Crop Yield, Nitrogen Recovery, and Soil Mineral Nitrogen Accumulation in Extremely Arid Oasis Cropland under Long-Term Fertilization Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Long-Term Experiment
- N: 240 kg N ha−1 yr−1 as urea.
- NP: 240 kg N ha−1 yr−1 as urea and 60.3 kg P ha−1 yr−1 as calcium superphosphate
- NK: 240 kg N ha−1 yr−1 as urea and 48.1 kg K ha−1 yr−1 as potassium sulfate.
- NPK: urea, calcium superphosphate, and potassium sulfate at 240 kg N, 60.3 kg P, and 48.1 kg K ha−1 yr−1.
- NPKM: 168 kg N ha−1 yr−1 as urea, 20.1 kg P ha−1 yr−1 as calcium superphosphate, and 16.3 kg K ha−1 yr−1 as potassium sulfate as above and an additional application of farmyard manure (30 t ha−1) containing 2.9 t C ha−1 yr−1 and 72 kg organic N ha−1 yr−1.
- NPKM+: 216 kg N ha−1 yr−1 as urea, 30.5 kg P ha−1 yr−1 as calcium superphosphate, and 24.7 kg K ha−1 yr−1 as potassium sulfate and an additional application of farmyard manure (60 t ha−1) that contained 5.9 t C ha−1 yr−1 and 144 kg organic N ha−1 yr−1.
- NPKS: 197 kg N ha−1 yr−1 as urea, 51.1 kg P ha−1 yr−1 as calcium superphosphate, and 42.3 kg K ha−1 yr−1 as potassium sulfate as above and the straw return (4.5–7 t ha−1) containing on average 1.5 t C ha−1 yr−1 and 43 kg organic N ha−1 yr−1).
- CK: without any fertilization.
2.3. 15N-Labeled Urea Experiment
2.4. Other Ancillary Measurements
2.5. Statistical Analysis
3. Results
3.1. Crop Yields, CV, ISY, and NHI of Wheat and Maize
3.2. Residual Mineral N in the Soil Profile under Different Fertilization Treatments
3.3. N Recovery, Residual N, and Other Losses in Winter Wheat and Summer Maize Seasons
4. Discussion
4.1. Fertilization and Crop Yield
4.2. Nmin Distribution in the Soil Profile over a 24-Year Nutrient Management Period
4.3. Fertilizer N Recovery and Loss
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srinivasarao, C.; Kundu, S.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Balaguravaiah, G.; Vijayasankarbabu, M.; Vittal, K.P.R.; Reddy, S.; Rupendra Manideep, V. Long-term effects of fertilization and manuring on groundnut yield and nutrient balance of alfisols under rainfed farming in india. Nutr. Cycl. Agroecosyst. 2013, 96, 29–46. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Mishra, U.; Jagadamma, S. Reducing nitrous oxide emissions and optimizing nitrogen-use efficiency in dryland crop rotations with different nitrogen rates. Nutr. Cycl. Agroecosyst. 2020, 116, 381–395. [Google Scholar] [CrossRef]
- Jiang, C.M.; Yu, W.T.; Ma, Q.; Xu, Y.G.; Zou, H. Alleviating global warming potential by soil carbon sequestration: A multi-level straw incorporation experiment from a maize cropping system in northeast china. Soil Tillage Res. 2017, 170, 77–84. [Google Scholar] [CrossRef]
