Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Degradation of Theophylline by H2O2/UV Photolysis
3.2. Effect of Inorganic Ions
3.2.1. Effect of NO3−
- The direct photolysis of NO3−, which involves a series of reactions eventually resulting in the formation of the nitrite ion (NO2−) and molecular oxygen (O2) [24], which reduces •OH generation in the medium by absorbing a fraction of UV radiation;
- The reaction of •OH with the peroxynitrite anion (ONOO−), a reactive photo-product generated from the excited NO3− possessing a nearly diffusion-controlled bimolecular rate constant (k2 = 5 × 109 dm3 mol−1 s−1) with •OH (Reaction (4)), leading to the conversion of that radical into less reactive ONOO• [24].
3.2.2. Effect of H2PO4−
3.2.3. Effect of SO42−
3.3. Product Analysis by LC-Q-TOF MS
3.4. Degradation of Theophylline in Natural Environment
3.5. Reaction Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kummerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Bound, J.P.; Voulvoulis, N. Pharmaceuticals in the aquatic environment—A comparison of risk assessment strategies. Chemosphere 2004, 56, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part II. Chemosphere 2009, 75, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Mezzelani, M.; Gorbi, S.; Regoli, F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Mar. Environ. Res. 2018, 140, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Gupta, B.; Gupta, A.K. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environ. Res. 2019, 176, 108542. [Google Scholar] [CrossRef] [PubMed]
- McClellan, K.; Halden, R.U. Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res. 2010, 44, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Oppel, J.; Broll, G.; Löffler, D.; Meller, M.; Römbke, J.; Ternes, T. Leaching behaviour of pharmaceuticals in soil-testing-systems: A part of an environmental risk assessment for groundwater protection. Sci. Total Environ. 2004, 328, 265–273. [Google Scholar] [CrossRef]
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 2013, 175, 22–29. [Google Scholar] [CrossRef]
- Hamoda, M.F. Air Pollutants Emissions from Waste Treatment and Disposal Facilities. J. Environ. Sci. Health Part A 2006, 41, 77–85. [Google Scholar] [CrossRef]
- Koh, S.-H.; Shaw, A.R. Gaseous Emissions from Wastewater Facilities. Water Environ. Res. 2017, 89, 1268–1280. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Cytryn, E.; Donner, E.; Zhang, T. Challenges related to antimicrobial resistance in the framework of urban wastewater reuse. Water Res. 2019, 170, 115308. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, E.; Young, T.M. Comparing targeted and non-targeted high-resolution mass spectrometric approaches for assessing advanced oxidation reactor performance. Water Res. 2016, 104, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goñi-Urriza, M.; Capdepuy, M.; Arpin, C.; Raymond, N.; Caumette, P.; Quentin, C. Impact of an Urban Effluent on Antibiotic Resistance of Riverine Enterobacteriaceae and Aeromonas spp. Appl. Environ. Microbiol. 2000, 66, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Iwane, T.; Urase, T.; Yamamoto, K. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol. 2001, 43, 91–99. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Micalizzi, G.B.; Graham, G.M.; Bates, J.B.; Costanzo, S.D. Antibiotic-Resistant Escherichia coli in Wastewaters, Surface Waters, and Oysters from an Urban Riverine System. Appl. Environ. Microbiol. 2007, 73, 5667. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Marrs, C.F.; Simon, C.; Xi, C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci. Total Environ. 2009, 407, 3702–3706. [Google Scholar] [CrossRef]
