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Abstract: The key role of the planetary boundary layer height (PBLH) in pollution, climate, and
model forecasting has long been recognized. However, the observed PBLH has rarely been used
to evaluate numerical weather prediction models in China. We compared the temporal and spatial
characteristics of the bias in the PBLH in China predicted by the CMA-GFS model with vertical
high-resolution sounding data and Global Positioning System occultation data from 2019 to 2020. We
found that: (1) The PBLH in East China is systematically underestimated by the CMA-GFS model.
The bias mainly results from the underestimation of the wind shear in the boundary layer, a smaller
sensible heat flux near the surface, and a lower surface temperature. The combined effects of these
factors inhibit the boundary layer from developing to a higher height, although the most important
contributor is the small sensible heat flux. (2) There is a systematic overestimation of the PBLH over
the Tibetan Plateau throughout the year. The bias is mainly a result of the smaller buoyancy, higher
wind shear, and larger sensible heat flux forecast by the CMA-GFS model, which drive the boundary
layer to develop to a significantly deeper height than the observations. This bias in the CMA-GFS
model is mainly caused by the bias in the sensible heat flux and wind shear forecasts. In contrast, the
CMA-GFS model underestimates the PBLH in the Tarim Basin. Our preliminary analysis shows that
the boundary layer forecasted is unable to develop because the buoyancy effect of the model is too
strong. Therefore, the bias of the predicted PBLH by the CMA-GFS model in China is mainly caused
by inaccuracies in the sensible heat flux and wind shear forecasts.

Keywords: CMA-GFS global model; planetary boundary layer height; vertical high-resolution
sounding data; sensible heat flux; wind shear

1. Introduction

The planetary boundary layer (PBL) is the region of the atmosphere near the surface
where the influence of the surface is transported through the turbulent exchange of mo-
mentum, heat, and moisture [1–5]. This region of the atmosphere has the most significant
impact on human activities and is crucial in weather forecasting, the Earth’s climate, and
air pollution [6–8]. It is therefore important to understand the structural characteristics and
temporal evolution of the PBL [9,10].

The complex interactions between surface forcing, the atmospheric circulation, and the
local circulation determine the structure of the boundary layer and lead to heterogeneity
on multiple spatial and temporal scales. The critical element of the PBL height (PBLH)
has often been used to characterize the boundary layer. The PBLH determines the vertical
extent of turbulent mixing and convective transport and the capacity of the atmosphere to
accommodate water vapor, aerosols, and pollutants, thereby influencing the vertical distri-
bution of heat, water vapor, and matter in the boundary layer. It is also a crucial parameter
in the boundary layer parameterization schemes of models carrying out environmental
evaluations [11].
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An estimate of the PBLH requires information about the vertical profiles of meteoro-
logical elements, such as the wind speed, temperature, and humidity. Different estimate
methods are used for different types of observations [12]. The research data currently used
include LiDAR [9,13–15], acoustic radar [16,17], radio sounding [18], Global Positioning
System (GPS) occultation [19–21], and wind profile radar [22,23]. Angevine (1994) used
wind profile radar and took a signal–to–noise approach to analyze the PBLH. Sokolovskiy
(2007) used GPS data to evaluate the PBLH by refractivity [24]. Liu applied the potential
temperature gradient method to sounding data to explore the daily variation of the PBLH
over a diverse underlying surface. Seidel explored the features of the PBLH at 0000 and
1200 UTC in Europe and North America using the bulk Richardson number based on
sounding data [25]. Liu used GPS occultation data to analyze the structure of the ocean
boundary layer [20]. At present, the gradient and Bulk Richardson number methods are tra-
ditional and most commonly used, both of which are typically based on pressure, humidity,
wind speed, and temperature [26,27].