- Yang, B.; Xiong, Z.; Wang, J.; Xu, X.; Huang, Q.; Shen, Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice–wheat annual rotation systems in china: A 3-year field experiment. Ecol. Eng. 2015, 81, 289–297. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-TonThat, T.; Liebig, M.A.; Wang, J. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization. J. Environ. Qual. 2014, 43, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Bhattacharyya, R.; Prakash, V.; Gupta, H.S.; Pathak, H.; Ladha, J.K. Long-term yield trend and sustainability of rainfed soybean–wheat system through farmyard manure application in a sandy loam soil of the indian himalayas. Biol. Fertil. Soils 2006, 43, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Yin, X.; Dorich, C.; Olave, R.; Wang, X.; Kou, C.; Song, X. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of china: A 3-year field measurement from long-term fertilizer experiments. Soil Tillage Res. 2021, 212, 105053. [Google Scholar] [CrossRef]
- Voss, M.; Hietanen, S. Biogeochemistry the depths of nitrogen cycling. Nature 2013, 493, 616–618. [Google Scholar] [CrossRef]
- Liu, X.J.; Duan, L.; Mo, J.M.; Du, E.Z.; Shen, J.L.; Lu, X.K.; Zhang, Y.; Zhou, X.B.; He, C.N.; Zhang, F.S. Nitrogen deposition and its ecological impact in china: An overview. Environ. Pollut. 2011, 159, 2251–2264. [Google Scholar] [CrossRef]
- Nosengo, N. Fertilized to death. Nature 2003, 425, 894–895. [Google Scholar] [CrossRef]
- Luo, X.S.; Wen, X.; Liu, X.J. An evaluation of atmospheric nr pollution and deposition in north china after the beijing olympics. Atmos. Environ. 2014, 74, 209–216. [Google Scholar] [CrossRef]
- Lv, J.; Liu, H.; Wang, X.; Li, K.; Tian, C.; Liu, X. Highly arid oasis yield, soil mineral n accumulation and n balance in a wheat-cotton rotation with drip irrigation and mulching film management. PLoS ONE 2016, 11, e0165404. [Google Scholar] [CrossRef] [Green Version]
- Li, K.H.; Liu, X.J.; Song, W.; Chang, Y.H.; Hu, Y.K.; Tian, C.Y. Atmospheric nitrogen deposition at two sites in an arid environment of central asia. PLoS ONE 2013, 8, e67018. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.S.; Lu, S.H.; Jiang, R.F.; Liu, X.J.; Zeng, X.Z.; Goulding, K.W.T.; Zhang, F.S. Nitrogen input, n-15 balance and mineral n dynamics in a rice-wheat rotation in southwest china. Nutr. Cycl. Agroecosyst. 2007, 79, 255–265. [Google Scholar] [CrossRef]
- Bah, H.; Ren, X.; Wang, Y.; Tang, J.; Zhu, B. Characterizing greenhouse gas emissions and global warming potential of wheat-maize cropping systems in response to organic amendments in eutric regosols, China. Atmosphere 2020, 11, 614. [Google Scholar] [CrossRef]
- Oladipo, D.G.; Wei, K.; Hu, L.; Medaiyese, A.; Bah, H.; Gbadegesin, L.A.; Zhu, B. Short-term assessment of nitrous oxide and methane emissions on a crop yield basis in response to different organic amendment types in sichuan basin. Atmosphere 2021, 12, 1104. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, Y.; Qian, C.; Wang, J.; Zhang, X. Soil acidification as an additional driver to organic carbon accumulation in major chinese croplands. Geoderma 2020, 366, 114234. [Google Scholar] [CrossRef]