- Roefer, P.; Snyder, S.; Zegers, R.E.; Rexing, D.J.; Fronk, J.L. Endocrine-disrupting chemicals in a source water. J. Am. Water Work. Assoc. 2000, 92, 52–58. [Google Scholar] [CrossRef]
- Yap, H.C.; Pang, Y.L.; Lim, S.; Abdullah, A.Z.; Ong, H.C.; Wu, C.-H. A comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants. Int. J. Environ. Sci. Technol. 2018, 16, 601–628. [Google Scholar] [CrossRef]
- Alharbi, S.K.; Price, W.E. Degradation and Fate of Pharmaceutically Active Contaminants by Advanced Oxidation Processes. Curr. Pollut. Rep. 2017, 3, 268–280. [Google Scholar] [CrossRef]
- Duan, X.; He, X.; Wang, D.; Mezyk, S.P.; Otto, S.C.; Marfil-Vega, R.; Mills, M.A.; Dionysiou, D.D. Decomposition of Iodinated Pharmaceuticals by UV-254 nm-assisted Advanced Oxidation Processes. J. Hazard. Mater. 2017, 323, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Palma, R.A.T. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res. 2019, 154, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Mukimin, A.; Vistanty, H.; Zen, N. Hybrid advanced oxidation process (HAOP) as highly efficient and powerful treatment for complete demineralization of antibiotics. Sep. Purif. Technol. 2020, 241, 116728. [Google Scholar] [CrossRef]
- Mack, J.; Bolton, J.R. Photochemistry of nitrite and nitrate in aqueous solution: A review. J. Photochem. Photobiol. A Chem. 1999, 128, 1–13. [Google Scholar] [CrossRef]
- Hiissa, T.; Sirén, H.; Kotiaho, T.; Snellman, M.; Hautojärvi, A. Quantification of anions and cations in environmental water samples: Measurements with capillary electrophoresis and indirect-UV detection. J. Chromatogr. A 1999, 853, 403–411. [Google Scholar] [CrossRef]
- Diaw, M.; Faye, S.; Stichler, W.; Maloszewski, P. Isotopic and geochemical characteristics of groundwater in the Senegal River delta aquifer: Implication of recharge and flow regime. Environ. Earth Sci. 2010, 66, 1011–1020. [Google Scholar] [CrossRef]
- Sbardella, L.; Velo-Gala, I.; Comas, J.; Layret, I.R.-R.; Fenu, A.; Gernjak, W. The impact of wastewater matrix on the degradation of pharmaceutically active compounds by oxidation processes including ultraviolet radiation and sulfate radicals. J. Hazard. Mater. 2019, 380, 120869. [Google Scholar] [CrossRef]
- Kalsoom, U.; Ashraf, S.S.; Meetani, M.A.; Rauf, M.A.; Bhatti, H.N. Degradation and kinetics of H2O2 assisted photochemical oxidation of Remazol Turquoise Blue. Chem. Eng. J. 2012, 200–202, 373–379. [Google Scholar] [CrossRef]
- Devi, L.G.; Kumar, S.G.; Reddy, K.M.; Munikrishnappa, C. Effect of various inorganic anions on the degradation of Congo Red, a di azo dye, by the photo-assisted Fenton process using zero-valent metallic iron as a catalyst. Desalination Water Treat. 2009, 4, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Kiwi, J.; Lopez, A.A.; Nadtochenko, V. Mechanism and Kinetics of the OH-Radical Intervention during Fenton Oxidation in the Presence of a Significant Amount of Radical Scavenger (Cl−). Environ. Sci. Technol. 2000, 34, 2162–2168. [Google Scholar] [CrossRef]