There are relatively few similar studies in China. Most of the current studies in
China use data from partial sounding stations and the observation times of these data are
limited to 0000 and 1200 UTC; so, the characteristics of the PBLH during the peak phase
of the PBL cannot be fully studied. More importantly, few studies in China have used
these observations to evaluate numerical weather prediction models. We therefore used
vertical high-resolution sounding data (VHRS) from 120 stations in China from 2019 to
2020 to analyze the characteristics of the PBLH and compared it with that predicted by
CMA-GFS model.

The global operational CMA-GFS model, developed by China, forms the core of the
operational numerical weather forecasting system in China. It is therefore of paramount
importance to evaluate and promote its development. We compared the PBLH predicted
by the CMA-GFS model with VHRS observations and GPS occultation data; the latter were
used to supplement the paucity of sounding data at 0600 and 1800 UTC. We then carried
out a preliminary analysis of the model bias.

2. Data and Methods
2.1. Data

We used VHRS sounding data provided by the National Meteorological Information
Center of China from 120 conventional sounding stations nationwide for the time period
January 2019 to December 2020. Figure 1 shows that the distribution of sounding stations
is both uniform and representative, except for the Qinghai–Tibetan Plateau. The sounding
is carried out twice a day (at 0000 and 1200 UTC), and the data for meteorological elements
(e.g., pressure, temperature, and wind speed) are detected via a GTS1 digital sounding
instrument with a measurement frequency of about 1 s and a vertical resolution of about
4 m [28,29], In the data preprocessing, the original second-ordered coordinate data were
quality controlled by using a low-pass filter, weighted least squares, and linear compensa-
tion methods to remove coordinate data disturbance caused by sounder swinging, radar
measurement error, and atmospheric turbulence. Then, the vector average wind calculation
method was adopted to obtain second-ordered wind speed and direction [30]. In addition,
data with temperature, wind speed, or wind gradient anomalies and the adjacent data with
a height difference greater than 100 m were deleted.

We used GPS occultation data from the COSMIC 2 [31], Metop A [32], Metop B, and
Metop C satellites [33]. The GPS signal is in the microwave range and is therefore unaf-
fected by clouds and precipitation [15]. Open-loop tracking technology and an advanced
positioning system using the GPS, the Global Navigation Satellite System (GNSS), and a
receiver system are used to improve the gain and signal quality for the detection of space
weather [34]. GPS occultation data have a wider coverage and are more frequent in time
than other satellite data. More than 90% of microwaves can penetrate 1 km above the
ground, which is advantageous in research on the PBL. The four stars used in this study
provide high-quality observations 7000 times/day.
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Figure 1. Distribution of radiosonde sites (blue dots), ground observation sites (red dots), and
topography (shading) in China.

Figure 2 shows the distribution of data, which indicates that the GPS occultations are
dense; so, they are good complements to the VHRS sounding data, especially at 0600 and
1800 UTC. The GPS occultation data record the air pressure, temperature, humidity, and
refractive index with a vertical resolution of about 80 m. The GPS profiles contain a lot of
valuable boundary layer information, which is vital for research in tropical and subtropical
regions [35]. Data with a lowest detection height of <300 m were excluded to ensure data
quality for the research on the PBLH in this paper.

