Intra-Seasonal Variations and Frequency of Major Sudden Stratospheric Warmings for Northern Winter in Multi-System Seasonal Hindcast Data
Abstract
:1. Introduction
2. Data and Analyses
2.1. Data
- Zonal mean zonal wind at 60° N, 10 hPa. This measures the strength and flow direction of the stratospheric polar vortex. The long-term mean, i.e., over the 24 seasons, of the DJF mean zonal wind is used as the mean vortex strength (VS). The daily zonal wind data are also used to identify MSSWs.
- Poleward heat flux of waves 1–3 averaged over 45–75° N, 100 hPa. This represents planetary wave activity entering the extratropical stratosphere, since it is proportional to the vertical component of the Eliassen-Palm flux for the quasi-geostrophic scaling [4].
- GPH at 10 and 500 hPa. These are used for large-scale horizontal circulation patterns for the stratosphere and troposphere, respectively.
- The NINO3.4 index is used in the DJF means for an index of ENSO conditions. The HC SST data are spatially averaged over the NINO3.4 region (5° S–5° N, 170–120° W).
- Zonal mean zonal wind at Equator, 50 hPa is also used in the DJF means for an index of QBO conditions.
2.2. Analyses
3. Results
3.1. Climatological Features
3.2. Teleconnection
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Matsuno, T. Vertical Propagation of Stationary Planetary Waves in the Winter Northern Hemisphere. J. Atmos. Sci. 1970, 27, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, T. A Dynamical Model of the Stratospheric Sudden Warming. J. Atmos. Sci. 1971, 28, 1479–1494. [Google Scholar] [CrossRef]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric Harbingers of Anomalous Weather Regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W. Upward Wave Activity Flux as a Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather Regimes. J. Clim. 2004, 17, 3548–3554. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric Influence on Tropospheric Jet Streams, Storm Tracks and Surface Weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Song, Y.; Robinson, W.A. Dynamical Mechanisms for Stratospheric Influences on the Troposphere. J. Atmos. Sci. 2004, 61, 1711–1725. [Google Scholar] [CrossRef]
- Hitchcock, P.; Simpson, I.R. The Downward Influence of Stratospheric Sudden Warmings. J. Atmos. Sci. 2014, 71, 3856–3876. [Google Scholar] [CrossRef]
- Ogawa, F.; Omrani, N.E.; Nishii, K.; Nakamura, H.; Keenlyside, N. Ozone-Induced Climate Change Propped up by the Southern Hemisphere Oceanic Front. Geophys. Res. Lett. 2015, 42, 10056–10063. [Google Scholar] [CrossRef] [Green Version]
- Kunz, T.; Greatbatch, R.J. On the Northern Annular Mode Surface Signal Associated with Stratospheric Variability. J. Atmos. Sci. 2013, 70, 2103–2118. [Google Scholar] [CrossRef] [Green Version]
- Wittman, M.A.H.; Polvani, L.M.; Scott, R.K.; Charlton, A.J. Stratospheric Influence on Baroclinic Lifecylces and Its Connection to the Arctic Oscillation. Geophys. Res. Lett. 2004, 31, L16113. [Google Scholar] [CrossRef] [Green Version]
- Lubis, S.W.; Huang, C.S.Y.; Nakamura, N.; Jucker, M. Role of Finite-Amplitude Rossby Waves and Nonconservative Processes in Downward Migration of Extratropical Flow Anomalies. J. Atmos. Sci. 2018, 75, 1385–1401. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A Sudden Stratospheric Warming Compendium. Earth Syst. Sci. Data 2017, 9, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Sigmond, M.; Scinocca, J.; Kharin, V.; Shepherd, T. Enhanced Seasonal Forecast Skill Following Stratospheric Sudden Warmings. Nat. Geosci. 2013, 6, 98–102. [Google Scholar] [CrossRef]