- Hao, T.; Liu, X.; Zhu, Q.; Zeng, M.; Chen, X.; Yang, L.; Shen, J.; Shi, X.; Zhang, F.; de Vries, W. Quantifying drivers of soil acidification in three chinese cropping systems. Soil Tillage Res. 2022, 215, 105230. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Sun, Y.; Yan, J.; Zhao, Y.; Chen, J. Soil acidification and factors controlling topsoil ph shift of cropland in central china from 2008 to 2018. Geoderma 2022, 408, 115586. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.; Zhou, B.; Shi, J.; Wang, Q. Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern xinjiang. Agric. Water Manag. 2021, 245, 106651. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, X.; Zhao, D.; Feng, T.; Zhou, J.; Sun, T.; Wang, J.; Wang, C. Seasonal variation and exposure risk assessment of pesticide residues in vegetables from xinjiang uygur autonomous region of china during 2010–2014. J. Food Compos. Anal. 2017, 58, 1–9. [Google Scholar] [CrossRef]
- Lyu, J.; Liu, H.; Wang, X.; Olave, R.; Tian, C.; Liu, X. Crop yields and soil organic carbon dynamics in a long-term fertilization experiment in an extremely arid region of northern xinjiang, china. J. Arid Land 2017, 9, 345–354. [Google Scholar] [CrossRef]
- Lv, J.; Liu, X.; Liu, H.; Wang, X.; Li, K.; Tian, C.; Christie, P. Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutr. Cycl. Agroecosyst. 2014, 98, 15–26. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Tenuta, M.; Gui, D.; Zeng, F. Relationship between soil profile accumulation and surface emission of N2O: Effects of soil moisture and fertilizer nitrogen. Biol. Fertil. Soils 2019, 55, 97–107. [Google Scholar] [CrossRef]
- Andruschkewitsch, R.; Koch, H.-J.; Ludwig, B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three german sites. Geoderma 2014, 217–218, 57–64. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Pan, G.; Wang, G.; Liu, X.; Zhang, X.; Li, L.; Bian, R.; Cheng, K.; Zheng, J. A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Appl. Soil Ecol. 2017, 111, 94–104. [Google Scholar] [CrossRef]
- van der Bom, F.; Magid, J.; Jensen, L.S. Long-term fertilisation strategies and form affect nutrient budgets and soil test values, soil carbon retention and crop yield resilience. Plant Soil 2018, 434, 47–64. [Google Scholar] [CrossRef]
- Cai, Z.C.; Qin, S.W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the huang-huai-hai plain of china. Geoderma 2006, 136, 708–715. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Goddard, T.; Puurveen, D. Long-term tillage, straw management and n fertilization effects on quantity and quality of organic c and n in a black chernozem soil. Nutr. Cycl. Agroecosyst. 2011, 90, 227–241. [Google Scholar] [CrossRef]
- Li, X.; Wen, Q.; Zhang, S.; Li, N.; Yang, J.; Romanyà, J.; Han, X. Long-term changes in organic and inorganic phosphorus compounds as affected by long-term synthetic fertilisers and pig manure in arable soils. Plant Soil 2022, 472, 239–255. [Google Scholar] [CrossRef]
- Vuaille, J.; Gravert, T.K.O.; Magid, J.; Hansen, M.; Cedergreen, N. Long-term fertilization with urban and animal wastes enhances soil quality but introduces pharmaceuticals and personal care products. Agron. Sustain. Dev. 2021, 42, 1. [Google Scholar] [CrossRef]
