initial nearby trajectories at the 
saddle point (i.e., at the origin within the L63 model). Specifically, within the X-Y phase 
space, eastward and westward movement near the saddle point may produce the same 
time evolution of |𝑋|. For example, consider control and parallel runs with two starting 
points at (𝑋, 𝑌, 𝑍) = (2𝜖, 𝜖, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)  and (𝑋, 𝑌, 𝑍) = (−2𝜖, −𝜖, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡),  respectively, 
where 𝜖 is a small number. The (initial) time varying trajectories for the control and par-
allel runs display “rapid” divergence within the L63 model but yield the same డ

డ௧
|𝑋|ଶ for 

the above equation in List S1. In other words, the above equation for డ

డ௧
|𝑋|ଶ only illus-

trates partial features of the L63 model. In fact, the above analysis by Palmer et al., 2014 
[1] may be extended to illustrate the time evolution of the “bounded” “volume”, as com-
pared to a similar analysis from Strogatz, 2015 (pp. 323, [5]), as summarized in Section 3 
for the reader’s convenience. The dependence of finite predictability on the initial condi-
tion is also presented in Section 3. 

 
List S2: An incomplete derivation for Eq. (2.2) in [1]. 

In List S2, the system of three equations in Eq. (A) describes the time evolution of 
perturbations (or the differences between two solutions with an initial difference of ∆𝑋଴). 
This system along with the L63 model, containing “six” time-varying variables 
(𝑥, 𝑦, 𝑧, ∆𝑥, ∆𝑦, ∆𝑧), is similar to (but not the same as) the so-called variational equations 
(e.g., Shen, 2014 [6]). Obtaining a solution to Eq. (A) requires solving a system of six, first-
order ordinary differential equations (ODEs), including Eq. (A), as well as the original 
Lorenz model. As a result, the time varying features of 𝑥, 𝑦, and 𝑧 (e.g., with SDIC) have 
an impact on time varying ∆𝑥, ∆𝑦, and ∆𝑧. 

With an assumption of boundedness, that is valid for the Lorenz model, and addi-
tional effort, Eq. (B) “may” lead to Eq. (2.2) under special conditions (e.g., 𝑟 ≤ 1), as dis-
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cussed in Section 3. Eq. (2.2) suggests that error may grow but grows no faster than expo-
nential growth. However, depending on the choice of 𝑐ଶ, Eq. (2.2) may only reveal the features 
of CDIC and boundedness over a finite time interval for 𝑡 ∈ [0, 𝑇]. Details are provided below. 
From Eq. (B) to Eq. (2.2), the authors implicitly assume that a sufficiently large 𝑐ଶ leads 
to:  

𝑐ଷ(𝑡) ≡
1

|Δ𝑋|

𝜕|Δ𝑋|

𝜕𝑡
≤ 𝑐ଶ (C)

Here, 𝑐ଷ(𝑡) is referred to as the local time varying growth rate. Since the Lorenz model 
has bounded solutions, as well as bounded errors (e.g., Figure 2 of Shen 2019b [7]), 𝑐ଶ can 
be determined based on the maximum of 𝑐ଷ(𝑡). However, Eq. (2.2), with such a choice of 
𝑐ଶ, only indicates boundedness within a finite time interval. (In general, the notation of 
exp(𝑐ଶ𝑇)  with a positive 𝑐ଶ cannot be applied for 𝑇 → ∞ .)  Specifically, although 
∆𝑥, ∆𝑦, and ∆𝑧 within the chaotic Lorenz system may irregularly oscillate with time, they 
are bounded with growth rates equal to or smaller than 𝑐ଶ (= max (𝑐ଷ).  In other words, 
Eq. (2.2.) with a sufficiently large 𝑐ଶ (= 𝑚𝑎𝑥(𝑐ଷ)) cannot reveal information regarding whether 
“errors” irregularly oscillate.  