- Tripathi, O.P.; Charlton-Perez, A.; Sigmond, M.; Vitart, F. Enhanced Long-Range Forecast Skill in Boreal Winter Following Stratospheric Strong Vortex Conditions. Environ. Res. Lett. 2015, 10, 104007. [Google Scholar] [CrossRef] [Green Version]
- Domeisen, D.I.V.; Butler, A.H.; Fröhlich, K.; Bittner, M.; Müller, W.A.; Baehr, J. Seasonal Predictability over Europe Arising from El Niño and Stratospheric Variability in the MPI-ESM Seasonal Prediction System. J. Clim. 2015, 28, 256–271. [Google Scholar] [CrossRef] [Green Version]
- Scaife, A.A.; Karpechko, A.Y.; Baldwin, M.P.; Brookshaw, A.; Butler, A.H.; Eade, R.; Gordon, M.; Maclachlan, C.; Martin, N.; Dunstone, N.; et al. Seasonal Winter Forecasts and the Stratosphere. Atmos. Sci. Lett. 2016, 17, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Mukougawa, H.; Hirooka, T.; Kuroda, Y. Influence of Stratospheric Circulation on the Predictability of the Tropospheric Northern Annular Mode. Geophys. Res. Lett. 2009, 36, L08814. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Garfinkel, C.I. CMIP5/6 Models Project Little Change in the Statistical Characteristics of Sudden Stratospheric Warmings in the 21st Century. Environ. Res. Lett. 2021, 16, 034024. [Google Scholar] [CrossRef]
- Anstey, J.A.; Simpson, I.R.; Richter, J.H.; Naoe, H.; Taguchi, M.; Serva, F.; Gray, L.J.; Butchart, N.; Hamilton, K.; Osprey, S.; et al. Teleconnections of the Quasi-Biennial Oscillation in a Multi-Model Ensemble of QBO-Resolving Models. Q. J. R. Meteorol. Soc. 2021, 148, 1568–1592. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H.; Charlton-Perez, A.J.; Ayarzagüena, B.; Baldwin, M.P.; Dunn-Sigouin, E.; Furtado, J.C.; Garfinkel, C.I.; Hitchcock, P.; Karpechko, A.Y.; et al. The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere. J. Geophys. Res. Atmos. 2020, 125, e2019JD030920. [Google Scholar] [CrossRef]
- Wu, Z.; Reichler, T. Variations in the Frequency of Stratospheric Sudden Warmings in CMIP5 and CMIP6 and Possible Causes. J. Clim. 2020, 33, 10305–10320. [Google Scholar] [CrossRef]
- Ayarzagüena, B.; Charlton-Perez, A.J.; Butler, A.H.; Hitchcock, P.; Simpson, I.R.; Polvani, L.M.; Butchart, N.; Gerber, E.P.; Gray, L.; Hassler, B.; et al. Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere-Troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6 Models. J. Geophys. Res. Atmos. 2020, 125, e2019JD032345. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Baldwin, M.P.; Birner, T.; Black, R.X.; Butler, A.H.; Calvo, N.; Davis, N.A.; Gerber, E.P.; Gillett, N.; Hardiman, S.; et al. On the Lack of Stratospheric Dynamical Variability in Low-Top Versions of the CMIP5 Models. J. Geophys. Res. Atmos. 2013, 118, 2494–2505. [Google Scholar] [CrossRef]
- Seviour, W.J.M.; Gray, L.J.; Mitchell, D.M. Stratospheric Polar Vortex Splits and Displacements in the High-Top CMIP5 Climate Models. J. Geophys. Res. Atmos. 2016, 121, 1400–1413. [Google Scholar] [CrossRef] [Green Version]
- Maycock, A.C.; Keeley, S.P.E.; Charlton-Perez, A.J.; Doblas-Reyes, F.J. Stratospheric Circulation in Seasonal Forecasting Models: Implications for Seasonal Prediction. Clim. Dyn. 2011, 36, 309–321. [Google Scholar] [CrossRef]
- Furtado, J.C.; Cohen, J.; Becker, E.J.; Collins, D.C. Evaluating the Relationship between Sudden Stratospheric Warmings and Tropospheric Weather Regimes in the NMME Phase-2 Models. Clim. Dyn. 2021, 56, 2321–2338. [Google Scholar] [CrossRef]
- Portal, A.; Ruggieri, P.; Palmeiro, F.M.; García-Serrano, J.; Domeisen, D.I.V.; Gualdi, S. Seasonal Prediction of the Boreal Winter Stratosphere. Clim. Dyn. 2021, 58, 2109–2130. [Google Scholar] [CrossRef]