- Guo, J.; Wang, B.; Wang, G.; Myo, S.T.Z.; Cao, F. Effects of three cropland afforestation practices on the vertical distribution of soil organic carbon pools and nutrients in eastern china. Glob. Ecol. Conserv. 2020, 22, e00913. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, X.; Liusui, Y.; Han, C.; Zhao, C.; Liu, H. Variation of soil aggregation and intra-aggregate carbon by long-term fertilization with aggregate formation in a grey desert soil. Catena 2017, 149, 437–445. [Google Scholar] [CrossRef]
- Congreves, K.A.; Hooker, D.C.; Hayes, A.; Verhallen, E.A.; Van Eerd, L.L. Interaction of long-term nitrogen fertilizer application, crop rotation, and tillage system on soil carbon and nitrogen dynamics. Plant Soil 2016, 410, 113–127. [Google Scholar] [CrossRef]
- Andruschkewitsch, R.; Geisseler, D.; Koch, H.J.; Ludwig, B. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma 2013, 192, 368–377. [Google Scholar] [CrossRef]
- Yi, B.; Zhang, Q.; Gu, C.; Li, J.; Abbas, T.; Di, H. Effects of different fertilization regimes on nitrogen and phosphorus losses by surface runoff and bacterial community in a vegetable soil. J. Soils Sediments 2018, 18, 3186–3196. [Google Scholar] [CrossRef]
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Glendining, M.; Smith, P. Simulating soil carbon sequestration from long term fertilizer and manure additions under continuous wheat using the daily daycent model. Nutr. Cycl. Agroecosyst. 2017, 109, 291–302. [Google Scholar] [CrossRef] [Green Version]
Soil Layer | Organic Matter | Total N | Total P | Total K | Available P | Available K | pH | CaCO3 |
---|---|---|---|---|---|---|---|---|
(cm) | (g kg−1) | (g kg−1) | (g kg−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | (H2O) | (g kg−1) |
0–2 | 17.4 | 1.03 | 0.36 | 18.10 | 11 | 495 | 7.87 | 65.5 |
2–16 | 16.7 | 1.00 | 0.35 | 18.18 | 9 | 505 | 8.03 | 64.2 |
16–31 | 17 | 1.03 | 0.35 | 17.85 | 7 | 383 | 8.13 | 99.4 |
31–43 | 12.3 | 0.77 | 0.30 | 18.35 | 1 | 335 | 7.92 | 93.0 |
43–68 | 9.33 | 0.55 | 0.28 | 18.43 | 2 | 243 | 8.07 | 77.6 |
68–90 | 6.9 | 0.35 | 0.16 | 17.93 | 1 | 73 | 8.22 | 27.6 |
90–110 | 6.46 | 0.36 | 0.25 | 17.19 | 1 | 73 | 8.39 | 62.2 |
N Fertilizer 1 | P Fertilizer 2 | K Fertilizer | |||
---|---|---|---|---|---|
Treatment | Basal | Topdressing | Total | Total | Total |
kg N ha−1 | kg N ha−1 | Kg ha−1 | kg P2O5 ha−1 | kg K2O ha−1 | |
CK | 0 | 0 | 0 | 0 | 0 |
N | 144 | 96 | 240 | 0 | 0 |
NK | 144 | 96 | 240 | 58.5 | |
NP | 144 | 96 | 240 | 138 | |
NPK | 144 | 96 | 240 | 138 | 58.5 |
NPKS | 163 | 77 | 240 | 138 | 58.5 |
NPKM 3 | 173 | 67 | 240 | 138 | 58.5 |
NPKM+ | 274 | 86 | 360 | 184 | 78 |
Spring Wheat 1 | Winter Wheat | Maize | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield (t ha−1) | CV (%) | ISY (%) | NHI (%) | Yield (t ha−1) | CV (%) | ISY (%) | NHI (%) | Yield (t ha−1) | CV (%) | ISY (%) | NHI (%) | |
CK | 1.1 (0.6) c 2 | 51.8 a | 28.8 e | 76.3 a | 1.2 (0.5) c | 43.2 a | 31.5 f | 81.4 b | 4.5 (1.5) c | 23.8 c | 43.4 d | 61.8 bc |
N | 2.1 (0.4) b | 20.9 e | 60.2 a | 76.9 a | 2.3 (0.6) b | 25.8 cd | 49.0 c | 81.0 b | 6.5 (1.3) b | 35.5 b | 58.9 c | 60.9 c |