On the other hand, Eqs. (A-B) and Eq. (2.2) can have non-chaotic solutions, such as 
steady-state solutions (say 𝑟 = 20). For steady-state solutions that decay with time, Eq. 
(2.2), with the choice of a positive 𝑐ଶ that is mathematically valid, cannot properly de-
scribe the time evolution of steady-state solutions. When a (small), negative 𝑐ଶ is properly 
selected, the time interval for the solution in Eq. (2.2) can be extended without a limit (i.e., 
for t ∈ [0, T] and 𝑇 → ∞) due to the finite value of exp(𝑐ଶ 𝑇). As a result, unlimited pre-
dictability can be obtained.  

With the above being said, additional mathematical derivations are needed for revealing 
both the CDIC and SDIC of chaotic orbits (e.g., Figure 2 of Shen, 2019b [7]). Here, we provide 
a very simple illustration using Eq. (2.2). With a choice of 𝑐ଶ = 𝜆 = 0.5 ∗ max (𝑐ଷ) for the 
entire time interval during which both CDIC and SDIC appear, Eq. (2.2) can reveal both 
CDIC (with local time varying growth rates no larger than 𝜆) and SDIC (with local time 
varying growth rates larger than 𝜆) in addition to boundedness. For example, as shown 
in Figure S2, we may consider determining a max (𝑐ଷ) using Eq. (C) over a shorter time 
interval (e.g., 𝜏 ∈ [0, 25] in Figure S2) in order to determine 𝑐ଶ in Eq. (2.2).  

The above approach for determining 𝑐ଶ is based on the features of CDIC (prior to 
the onset of SDIC). However, as show in Figures S6 and S7 (taken from Figure 1 of Slingo 
and Palmer, 2011 [8] and Figure 2 of Nese,1989 [9]), the time interval of CDIC or a predict-
ability horizon displays a dependence on initial values, suggesting the dependence of 
𝑐ଶ on initial conditions.  

Based on Eq. (2.2), with a proper choice of 𝑐ଶ for CDIC within a finite time interval 
for 𝑡 ∈ [0, 𝑇], we can say that improving the accuracy of initial conditions (ICs) may im-
prove accuracy predictions within the time interval (i.e., prior to the onset of SDIC).  

As a brief summary, we reiterate that (1) since the smooth L63 model possesses both 
CDIC and SDIC, a proper choice of 𝑐ଶ in Eq. (2.2) of Palmer et al., 2014 [1] is needed for 
revealing both the CDIC and SDIC, the latter of which displays the rapid divergence of 
initial, nearby trajectories; and (2) the original butterfly effect and the so-called real but-
terfly effect share a common feature of “finite predictability”, derived from the Lorenz 
1963 and Lorenz 1969 models, respectively.  

3. Important Concepts and Terminology in Support of the Analysis in Section 2 
To provide support for the analysis in Section 2 regarding the "real butterfly effect of 

Palmer et al., 2014" [1] and accurate implications, we provide detailed discussions and 
mathematical analyses in order to illustrate the following concepts: 
A. Existence and Uniqueness 
B. An Illustration of a Finite Predictability Horizon  
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C. Continuous Dependence on Initial Conditions (CDIC) 
D. Sensitive Dependence on Initial Conditions (SDIC vs. CDIC) 
E. Volume Contraction and Global Stability with (Energy-like) Lyapunov Functions 
F. The Dependence of Finite Predictability on ICs Within the L63 Model 

Note that related discussions are widely documented in textbooks. To properly 
acknowledge the efforts by textbook authors, below, we directly cite (some of) their dis-
cussions as Lists S3-S12. These concepts are based on additional references (Alligood et 
al., 1996 [10]; Hirsch et al., 2013 [11]; Drazin, 1992 [12]; Strogatz, 2015 [5]). 

3A. Existence and Uniqueness 

. 

List S3: The fundamental local theorem of ODEs [11]. 