- Mclandress, C.; Shepherd, T.G. Impact of Climate Change on Stratospheric Sudden Warmings as Simulated by the Canadian Middle Atmosphere Model. J. Clim. 2009, 22, 5449–5463. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Son, S.W.; Gerber, E.P.; Park, H.S. Defining Sudden Stratospheric Warming in Climate Models: Accounting for Biases in Model Climatologies. J. Clim. 2017, 30, 5529–5546. [Google Scholar] [CrossRef]
- Taguchi, M. A Study of Different Frequencies of Major Stratospheric Sudden Warmings in CMIP5 Historical Simulations. J. Geophys. Res. 2017, 122, 5144–5156. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Garfinkel, C.I.; Butler, A.H. The Teleconnection of El Niño Southern Oscillation to the Stratosphere. Rev. Geophys. 2019, 57, 5–47. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.H.; Arribas, A.; Athanassiadou, M.; Baehr, J.; Calvo, N.; Charlton-Perez, A.; Déqué, M.; Domeisen, D.I.V.; Fröhlich, K.; Hendon, H.; et al. The Climate-System Historical Forecast Project: Do Stratosphere-Resolving Models Make Better Seasonal Climate Predictions in Boreal Winter? Q. J. R. Meteorol. Soc. 2016, 142, 1413–1427. [Google Scholar] [CrossRef]
- Anstey, J.A.; Shepherd, T.G. High-Latitude Influence of the Quasi-Biennial Oscillation. Q. J. R. Meteorol. Soc. 2014, 140, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Naoe, H.; Shibata, K. Equatorial Quasi-Biennial Oscillation Influence on Northern Winter Extratropical Circulation. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Shaw, T.A.; Hartmann, D.L.; Waugh, D.W. Does the Holton-Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex? J. Atmos. Sci. 2012, 69, 1713–1733. [Google Scholar] [CrossRef]
- Watson, P.A.G.; Gray, L.J. How Does the Quasi-Biennial Oscillation Affect the Stratospheric Polar Vortex? J. Atmos. Sci. 2014, 71, 391–409. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Tan, H.-C. The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 Mb. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef] [Green Version]
- Silverman, V.; Harnik, N.; Matthes, K.; Lubis, S.W.; Wahl, S. Radiative Effects of Ozone Waves on the Northern Hemisphere Polar Vortex and Its Modulation by the QBO. Atmos. Chem. Phys. 2018, 18, 6637–6659. [Google Scholar] [CrossRef] [Green Version]
- Fereday, D.R.; Maidens, A.; Arribas, A.; Scaife, A.A.; Knight, J.R. Seasonal Forecasts of Northern Hemisphere Winter 2009/10. Environ. Res. Lett. 2012, 7, 034031. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Garfinkel, C.I.; Wu, T.; Lu, Y.; Lu, Q.; Liang, Z. The January 2021 Sudden Stratospheric Warming and Its Prediction in Subseasonal to Seasonal Models. J. Geophys. Res. Atmos. 2021, 126, e2021JD035057. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Japan. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Ayarzagüena, B.; Palmeiro, F.M.; Barriopedro, D.; Calvo, N.; Langematz, U.; Shibata, K. On the Representation of Major Stratospheric Warmings in Reanalyses. Atmos. Chem. Phys. 2019, 19, 9469–9484. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.H.; Seidel, D.J.; Hardiman, S.C.; Butchart, N.; Birner, T.; Match, A. Defining Sudden Stratospheric Warmings. Bull. Am. Meteorol. Soc. 2015, 96, 1913–1928. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Osprey, S. Tropospheric Forcing of the 2019 Antarctic Sudden Stratospheric Warming. Geophys. Res. Lett. 2020, 47, e2020GL089343. [Google Scholar] [CrossRef]
- Nishii, K.; Nakamura, H. Tropospheric Influence on the Diminished Antarctic Ozone Hole in September 2002. Geophys. Res. Lett. 2004, 31, L16103. [Google Scholar] [CrossRef] [Green Version]