The CMA-GFS model is an operational global forecast model developed independently
by China (CMA is the abbreviation of China Meteorological Administration, and GFS is the
abbreviation of Global Forecast System). It uses a nonhydrostatic [36], fully compressible set
of equations with fully dynamical processes and a semi-implicit semi-Lagrangian [37] time
integration scheme with two time layers: an Arakawa C grid in the horizontal direction [38]
and a Charney–Phillips staggered grid in the vertical direction [39,40]. The physical param-
eterization schemes consist of the Rapid Radiative Transfer Model for the GCM (RRTMG)
longwave and shortwave radiation schemes [41], the Simplified Arakawa Schubert (SAS)
cumulus convection scheme [42,43], the New Medium Range Forecast (NMRF) boundary
layer scheme [44,45], the Double Moment microphysics scheme, the Common Land Model
(CoLM) [46] land surface scheme, and the gravity wave drag scheme [47]. The NMRF
boundary layer scheme is the improved MRF scheme, adding the parameterization of the
radiative cooling of stratocumulus clouds and strong entrainment at the top of the PBL.
The experiments with the CMA-GFS showed that the simulations of stratocumulus clouds
of NMRF were improved, and the vertical structures of the stratocumulus clouds were in
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better agreement with the observations, compared to the MRF scheme [44]. The horizontal
resolution of the model is 25 km with 86 vertical layers. The model is integrated four times
a day at 0000, 0600, 1200, and 1800 UTC and provides products at 3-h intervals.
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We used the ERA5 global reanalysis dataset from the European Centre for Medium-
Range Weather Forecasts (ECMWF) with a horizontal resolution of 25 km [48]. ERA5
reanalysis data are among the world’s highest-quality meteorological reanalysis data,
which are often used to diagnose model biases, especially in regions lacking observations.
Except for the sounding data and GPS data, we also compared the ERA5 dataset with the
results from the CMA-GFS model to help explain the sources of bias in the PBLH predicted
by the CMA-GFS model and also with the sounding data and GPS data to analyze the
quality of ERA5.

2.2. PBLH Calculation Method
2.2.1. Bulk Richardson Method

The bulk Richardson method (referred to hereafter as the Ri method) is used in the
CMA-GFS model and the ERA5 dataset to calculate the PBLH. The Ri is formulated using
the following Equation (1):

Ri(n) =
g

θvs
(θvn − θvs)(Zn − Zs)

(un − us)
2 + (vn − vs)

2 + (bu2∗)
(1)

where Z is the height above the surface, the subscript n represents the meteorological
element at the nth height, the subscript s represents the surface, g is the acceleration due
to gravity, and θv is the virtual potential temperature. u,v are the horizontal velocity
components, and u∗ is the surface friction velocity (negligible). b is a constant. Stull
suggested that the height at which Ri reaches a threshold of 0.25 is the PBLH [1].

2.2.2. Potential Temperature Gradient Method

The PBLH was obtained by the potential temperature gradient method as a result
of the lack of wind speed information in the GPS occultation data. This is also the most

noaa.gov
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natural method to analyze the PBLH from sounding observations. The first step in the
potential temperature gradient method is to determine the type of boundary layer from the
thermodynamic point of view: a convective boundary layer (CBL), a stable boundary layer
(SBL), or a neutral boundary layer NBL [33]. We used the method of Liu to determine the
type of boundary layer and to calculate the PBLH [34] (Figure 3). The type of boundary
layer is determined by Equation (2):

θ5 − θ2 > σ stable
|θ5 − θ2|<σ natural

θ5 − θ2 < −σ convective
(2)

where θ5 and θ2 are the potential temperatures at about 100 and 40 m above the surface,
respectively, and σ represents the critical threshold.
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Figure 3. Schematic diagram of potential temperature profile method. The blue line represents the
vertical distribution of the potential temperature, and the red dotted line represents the vertical
distribution of the wind speed adapted with permission from Ref. [49].

The PBLH of an SBL is determined at the height at which the rate of change of the
potential temperature with height is at a minimum. However, in the presence of a low-level
jet, the minimum of the top of the thermally stable layer and the center of the low-level jet
is considered to be the PBLH.