Some important notes in List S3 are: (1) the system is smooth with C1 (i.e., F and its 
first partial derivatives with respect to state variable X are continuous); (2) a solution exists 
over a finite interval; and (3) constructing “a sequence of functions” to prove the above 
theorem is required. 

3B. An Illustration of a Finite Predictability Horizon 
Here, we apply a simple nonlinear system in order to illustrate a finite predictability 

horizon and to discuss its dependence on initial conditions. Although we may assume 
that a unique solution can be defined on a maximal time domain, there is no guarantee that 
a solution X(t) can be defined for all time, no matter how “nice” F(X) is (Alligood et al., 1996 [10]). 
An example is given by:  

𝑥ᇱ = 1 + 𝑥ଶ  (1)
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The solution, 𝑥(𝑡) = tan(𝑡 + 𝑐)  is defined over a finite interval −𝑐 −
గ

ଶ
< 𝑡 < −𝑐 +

గ

ଶ
, 

where c is a constant for the initial condition of 𝑥(0) = tan(𝑐). The relationship provides 
an example that: (1) the predictability horizon is finite; the “lead time” of prediction can-
not be extended while the accuracy of solutions may be continuously improved within 
the above time interval; and (2) the length of the time interval for the solution depends on 
the initial condition (i.e., 𝑐). (Note that the system is nonlinear but not chaotic). 

By comparison, when the method (e.g., 𝑥 = 𝑥௖ + Δ𝑥, here, 𝑥௖ is a critical point solu-
tion) that leads to Eq. (A) in List S2 is applied, the above equation yields: 

Δ𝑥̇ = 2Δ𝑥𝑥 + (Δ𝑥)ଶ  (2)

A simple analysis of the equation with an assumption of solution boundedness (e.g., 
bounded 𝑥 and Δ𝑥) cannot help determine the predictability horizon (−𝑐 −

గ

ଶ
< 𝑡 < −𝑐 +

గ

ଶ
) for the solution. 

3C. Continuous Dependence on Initial Conditions (CDIC) 
In addition to solution existence and uniqueness, as listed below, continuous depend-

ence is an important feature. 

 

List S4: Continuous Dependence on Initial Conditions [11]. 

Some important notes from the above excerpt are: (1) two (nearby) trajectories may 
diverge but do not separate faster than exponentially over a finite time interval; and (2) 
CDIC appears in smooth systems with C1. (3) In some textbooks, the above constant “K” 
is further discussed, as listed below, using the concept of the “Lipschitz constant”. 
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List S5: Lipschitz Constant (e.g., [10]). 

 
List S6: CDIC and the Lipschitz Constant (e.g., [10]). 

Several important notes in List S6 that are the same as the above in List S4 include: 
(1) “G” in List S6 is comparable to the above “F” in List S4; (2) “G” has bounded first 
partial derivatives; and (3) two trajectories display CDIC over a finite time interval for 𝑡 ∈
[𝑡଴, 𝑡ଵ]. 

Based on the above, the relationship between 𝑐ଶ of Eq. (2.2) in Palmer al., 2014 [1] and 
the Lipschitz constant "L" is illustrated in Figure S1, suggesting that Eq. (2.2) with a suf-
ficiently large 𝑐ଶ  indicates the boundedness of solutions. However, as discussed in Sec-
tion 2, we reiterate that a proper choice of 𝑐ଶ in Eq. (2.2) of Palmer et al.,2014 [1] is needed for 
revealing both CDIC and SDIC, the latter of which displays the rapid divergence of initial, nearby 
trajectories. 

3D. Sensitive Dependence on Initial Conditions (SDIC, as compared to CDIC) 
As known, there is no universal definition for chaos. Several definitions of chaos were 

documented in a presentation by the lead author (e.g., Shen 2021 [4]). Amongst defini-
tions, as shown in List S7 from page 8 of Lorenz, 1993 (pp. 8, [13]), sensitive dependence 
on ICs is one of the major features for chaos. 