- Nishii, K.; Nakamura, H.; Miyasaka, T. Modulations in the Planetary Wave Field Induced by Upward-Propagating Rossby Wave Packets Prior to Stratospheric Sudden Warming Events: A Case-Study. Q. J. R. Meteorol. Soc. 2009, 135, 39–52. [Google Scholar] [CrossRef]
- Smith, K.L.; Kushner, P.J.; Cohen, J. The Role of Linear Interference in Northern Annular Mode Variability Associated with Eurasian Snow Cover Extent. J. Clim. 2011, 24, 6185–6202. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Charlton-Perez, A.J. Observed and Simulated Precursors of Stratospheric Polar Vortex Anomalies in the Northern Hemisphere. Clim. Dyn. 2011, 37, 1443–1456. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Jones, J. Tropospheric Precursors and Stratospheric Warmings. J. Clim. 2011, 24, 6562–6572. [Google Scholar] [CrossRef] [Green Version]
- Sassi, F.; Kinnison, D.; Boville, B.A.; Garcia, R.R.; Roble, R. Effect of El Niño-Southern Oscillation on the Dynamical, Thermal, and Chemical Structure of the Middle Atmosphere. J. Geophys. Res. D Atmos. 2004, 109, D17108. [Google Scholar] [CrossRef] [Green Version]
- Manzini, E.; Giorgetta, M.A.; Esch, M.; Kornblueh, L.; Roeckner, E. The Influence of Sea Surface Temperatures on the Northern Winter Stratosphere: Ensemble Simulations with the MAECHAM5 Model. J. Clim. 2006, 19, 3863–3881. [Google Scholar] [CrossRef]
- Taguchi, M.; Hartmann, D.L. Increased Occurrence of Stratospheric Sudden Warmings during El Niño as Simulated by WACCM. J. Clim. 2006, 19, 324–332. [Google Scholar] [CrossRef]
- Barriopedro, D.; Calvo, N. On the Relationship between ENSO, Stratospheric Sudden Warmings, and Blocking. J. Clim. 2014, 27, 4704–4720. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Horel, J.D.; Wallace, J.M. Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Mon. Weather Rev. 1981, 109, 813–829. [Google Scholar] [CrossRef]
- Camp, C.D.; Tung, K.K. Stratospheric Polar Warming by ENSO in Winter: A Statistical Study. Geophys. Res. Lett. 2007, 34, L04809. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, C.I.; Hartmann, D.L. Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on Polar Temperatures in the Stratosphere. J. Geophys. Res. Atmos. 2007, 112, D19112. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.H.; Polvani, L.M. El Niño, La Niña, and Stratospheric Sudden Warmings: A Reevaluation in Light of the Observational Record. Geophys. Res. Lett. 2011, 38, L13807. [Google Scholar] [CrossRef] [Green Version]
- Polvani, L.M.; Sun, L.; Butler, A.H.; Richter, J.H.; Deser, C. Distinguishing Stratospheric Sudden Warmings from ENSO as Key Drivers of Wintertime Climate Variability over the North Atlantic and Eurasia. J. Clim. 2017, 30, 1959–1969. [Google Scholar] [CrossRef]
- Holton, J.R.; Tan, H.-C. The Quasi-Biennial Oscillation in the Northern Hemisphere Lower Stratosphere. J. Meteorol. Soc. Japan. Ser. II 1982, 60, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, C.I.; Schwartz, C. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models. Geophys. Res. Lett. 2017, 44, 10054–10062. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Feldstein, S.B.; Waugh, D.W.; Yoo, C.; Lee, S. Observed Connection between Stratospheric Sudden Warmings and the Madden-Julian Oscillation. Geophys. Res. Lett. 2012, 39, L18807. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Furtado, J.C.; Jones, J.; Barlow, M.; Whittleston, D.; Entekhabi, D. Linking Siberian Snow Cover to Precursors of Stratospheric Variability. J. Clim. 2014, 27, 5422–5432. [Google Scholar] [CrossRef]
- Kim, B.M.; Son, S.W.; Min, S.K.; Jeong, J.H.; Kim, S.J.; Zhang, X.; Shim, T.; Yoon, J.H. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss. Nat. Commun. 2014, 5, 4646. [Google Scholar] [CrossRef] [Green Version]