The PBLH of a CBL and a NBL are both set as at the height at which the difference in
the potential temperature between that height and the surface reaches a critical threshold δ,
and the potential temperature gradient at that height meets the corresponding threshold θr:{

θk − θ1 > δ

∆θ ≡ ∂θ
∂z ≥ θr

(3)

Through field observations and extensive experimental studies, Liu (2010) set these
thresholds as: 

σ = 1K
δ = 0.5K

θr = 4K/m
(4)
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3. Results
3.1. Seasonal Bias of the PBLH in the CMA-GFS Model

The observed PBLH characteristics at 0000 and 1200 UTC in China have been analyzed
by Guo [50], but the PBLH at 0600 and 1800 UTC have not been studied thoroughly, because
there are few sounding data at these two times. We used occultation data to explore the
characteristics of the PBLH in China at 0600 and 1800 UTC and compared these data with
the model predictions. Since observation sites in China are uniformly spatially distributed
(as shown in Figures 1 and 2), and PBLH is a variable with good spatial continuity, we used
the bicubic interpolation method to interpolate observations to the grid points of the model
and compare them with the model.

Figure 4 shows the daily average 24, 72 h bias of the PBLH in the CMA-GFS for
winter and summer. The bias was almost uniformly negative in most of China in both
winter and summer, except for the Qinghai–Tibetan Plateau. The maximum positive bias
on the Qinghai–Tibetan Plateau occurred over the northern plateau in summer but over
the southern plateau in winter. When the integration moved forward from 24 to 72 h,
the positive bias in the eastern Qinghai–Tibetan Plateau extended slightly to the south in
summer, because this area is a heat source with a large sensible heat flux throughout the
year, which contributes to the large bias of the model and gradually accumulates with the
integration time. However, the main pattern of the model bias did not change from the
24 to 72 h forecasts at any time of year (Figures 4a and 5b). We therefore focused on the
72 h model forecast.

Figures 4 and 5a,b show that the bias of the PBLH in the CMA-GFS model also had
little seasonal variation. The main model bias was an underestimation in East China, with
an average bias of about −100 m. There was an overestimation on the Qinghai–Tibetan
Plateau, with an average bias of about 400 m. The annual variation of the amplitude and
coverage of the bias in the PBLH in East China and the Qinghai–Tibetan Plateau were small,
and their specific causes are analyzed in the following section.

There was a thin line of negative bias following the topography in the southern Tarim
Basin, probably due to the large slope in this area, but this bias could not be confirmed
as a result of the paucity of observations in this region. However, bias in the pressure
forecast over this complex topography might directly affect the calculation of the potential
temperature and contribute to the bias.

The ERA5 reanalysis dataset showed similar distributions of bias to the CMA-GFS
model. The pattern of the bias also changed little with the season and was systematically
underestimated in East China and overestimated in the western Tibetan Plateau. In contrast,
the bias of the CMA-GFS model and the ERA5 dataset were the opposite in the eastern
Tibetan Plateau (28–35◦ N, 90–100◦ E). The ERA5 dataset showed an underestimate with a
bias of about −500, whereas the bias in the CMA-GFS model was an overestimate of about
500 m. The temporal and spatial distribution of the ERA5 bias was similar to those of the
CMA-GFS model, which proves that the bias in the CMA-GFS model may not have been
caused by the initial data. We explain the reasons for the bias in the CMA-GFS model in
the following section.

3.2. Diurnal Bias of the PBLH in the CMA-GFS Model

Figure 6 shows that the PBLH bias in the CMA-GFS model exhibited a clear diurnal
cycle. The negative bias of the model peaked at 0600 and 1200 UTC, when East China was
at the peak of turbulence development. The observations tended to show a higher PBLH at
0600 and 1200 UTC, but the model did not develop the PBL to the corresponding height.
Although the amplitudes of the bias changed with time, the coverage did not change
very much. At 0600 and 1200 UTC, the PBL is prone to be unstable and convection is
active, the PBLH is at height of the lifting condensation level (LCL). Therefore, the obvious
underestimation of PBLH at 0600 and 1200 UTC might be caused by underestimation of
LCL in CMA-GFS, which implies the need for improvement of the convection scheme in
the future.
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The positive bias of the model also reached >500 m over the Tibetan Plateau at 0600
and 1200 UTC. The PBLH should develop at a higher level as a result of the solar radiation
and the roughness of the underlying surface of the Tibetan Plateau. During this period, the
main contributions are from the thermal effect, because the strong turbulence mixes the
momentum thoroughly in the vertical direction, which means that the wind shear effect is
small. However, we found that the CMA-GFS model predicted a stronger wind shear than
the observations, which drove the development of a deeper PBL in the CMA-GFS model.