 
List S7: SDIC and Chaos (pp. 8, [13]). 

To improve our understanding for the dependence of predictability on ICs, as well 
as initial errors, it is important to understand differences between the CDIC and SDIC. 
Table S1 briefly summarizes both CDIC and SDIC, and presents major features for the L63 
model. The two terms are defined as follows (details are provided in the Shen, 2017 [14] 
lecture notes): 
 CDIC: solutions through nearby ICs remain close over short time intervals. Mathematically, 

|𝑋(𝑡) − 𝑌(𝑡)| < |𝑋(𝑡 = 𝑡௢) − 𝑌(𝑡 = 𝑡௢)|𝑒௄(௧ି௧೚). 

 SDIC: “The property characterizing an orbit if most other orbits that pass close to it at some point do not 

remain close to it as time advances” (Lorenz, 1993 [13]). Mathematically, given 𝛿, we may find n such that 

|𝑋(𝑡 = 𝑡௡) − 𝑌(𝑡 = 𝑡௡)| > 𝛿 (e.g., Drazin, 1992 [12]). 

Table S1. The definitions of CDIC and SDIC. 

 CDIC SDIC 

Definition 
solutions through nearby ICs remain close 

over short time intervals 

The property for an orbit when most other orbits that pass 
close to it at some point do not remain close to it as time ad-

vances. 
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An example 
the “gradual divergence” or convergence 

of initial nearby trajectories  
“rapid divergence” of initial nearby trajectories   

The lead author gave a virtual, invited talk to Prof. Palmer’s group at Oxford Univer-
sity on 11 October 2021 (Shen, 2021 [4]). Based on these discussions, the lead author feels 
that it may be easier to illustrate differences between the two terms by first quoting dis-
cussions from the textbook by Alligood, Sauer, and Yorke, 1996 [10]. 
(a) On page 103, Alligood et al.,1996 (pp. 103, [10]) presented the following, which suggests finite 

predictability for a chaotic system (e.g., [15]): 
“While sensitive dependence on initial conditions causes unpredictability at large time scales, it 
can provide opportunity at shorter, predictable time scales”. 
(b) On page 281, Alligood et al., 1996 (pp.281, [10]) clarify differences between the continuous and 

sensitive dependence on initial conditions, as follows:  
“… The third concept is referred to as “continuous dependence of solutions on initial conditions”. 
All solutions of sufficiently smooth differential equations exhibit the property of continuous de-
pendence, which is a consequence of continuity of the slope field. Theorems pertaining to existence, 
uniqueness, and continuous dependence are discussed in Section 7.4. 
The concept of continuous dependence should not be confused with “sensitive dependence” on ini-
tial conditions. This latter property describes the behavior of unstable orbits over longer time inter-
vals. Solutions may obey continuous dependence on short time intervals and also exhibit sensitive 
dependence, and diverge from one another on longer time intervals. This is the characteristic of a 
chaotic differential equation”. 

We additionally realized that it may be effective to provide the following excerpt 
from page 325 of Hirsch et al, 2013 [11] to show SDIC within the L63 model: 

 
List S8: A Definition of Chaos: Dynamics of the L63 Model (e.g., [11]). 

Calling a continuously differentiable function a C1 function is traditional. Features 
for the CDIC and SDIC within the L63 model are provided in Figure S2. Control and par-
allel runs were performed using the same model and the same parameters. The only dif-
ference between the two runs is the inclusion of an initial tiny perturbation, 𝜀 = 10ିଵ଴, 
within the parallel run. In Figure S2, two runs initially produced almost the same result 
(for  𝜏 ∈ [0, 25]), as shown with the red curve. This feature is called CDIC. During longer 
time integrations, the appearance of two curves (in red and blue) indicates significant dif-
ferences (i.e., “rapid divergence”) in solutions for the control and parallel runs. Such a 
feature is then called SDIC, due to the initial tiny perturbation, 𝜀 = 10ିଵ଴. As a brief sum-
mary, the L63 model within the chaotic regime (say 𝑟 = 28, 𝜎 = 10, and 𝑏 = 8/3) dis-
plays CDIC within an initial finite time interval and SDIC at a later time. 