- Meier, J.R.; DeAngelo, A.B.; Daniel, F.B.; Schenck, K.M.; Doerger, J.U.; Chang, L.W.; Kopfler, F.C.; Robinson, M.; Ringhand, H.P. Genotoxic and Carcinogenic Properties of Chlorinated Furanones: Important by-Products of Water Chlorination. In Genetic Toxicology of Complex Mixtures; Springer: Berlin/Heidelberg, Germany, 1990; pp. 185–195. [Google Scholar]
- Henschler, D. Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of Chlorine in Organic Molecules. Angew. Chem. Int. Ed. 1994, 33, 1920–1935. [Google Scholar] [CrossRef]
- Saeid, S.; Kråkström, M.; Tolvanen, P.; Kumar, N.; Eränen, K.; Mikkola, J.-P.; Kronberg, L.; Eklund, P.; Peurla, M.; Aho, A.; et al. Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process. Catalysts 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, A.; Vera, T.; Sidebottom, H.; Mellouki, A.; Borrás, E.; Ródenas, M.; Clemente, E.; Vázquez, M. Studies on the Atmospheric Degradation of Chlorpyrifos-Methyl. Environ. Sci. Technol. 2011, 45, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Ródenas, M.; Borrás, E.; Vázquez, M.; Vera, T. The gas-phase degradation of chlorpyrifos and chlorpyrifos-oxon towards OH radical under atmospheric conditions. Chemosphere 2014, 111, 522–528. [Google Scholar] [CrossRef]
- Karci, A.; Arslan-Alaton, I.; Bekbolet, M. Oxidation of nonylphenol ethoxylates in aqueous solution by UV-C photolysis, H2O2/UV-C, Fenton and photo-Fenton processes: Are these processes toxicologically safe? Water Sci. Technol. 2013, 68, 1801–1809. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Le, G.K.; Nguyen, T.M.H.; Bui, X.-T.; Nguyen, K.H.; Rene, E.R.; Vo, T.D.H.; Cao, N.-D.T.; Mohan, R. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere 2019, 236, 124391. [Google Scholar] [CrossRef]
- Szentmiklosi, A.J.; Cseppento, A.; Gesztelyi, R.; Zsuga, J.; Kortvely, A.; Harmati, G.; Nanasi, P.P. Xanthine Derivatives in the Heart: Blessed or Cursed? Curr. Med. Chem. 2011, 18, 3695–3706. [Google Scholar] [CrossRef]
- Koleva, I.I.; van Beek, T.A.; Soffers, A.E.M.F.; Dusemund, B.; Rietjens, I.M.C.M. Alkaloids in the human food chain—Natural occurrence and possible adverse effects. Mol. Nutr. Food Res. 2011, 56, 30–52. [Google Scholar] [CrossRef]
- Stavric, B. Methylxanthines: Toxicity to humans. 1. Theophylline. Food Chem. Toxicol. 1988, 26, 541–565. [Google Scholar] [CrossRef]
- Santos, P.M.; Silva, S.A.; Justino, G.C.; Vieira, A.J. Demethylation of theophylline (1,3-dimethylxanthine) to 1-methylxanthine: The first step of an antioxidising cascade. Redox Rep. 2010, 15, 138–144. [Google Scholar] [CrossRef]
- Vystavna, Y.; Huneau, F.; Grynenko, V.; Vergeles, Y.; Celle-Jeanton, H.; Tapie, N.; Budzinski, H.; Le Coustumer, P. Pharmaceuticals in Rivers of Two Regions with Contrasted Socio-Economic Conditions: Occurrence, Accumulation, and Comparison for Ukraine and France. Water Air Soil Pollut. 2012, 223, 2111–2124. [Google Scholar] [CrossRef]
- Ramirez, A.J.; Brain, R.A.; Usenko, S.; Mottaleb, M.A.; O’Donnell, J.G.; Stahl, L.L.; Wathen, J.B.; Snyder, B.D.; Pitt, J.L.; Perez-Hurtado, P.; et al. Occurrence of pharmaceuticals and personal care products in fish: Results of a national pilot study in the united states. Environ. Toxicol. Chem. 2009, 28, 2587–2597. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Meng, X.; Su, H.; Xu, M.; Ai, S. Electrochemical determination of theophylline in foodstuff, tea and soft drinks based on urchin-like CdSe microparticles modified glassy carbon electrode. Food Chem. 2012, 134, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Al Hakim, S.; Baalbaki, A.; Tantawi, O.; Ghauch, A. Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent. RSC Adv. 2019, 9, 33472–33485. [Google Scholar] [CrossRef] [Green Version]