3.3. Different Underlying Surface

Different underlying surfaces have a significant influence on the development of
the boundary layer [17]. We selected four surface types representative of the underly-
ing surfaces in China as prescribed in the CMA-GFS model: barren and sparse vegeta-
tion; mixed shrubland and grassland; highland grasslands; and irrigated cropland and
pasture (Figure 7).
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Figure 8 shows that the biases of the model were more prominent in mixed shrubland
and grassland, with positive bias throughout the year ranging from 0 to 200 m. In the
barren and sparse vegetation area, there was an overestimation at 1200 UTC in summer and
an underestimation at all other times and seasons by a maximum of −500 m at 0600 UTC
in spring, when the development of turbulence was at its peak. In addition, the bias of up
to 200 m tended to be more evident in the highland grassland areas in winter. The model
underestimated the PBLH in irrigated cropland and pasture areas, with a maximum of more
than −500 m in winter but overestimated the PBLH at 0600 UTC in spring and summer.

Barren areas and areas with sparse vegetation have smooth lower boundaries and
a small specific heat capacity, which means that they have a strong wind shear and heat
flux, and a high PBLH is easily developed [51,52], although the model showed negative
bias. The mixed shrubland and grassland and grasslands have a large specific heat capacity
and rough lower boundaries, which leads to a small sheer and, therefore, a low PBLH.
Nonetheless, the model showed a large positive bias, because it had a significant bias in the
sensible heat flux and wind shear compared with the observations.
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4. Discussion
4.1. Evaluation of the Model Bias

This section aims to determine the causes of the model bias by analyzing the crucial
variables affecting the PBLH, such as wind shear, buoyancy, and the sensible heat flux. The
factors directly impacting the PBLH are the wind shear (Ws) and the thermal buoyancy (Tb)
from Equation (1). Ws is calculated as:

Ws = (uh − us)
2 + (vh − vs)

2 (5)

where u represents the latitudinal wind speed, v represents the longitudinal wind speed,
subscript h represents different heights, and subscript s represents the surface. Equation (1)
shows that the larger the wind shear, the higher the PBLH.

Thermal buoyancy (considering the influence of water vapor) Tb is calculated as:

Tb = θv − θvs (6)

where θv is the virtual potential temperature, and subscript s represents the surface. A
larger Tb corresponds to a more stable air mass, leading to weak development of the PBL.

4.2. Bias in East China

The CMA-GFS model mainly underestimated the PBLH in East China. Figure 9a
compares the dynamical (wind shear) and thermal effects averaged over East China by
the CMA-GFS model with the observations. The Ws of the model was significantly lower
than the observations, and the Tb of the model was larger than the observations. As
shown in Section 4.1, both smaller Ws and a larger TB led to the development of a lower
boundary layer height. Discovered from dynamical and thermal effects, the small vertical
wind shear and larger thermal buoyancy were, therefore, direct reasons for the systematic
underestimation of the PBLH in East China by the CMA-GFS model.

The surface heat flux determines the heat exchange near the interface, affecting the
temperature near the surface. Meanwhile, the sensible heat flux is the source of energy
for the development of meteorological elements of the boundary layer and is, therefore,
closely related to the boundary layer height. The seasonal average sensible heat flux at
nine eastern observational stations, including Haihe, Changling, and Dinghushan stations
(Figure 1), were compared with the sensible heat flux predicted by the CMA-GFS model
and the ERA5 dataset. These data were provided by FluxNet (FLUXNET) and the National
Qinghai-Tibet Plateau Data Center (National Qinghai-Tibet Plateau Scientific Data Center,
tpdc.ac.cn) [53]. Figure 10a shows that the sensible heat flux forecast by the CMA-GFS
model and the ERA5 dataset was consistently lower than the observations in East China.
The bias changed little with the season but did change noticeably with the diurnal cycle.
The sensible heat fluxes in the CMA-GFS model had a significant negative bias at 0600 UTC,
with a maximum of 150 W/m. This led to smaller surface heating and ground thermal
effects than in the observations, resulting in underestimation of the PBLH.

