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Abstract

As Supplemental Materials, the following two sections are provided: Sec-

tion (A) A Simple Illustration of Ill-conditioning and Section (B) An Illus-

tration of a Stiff Ordinary Differential Equation.
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Section A: A Simple Illustration of Ill-conditioning

To illustrate ill-conditioning, we revise the example from Kreyszig (2011)

as follows:

0.9999x− 1.0001y = 0, (A1)

x− y = 0. (A2)

The above system can be written as:

AU = 0. (A3)

Here, a column vector U contains two components, x and y. A matrix

A consists of the coefficients of variables x and y. A condition number

κ(A) = 20, 001 suggests that the system is ill-conditioned. The system con-

tains a unique solution of (0, 0), similar to the trivial critical point in Eq.

(4). However, when a tiny perturbation (ε) is introduced, as follows:

0.9999x− 1.0001y = 0, (A4)

x− y = ε, (A5)

the “perturbed’ system produces a solution of (x, y) = (5000.5ε, 4999.5ε).

When ε = 10−4, the solution is shifted to (0.50005, 0.49995). This indi-

cates numerical sensitivities, a sensitive dependence of the solution on tiny

perturbations in the system.

Section B: An Illustration of a Stiff ODE

Here, we discuss the stiffness of ODEs. The simplest stiff ODE can be

written as follows (Boyce and Diprima 2012):

dX

dτ
= λX, (B1)
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where λ < 0 and |λ| is large. The solution eλτ decreases with time. However,

it is easy to obtain numerical instability because a truncation error of a

pth-order numerical scheme is proportional to the (p + 1)th derivatives of

the solutions. Using λ = −300 and the Euler method (with p = 1) as an

example, the local truncation error is proportional to 1
2
∆τ 2 d

2X
dτ2
∼ 1

2
λ2∆τ 2X,

indicating large errors on the order of λ2 when τ is small (i.e., X is not very

small). As long as the magnitude of λ is large, very small step sizes are

required to obtain stable numerical solutions.

Within a system of ODEs, stiffness is defined as the magnitude of the ratio

between the largest and smallest eigenvalues (i.e., the condition number).
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