NK | 2.0 (0.4) b | 17.6 e | 67.8 a | 72.8 b | 2.4 (0.7) b | 27.1 c | 47.5 cd | 82.4 a | 6.3 (1.4) b | 24.0 c | 61.2 bc | 66.8 a |
NP | 3.8 (1.2) a | 32.6 d | 45.5 b | 70.0 b | 5.2 (1.0) a | 23.8 d | 51.5 c | 79.9 bc | 7.6 (1.7) ab | 20.4 d | 64.9 b | 63.3 b |
NPK | 3.6 (1.1) a | 33.8 d | 44.5 b | 70.3 b | 5.3 (1.3) a | 24.0 d | 51.1 c | 80.6 b | 7.5 (2.0) ab | 25.8 c | 60.3 c | 58.7 d |
NPKS | 3.7 (1.6) a | 42.9 b | 35.2 d | 69.2 bc | 4.7 (1.7) a | 35.5 b | 39.6 e | 80.8 b | 8.0 (1.4) a | 19.2 d | 69.1 a | 61.7 bc |
NPKM | 4.2 (1.6) a | 37.2 c | 41.3 c | 78.8 a | 5.7 (1.2) a | 20.4 e | 56.8 b | 82.7 a | 8.2 (2.0) a | 27.1 c | 63.6 b | 65.8 a |
NPKM+ | 3.9 (1.4) a | 35.0 cd | 43.4 b | 68.5 c | 6.2 (1.2) a | 19.2 e | 61.5 a | 79.5 c | 8.2 (1.7) a | 43.2 a | 68.0 a | 59.0 d |
Treatment | 15N Applied | Crop Uptake | Soil Residual | Unaccounted for | ||||
---|---|---|---|---|---|---|---|---|
kg ha−1 | kg ha−1 | % | kg ha−1 | % | kg ha−1 | % | ||
Winter wheat | N | 96 1 | 8.7 ± 1.1 2 | 9.0 f | 60.2 ± 5 | 62.7 a | 29.2 ± 3 | 30.4 a |
NK | 96 | 12.8 ± 2.0 | 13.3 e | 53.6 ± 1.4 | 55.8 b | 31.6 ± 1.7 | 32.9 a | |
NP | 96 | 38.9 ± 4.8 | 40.5 c | 33.4 ± 2.2 | 34.8 e | 25.7 ± 3.5 | 26.8 bc | |
NPK | 96 | 44.5 ± 3.3 | 46.4 ab | 26.1 ± 3.4 | 27.2 f | 27.4 ± 3.3 | 28.5 b | |
NPKS | 86.4 | 35.9 ± 1.7 | 41.6 c | 26.8 ± 0.8 | 31.0 ef | 25.3 ± 1.3 | 29.3 ab | |
NPKM | 67 | 33.1 ± 1.6 | 49.4 a | 31.3 ± 4.1 | 46.8 c | 3.3 ± 2.6 | 5.0 d | |
NPKM+ | 86 | 26.2 ± 2.4 | 30.0 d | 36.6 ± 1.9 | 41.9 cd | 24.5 ± 2.2 | 28.1 b | |
Maize | N | 240 | / | / | / | / | / | / |
NK | 240 | / | / | / | / | / | / | |
NP | 240 | / | / | / | / | / | / | |
NPK | 240 | 67.8 ± 2.1 | 28.2 b | 99.9 ± 3.2 | 41.6 ab | 72.3 ± 2.7 | 30.1 c | |
NPKS | 216 | 54.7 ± 2.5 | 25.3 c | 85.8 ± 2.4 | 39.7 b | 75.6 ± 2.9 | 35 b | |
NPKM | 168 | 34.3 ± 2.2 | 32.2 a | 73.1 ± 2.3 | 43.7 a | 60.1 ± 3.0 | 35.8 b | |
NPKM+ | 216 | 22.6 ± 1.7 | 10.3 d | 58.4 ± 2.2 | 26.7 c | 137 ± 4.6 | 62.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, X.; Kou, C.; Lv, J.; Gao, J. Crop Yield, Nitrogen Recovery, and Soil Mineral Nitrogen Accumulation in Extremely Arid Oasis Cropland under Long-Term Fertilization Management. Atmosphere 2022, 13, 754. https://doi.org/10.3390/atmos13050754
Li S, Wang X, Kou C, Lv J, Gao J. Crop Yield, Nitrogen Recovery, and Soil Mineral Nitrogen Accumulation in Extremely Arid Oasis Cropland under Long-Term Fertilization Management. Atmosphere. 2022; 13(5):754. https://doi.org/10.3390/atmos13050754
Chicago/Turabian StyleLi, Shimin, Xihe Wang, Changlin Kou, Jinling Lv, and Jianhua Gao. 2022. "Crop Yield, Nitrogen Recovery, and Soil Mineral Nitrogen Accumulation in Extremely Arid Oasis Cropland under Long-Term Fertilization Management" Atmosphere 13, no. 5: 754. https://doi.org/10.3390/atmos13050754
APA StyleLi, S., Wang, X., Kou, C., Lv, J., & Gao, J. (2022). Crop Yield, Nitrogen Recovery, and Soil Mineral Nitrogen Accumulation in Extremely Arid Oasis Cropland under Long-Term Fertilization Management. Atmosphere, 13(5), 754. https://doi.org/10.3390/atmos13050754