The sensible heat flux was calculated using the near-surface layer parameterization
scheme in the CMA-GFS model and the ERA5 dataset:

Js = ρCH |U n|(c pTn−cpTsur f

)
(7)

where Js is the sensible heat flux, ρ is the density, CH is the heat exchange coefficient, U
is the wind speed, Cp is the constant pressure specific heat capacity, T. represents the
temperature, and the subscripts s and surf mean at the lowest model level (about 10 m)
and surface layer, respectively. Because there is no 10 m temperature data in the CMA-GFS
model and the ERA5 dataset, the difference between the 2 m temperature and the surface
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temperature were compared between the CMA-GFS model and the observations. The
difference between the surface temperature and the 2 m temperature is expressed by:

dT = Ts− T2m (8)

where Ts is the surface temperature, T2m is the temperature 2 m above the surface, dT is
the difference in temperature between them, and subscript s represents the surface. The
larger the value of dT, the stronger the upward transfer of heat from the surface, which
has a positive effect on the sensible heat flux. Figure 11 shows that both the CMA-GFS
model and ERA5 are in good agreement with the observation for T2m but significantly
underestimated Ts and, thus, dT, which is why the both CMA-GFS and ERA5 underes-
timated the sensible heat flux. CMA-GFS and ERA5 showed a similar bias producing
mechanism, i.e., underestimation of Ts leads to underestimation of sensible heat flux and,
then, PBLH. This means that the mechanism explaining the biases in PBLH in East China
is reliable. Ts is calculated through surface energy balance equation, which is decided by
net shortwave and longwave radiation fluxes and turbulent sensible and latent heat fluxes
at the surface. From Figure 11, underestimation of Ts was uniform during the day and at
night; so, shortwave radiation fluxes may be not the reason, since there are no shortwave
radiation fluxes at night. Therefore, the underestimation of Ts and sensible heat flux might
be related to biases in longwave radiation fluxes and latent heat fluxes, which means that
the surface layer scheme and longwave radiation parameterization in the model should be
improved in the future.
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Figure 10. Station observations (black), CMA-GFS forecasts (red), and ERA5 dataset (blue) of the
sensible heat flux in different seasons for (a) Eastern China and the (b) Qinghai–Tibetan Plateau.

4.3. Bias over the Qinghai–Tibetan Plateau and in the Tarim Basin

Both the CMA-GFS model and the ERA5 dataset showed significant bias over the
Qinghai–Tibetan Plateau. It is difficult to evaluate these biases because of the complex
topography and limited observational data for the Tibetan Plateau. Only a preliminary
analysis could be conducted based on the available information.

We analyzed the direct factors affecting the PBLH. Figure 9b shows that the annual
average Ws in the model was larger than the observations, and thewas smaller than the
observations. The stronger Ws and weaker TB enabled the PBL to develop at a higher
level. The wind shear and buoyancy factors therefore led directly to a deeper PBL and
considerable forecast bias in the model.