- Karpechko, A.Y. Predictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System. Mon. Weather Rev. 2018, 146, 1063–1075. [Google Scholar] [CrossRef]
- Taguchi, M. Predictability of Major Stratospheric Sudden Warmings: Analysis Results from JMA Operational 1-Month Ensemble Predictions from 2001/02 to 2012/13. J. Atmos. Sci. 2016, 73, 789–806. [Google Scholar] [CrossRef]
- Taguchi, M. Seasonal Winter Forecasts of the Northern Stratosphere and Troposphere: Results from JMA Seasonal Hindcast Experiments. J. Atmos. Sci. 2018, 75, 827–840. [Google Scholar] [CrossRef]
- Lubis, S.W.; Huang, C.S.Y.; Nakamura, N. Role of Finite-Amplitude Eddies and Mixing in the Life Cycle of Stratospheric Sudden Warmings. J. Atmos. Sci. 2018, 75, 3987–4003. [Google Scholar] [CrossRef]
- Nakamura, N.; Falk, J.; Lubis, S.W. Why Are Stratospheric Sudden Warmings Sudden (and Intermittent)? J. Atmos. Sci. 2020, 77, 943–964. [Google Scholar] [CrossRef]
System Name and Version Number, in Addition to Version Identifier | Resolution for Atmospheric Model 1 | Initial Date(s) | Ensemble Size | Threshold Correlation Values at 90 and 95% Levels 2 |
---|---|---|---|---|
ECMWF5 SEAS5 | TCO319 L91 0.01 hPa | NOV01 | 25 | ±0.34, ±0.40 |
UKMO15 GloSea5-GC2-LI | N216 L85 85 km | OCT09, 17, 25 NOV01 | 28 = 7 for each initial date | ±0.32, ±0.37 |
METEOFRANCE7 System 7 | TL359 L91 1 hPa | Penultimate Thursday of OCT Last Thursday of OCT NOV01 | 25 = 12 (Penultimate Thu) +12 (Last Thu) +1 (NOV01) | ±0.34, ±0.40 |
DWD21 GCFS2.1 | T127 L95 0.01 hPa | NOV01 | 30 | ±0.31, ±0.36 |
CMCC35 SPS3.5 | 1/2° lat-lon L46 0.2 hPa | NOV01 | 40 | ±0.26, ±0.31 |
JMA2 CPS2 | TL159 L60 0.1 hPa | OCT13, 28 | 10 = 5 for each initial date | ±0.55, ±0.63 |
System Name | fMSSW and Mean VS | fMSSW and fHFE | fMSSW and Mean [U]a Change | Mean VS and fHFE |
---|---|---|---|---|
ECMWF5 | −0.57 * | +0.20 | −0.094 | +0.18 |
UKMO15 | −0.62 * | +0.39 * | +0.16 | −0.23 |
METEOFRANCE7 | −0.66 * | +0.42 * | −0.031 | −0.12 |
DWD21 | −0.46 * | +0.55 * | +0.028 | −0.22 |
CMCC35 | −0.68 * | +0.40 * | −0.058 | −0.35 * |
JMA2 | −0.64 * | +0.28 | +0.64 * | −0.14 |
Ensemble means | −0.97 * | +0.19 | +0.040 | −0.11 |
System Name | LA and EL Differences | ELY and WLY Differences | ||
---|---|---|---|---|
fMSSW and Mean VS | fMSSW and fHFE | fMSSW and Mean VS | fMSSW and fHFE | |
ECMWF5 | −0.40 * | +0.29 | −0.68 * | +0.44 * |
UKMO15 | −0.75 * | +0.53 * | −0.42 * | +0.48 * |
METEOFRANCE7 | −0.76 * | +0.29 | −0.76 * | +0.65 * |
DWD21 | −0.30 | +0.35 | −0.52 * | +0.46 * |
CMCC35 | −0.45 * | +0.31 * | −0.63 * | +0.37 * |
JMA2 | −0.66 * | +0.74 * | −0.49 | +0.59 |
Ensemble means | −0.66 | −0.053 | −0.29 | +0.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taguchi, M. Intra-Seasonal Variations and Frequency of Major Sudden Stratospheric Warmings for Northern Winter in Multi-System Seasonal Hindcast Data. Atmosphere 2022, 13, 831. https://doi.org/10.3390/atmos13050831
Taguchi M. Intra-Seasonal Variations and Frequency of Major Sudden Stratospheric Warmings for Northern Winter in Multi-System Seasonal Hindcast Data. Atmosphere. 2022; 13(5):831. https://doi.org/10.3390/atmos13050831
Chicago/Turabian StyleTaguchi, Masakazu. 2022. "Intra-Seasonal Variations and Frequency of Major Sudden Stratospheric Warmings for Northern Winter in Multi-System Seasonal Hindcast Data" Atmosphere 13, no. 5: 831. https://doi.org/10.3390/atmos13050831
APA StyleTaguchi, M. (2022). Intra-Seasonal Variations and Frequency of Major Sudden Stratospheric Warmings for Northern Winter in Multi-System Seasonal Hindcast Data. Atmosphere, 13(5), 831. https://doi.org/10.3390/atmos13050831