- Barrocas, B.; Neves, M.C.; Oliveira, M.C.; Monteiro, O.C. Enhanced photocatalytic degradation of psychoactive substances using amine-modified elongated titanate nanostructures. Environ. Sci. Nano 2017, 5, 350–361. [Google Scholar] [CrossRef]
- Paul, M.M.S.; Aravind, U.K.; Pramod, G.; Saha, A.; Aravindakumar, C.T. Hydroxyl radical induced oxidation of theophylline in water: A kinetic and mechanistic study. Org. Biomol. Chem. 2014, 12, 5611–5620. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, J.; Pang, S.; Ma, J.; Xue, M.; Li, J.; Liu, Y.; Yuan, Y. Oxidation of theophylline by Ferrate (VI) and formation of disinfection byproducts during subsequent chlorination. Sep. Purif. Technol. 2018, 201, 283–290. [Google Scholar] [CrossRef]
- La Farré, M.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.S.; Aravind, U.K.; Pramod, G.; Aravindakumar, C. Oxidative degradation of fensulfothion by hydroxyl radical in aqueous medium. Chemosphere 2013, 91, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Diagne, M.; Oturan, N.; Oturan, M.A.; Sirés, I. UV-C light-enhanced photo-Fenton oxidation of methyl parathion. Environ. Chem. Lett. 2008, 7, 261–265. [Google Scholar] [CrossRef]
- De Laat, J.; Gallard, H.; Ancelin, S.; Legube, B. Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(iii)/H2O2/UV and Fe(II) or Fe(III)/H2O2. Chemosphere 1999, 39, 2693–2706. [Google Scholar] [CrossRef]
- Keeney, D.; Olson, R.A. Sources of nitrate to ground water. Crit. Rev. Environ. Control. 1986, 16, 257–304. [Google Scholar] [CrossRef]
- Morozov, P.A.; Ershov, B.G. The influence of phosphates on the decomposition of ozone in water: Chain process inhibition. Russ. J. Phys. Chem. A 2010, 84, 1136–1140. [Google Scholar] [CrossRef]
- Maruthamuthu, P.; Neta, P. Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. J. Phys. Chem. 1978, 82, 710–713. [Google Scholar] [CrossRef]
- Thomas, S.; Rayaroth, M.P.; Menacherry, S.P.M.; Aravind, U.K.; Aravindakumar, C.T. Sonochemical degradation of benzenesulfonic acid in aqueous medium. Chemosphere 2020, 252, 126485. [Google Scholar] [CrossRef]
- Franz, S.; Falletta, E.; Arab, H.; Murgolo, S.; Bestetti, M.; Mascolo, G. Degradation of Carbamazepine by Photo(electro)catalysis on Nanostructured TiO2 Meshes: Transformation Products and Reaction Pathways. Catalysts 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Jaén-Gil, A.; Buttiglieri, G.; Benito, A.; Gonzalez-Olmos, R.; Barceló, D.; Rodríguez-Mozaz, S. Metoprolol and metoprolol acid degradation in UV/H2O2 treated wastewaters: An integrated screening approach for the identification of hazardous transformation products. J. Hazard. Mater. 2019, 380, 120851. [Google Scholar] [CrossRef]
- Elias, M.T.; Chandran, J.; Aravind, U.K.; Aravindakumar, C.T. Oxidative degradation of ranitidine by UV and ultrasound: Identification of transformation products using LC-Q-ToF-MS. Environ. Chem. 2019, 16, 41–54. [Google Scholar] [CrossRef]