The sensible heat fluxes were evaluated using data from six stations on the Tibetan
Plateau. Figure 10b shows that the sensible heat flux forecast by the CMA-GFS model was
stronger than the observations throughout the year. The overestimate was larger in winter
and smaller in summer and was larger in the afternoon and evening but smaller at night
and in the early morning. This corresponded to the seasonal and daily changes in the bias
of the PBLH over the Tibetan Plateau. The model overestimated the sensible heat flux
over the Tibetan Plateau during the daytime (0600–1200 UTC) and superimposed stronger
forecasts of wind shear. This means that the model obtained better conditions to develop a
deeper PBL than the observation, with the bias reaching >500 m during the daytime. As
shown in Figure 10b, there was agreement between the ERA5 and the observations for
sensible heat fluxes in autumn; therefore, it can be found from Figure 5e that the bias of
ERA5 in autumn was smaller in the Qinghai-Tibet Plateau. This indicates that the sensible
heat flux is critical for boundary layer prediction. So, the analyses over the Qinghai–Tibetan
Plateau also imply a need to improve the surface layer scheme in CMA-GFS.

The underlying surface properties of the desert in the Tarim Basin mean that the
thermal effect is the primary driver for the development of the PBLH [54]. The model
underestimated the buoyancy but had a similar wind shear to the observations, which
stabilized the boundary layer and favored the development of a lower PBL (Figure 9c). We
can only tentatively conclude that the weak buoyancy effect was one of the reasons for
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the underestimation of the PBLH in this area as a result of the lack of flux observations in
this region.
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This analysis shows that the main reasons for the overestimation of the PBLH over
the Qinghai–Tibetan Plateau were the simultaneously strong wind shear and sensible heat
flux in the model. There were many factors responsible for the bias in the PBLH over the
Qinghai–Tibetan Plateau, and the contributions from each factor were more significant than
those in other regions.

5. Conclusions

This study of the PBLH in China based on VHRS and GPS occultation data has
shown that: the CMA-GFS model underestimated the PBLH in East China. The size of
the underestimation did not change much seasonally, but there was a diurnal cycle with a
maximum bias of about −500 m at 0600 UTC. The model showed an overestimation over
the Qinghai–Tibetan Plateau. The bias reached a maximum of about 500 m at 0600 UTC
and covered the whole Qinghai–Tibetan Plateau at this time.
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VHRS and flux station data were used to evaluate the bias in the PBLH predicted by
the CMA-GFS model and to analyze the thermal and dynamical factors for the development
of the PBLH. Our conclusions are as follows.

The underestimation of the PBLH in East China was the combined result of an under-
estimation of the wind shear and sensible heat flux, which restricts the development of
the PBL. The smaller sensible heat flux has the greatest effect on preventing the upward
growth of the PBL.

The bias in the overestimation over the Tibetan Plateau was mainly the result of
the stronger wind shear and sensible heat flux. They collectively drove the model to
develop a deeper PBL, producing a significant positive bias of the PBLH. The bias was
more apparent at 0600 and 1200 UTC during the daytime than during the night, mainly due
to the combined effects of a strong sensible heat flux with the overestimated wind shear
and underestimated buoyancy.

The bias in the predicted PBLH had a significant diurnal cycle, mainly due to the large
variations in the amplitude of the bias in the sensible heat flux over time. The bias in the
sensible heat flux reached a maximum at 0600 UTC and, then, started to decrease at 12UTC,
causing the PBLH to vary with the same pattern.

The PBLH biases of the CMA-GFS model are caused by many meteorological factors,
so, the accurate prediction of it is difficult. This study indicates that in addition to optimiz-
ing the BL scheme to improve the transport of heat and momentum fluxes, the convection,
surface layer scheme, and longwave radiation parameterization in the model also should
be improved in the future to improve the prediction of PBLH.

The results of this study will help to understand the reasons for the bias in PBL of the
CMA-GFS model and help to improve the model. However, due to the limitations of the
data, our current work only evaluated some meteorological variables and did not evaluate
the important physical quantities in the boundary layer parameterization scheme, such as
the turbulent exchange coefficient, etc.; so, the analyses are preliminary. In future studies,
we will evaluate the turbulent exchange coefficient, based on the observation study we have
just finished, and physical processes such as heat, momentum, and turbulence transport to
progressively refine the evaluation of the model. This work will play an important role in
improving the model.
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