As a result of CDIC and SDIC, a finite predictability (i.e., predictability at finite time 
scales; Lighthill, 1986 [15]) can be obtained. On the other hand, determining the exact in-
terval for continuous dependence on initial conditions is challenging. In fact, as a result of 
time varying growth rates, leading to different predictability, such an interval, if found, 
should, as discussed below, display a dependence on the initial conditions. 

Figures S3 and S4 present a “simple illustration” in order to reveal the role of a saddle 
point in producing SDIC. In Figure S3, a control and two runs with initial perturbations, 
𝜀 = 10ିଵ଴ and 𝜀 = −10ିଵ , can produce very different results. In the bottom panels of 
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Figure S4, a parallel run with the smallest initial perturbation (panels (e) and (f)) clearly 
does not produce the best prediction as compared to the other two parallel runs in panels 
(a)-(d). 

3E. Volume Contraction and Global Stability with Lyapunov Functions 
Here, we discuss (1) volume contraction and (2) global stability using equations that 

may be viewed as special kinds of the single, first-order ODE. The corresponding mathe-
matical approaches may help provide an idea of how to derive an improved Eq. (2.2) for 
Palmer al., 2014 [1] in List S2 for revealing the features of various types of solutions (within 
the L63 model). (Current Eq. (2.2) is very limited and cannot reveal the major feature of 
SDIC.). 

List S9 displays a solution of 𝑉 = 𝑉଴𝑒ି(ఙାଵା௕)௧ , indicating that the volume element 
exponentially contracts in time for positive parameters. The flow contracts the volume 
element in some directions, but stretches it along others. As a result, to remain confined 
to a bounded domain, the volume element is folded at the same time. Stretching, squeez-
ing, and folding processes are associated with the SDIC. 

 
List S9: Volume Contraction Within the L63 Model (e.g., [16]). 

Below, we provide a brief introduction to the Lyapunov function, constructed as an 
energy-like function, in order to provide a global approach towards determining the as-
ymptotic behavior of solutions (e.g., Alligood et al., 1996 [10]). The Lyapunov function 
may be viewed as a generalization for a potential energy function. Let 𝐸(𝑋⃗) be a Lya-
punov function and 𝑋⃗∗ be a point such as 𝐸൫𝑋⃗∗൯ = 0. 𝑋⃗ is a vector that consists of all 
state variables, 𝑋⃗ = (𝑋, 𝑌, 𝑍), for the L63 model. A theory of Lyapunov functions is pro-
vided in List S10 (as derived from Strogatz, 2015 [5]). 

 
List S10: A Definition of the Lyapunov Function (e.g., [5]). 
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The above suggests that if we can find an energy-like function that is positive definite where 
its time derivative is non-positive, we can show a global stability for point 𝑋⃗∗. For all X, Y, and Z 
when 𝑟 ≤ 1, we may have the following Lyapunov function for the L63 model (e.g., 
pp.238, [12]), showing global stability (ௗா

ௗ௧
≤ 0) for 𝑟 ≤ 1 (in List S11): 

 
List S11: Existence of the Lyapunov Function and Global Stability Within the L63 Model for 𝑟 ≤ 1. 

By introducing 𝑉 =
ଶா

ఙ
 , Strogatz turned the above equation (for 𝑑𝐸/𝑑𝑡) in List S11 

into the last equation (𝑑𝑉/𝑑𝑡) in List S12, displaying the same global stability for 𝑟 < 1. 
(Note that the conclusion remains true for 𝑟 = 1 in List S12, suggesting the condition of 
𝑟 ≤ 1.) 