- Oturan, N.; Aravindakumar, C.T.; Olvera-Vargas, H.; Paul, M.M.S.; Oturan, M.A. Electro-Fenton oxidation of para-aminosalicylic acid: Degradation kinetics and mineralization pathway using Pt/carbon-felt and BDD/carbon-felt cells. Environ. Sci. Pollut. Res. 2017, 25, 20363–20373. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, M.P.; Aravind, U.K.; Aravindakumar, C.T. Role of in-situ nitrite ion formation on the sonochemical transformation of para-aminosalicylic acid. Ultrason. Sonochemistry 2018, 40, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravind, U.K.; Aravindakumar, C.T. Effect of inorganic ions on the ultrasound initiated degradation and product formation of triphenylmethane dyes. Ultrason. Sonochem. 2018, 48, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Sasi, S.; Rayaroth, M.P.; Devadasan, D.; Aravind, U.K.; Aravindakumar, C.T. Influence of inorganic ions and selected emerging contaminants on the degradation of Methylparaben: A sonochemical approach. J. Hazard. Mater. 2015, 300, 202–209. [Google Scholar] [CrossRef]
- Yu, C.L.; Louie, T.M.; Summers, R.; Kale, Y.; Gopishetty, S.; Subramanian, M. Two Distinct Pathways for Metabolism of Theophylline and Caffeine Are Coexpressed in Pseudomonas putida CBB5. J. Bacteriol. 2009, 191, 4624–4632. [Google Scholar] [CrossRef] [Green Version]
- Mezyk, S.P.; Neubauer, T.J.; Cooper, W.J.; Peller, J.R. Free-Radical-Induced Oxidative and Reductive Degradation of Sulfa Drugs in Water: Absolute Kinetics and Efficiencies of Hydroxyl Radical and Hydrated Electron Reactions. J. Phys. Chem. A 2007, 111, 9019–9024. [Google Scholar] [CrossRef]
- Song, W.; Cooper, W.J.; Mezyk, S.P.; Greaves, J.; Peake, B.M. Free Radical Destruction of β-Blockers in Aqueous Solution. Environ. Sci. Technol. 2008, 42, 1256–1261. [Google Scholar] [CrossRef]
- Sreekanth, R.; Menachery, S.P.M.; Aravind, U.K.; Marignier, J.-L.; Belloni, J.; Aravindakumar, C.T. Oxidation reactions of hydroxy naphthoquinones: Mechanistic investigation by LC-Q-TOF-MS analysis. Int. J. Radiat. Biol. 2014, 90, 495–502. [Google Scholar] [CrossRef]
- Sreekanth, R.; Prasanthkumar, K.P.; Paul, M.M.S.; Aravind, U.K.; Aravindakumar, C.T. Oxidation Reactions of 1- and 2-Naphthols: An Experimental and Theoretical Study. J. Phys. Chem. A 2013, 117, 11261–11270. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. Biol. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | |
---|---|---|
pH | 6.75 | |
TOC (mg/L) | 3.14 | |
λ254 nm | 0.066 | |
[Anions] in mg/L | Chloride | 31.96 |
Bromide | 0.04 | |
Nitrate | 0.88 | |
Phosphate | 0.83 | |
Sulfate | 13.86 | |
[Cations] in mg/L | Sodium | 15.44 |
Potassium | 3.66 | |
Magnesium | 3.22 | |
Calcium | 7.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menacherry, S.P.M.; Aravind, U.K.; Aravindakumar, C.T. Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. Atmosphere 2022, 13, 835. https://doi.org/10.3390/atmos13050835
Menacherry SPM, Aravind UK, Aravindakumar CT. Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. Atmosphere. 2022; 13(5):835. https://doi.org/10.3390/atmos13050835
Chicago/Turabian StyleMenacherry, Sunil Paul M., Usha K. Aravind, and Charuvila T. Aravindakumar. 2022. "Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment" Atmosphere 13, no. 5: 835. https://doi.org/10.3390/atmos13050835
APA StyleMenacherry, S. P. M., Aravind, U. K., & Aravindakumar, C. T. (2022). Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. Atmosphere, 13(5), 835. https://doi.org/10.3390/atmos13050835