 
List S12: Global Stability Within the L63 Model for 𝑟 < 1 [5]. 

In List S12 where 𝑉(𝑥, 𝑦, 𝑧) =
ଵ

ఙ
𝑥ଶ + 𝑦ଶ + 𝑧ଶ represents a family of concentric ellip-

soids, the right hand side of the last equation is negative as long as 𝑟 is less than one. 
Although the above theory of Lyapunov functions seems promising, there is no systematic way to 
construct a Lyapunov function. As a result, the right hand side of Eq. (2.2) may be positive or 
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negative. Thus, additional research is required in order to analyze and refine Eq. (2.2) of Palmer et 
al., 2014 [1]. 

3F. The Dependence of Finite Predictability on ICs Within the L63 Model 
Chaotic solutions with one or more positive global Lyapunov exponents possess 

time-varying local Lyapunov exponents (e.g., Figure S5) or time varying local growth 
rates. As shown in Figure S6 (as derived from Slingo and Palmer, 2011 [8]), time varying 
growth rates, indeed, indicate the dependence of predictability on “location” within the 
phase space. In fact, as shown in Figure S7, such a dependence of predictability was pre-
viously documented in Nese, 1989 [9]. In summary, the chaotic L63 model displays the depend-
ence of finite predictability on ICs. 

 
Figure S1. A relationship between 𝑐ଶ of Eq. (2.2) of Palmer et al, 2014 [1] and the Lipschitz constant 
"𝐿” (e.g., Alligood et al., 1996 [10]). Nearby solutions can diverge no faster than an exponential rate 
determined by the Lipschitz constant of the system (in blue). A sufficiently large 𝑐ଶ leads to growth 
rates (in red) larger than the exponential rate determined by the Lipschitz constant (in blue).  Eq. 
(2.2), with such a choice of 𝑐ଶ, indicates the boundedness of solutions with CDIC and SDIC. See 
Figure 7.13 of Alligood et al, 1996 [10] for details. 

 
Figure S2. An illustration of continuous and sensitive dependence on initial conditions (CDIC and SDIC). 
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Figure S3. Numerical experiments for revealing the role of the saddle point in producing SDIC. 
Three runs with ICs of (𝜀, 0, 0) apply 𝜀 = 0,  10ିଵ଴, 𝑎𝑛𝑑 −10ିଵ଴, respectively. 

 
Figure S4. Experiments with various tiny perturbations for revealing the continuous and sensitive 
dependence of initial conditions. Left panels compare the control run (in blue) with one of the par-
allel runs that contain an initial tiny perturbation of 𝜀 = 10ିଵ଴, 10ିଵଶ, and 10ିଵହ , respectively. 
Right panels display the differences of the results from the control and one of the parallel runs. In 
the bottom panel with the smallest tiny perturbation, rapid divergence of the trajectories for the 
control and parallel runs makes the earliest appearance. 
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Figure S5. Local Lyapunov exponents that change with time (Figure 1 of Eckhardt and Yao, 1993 
[17]). 

 
Figure S6. “Examples of finite-time error growth on the Lorenz attractor for three probabilistic pre-
dictions starting from different points on the attractor. (a) High predictability and therefore a high 
level of confidence in the transition to a different ‘weather’ regime. (b) A high level of predictability 
in the near term but then increasing uncertainty later in the forecast with a modest probability of a 
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transition to a different ‘weather’ regime. (c) A forecast starting near the transition point between 
regimes is highly uncertain.” (Figure 1 of Slingo and Palmer, 2011 [8]). 

 
Figure S7. “Qualitative description of local predictability on the Lorenz attractor. The abbreviations 
VP, P, UP, and VUP denote very predictable, predictable, unpredictable, and very unpredictable” 
(Figure 7 of Nese, 1989 [9]). Note that Figure 2 of Nese, 1989 [9] discussed the temporal variation of 
predictability. 
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