Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Preprocessing for Experimental Data
2.2. Spatial Interpolation Method for PM Estimation
2.2.1. Conventional Spatial Interpolation Method for Cross Validation
2.2.2. Proposed Modified IDW Interpolation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, K.; Kumar, P.; Mann, G.S.; Khare, M. Mapping spatial distribution of particulate matter using kriging and inverse distance weighting at supersites of megacity Delhi. Sustain. Cities Soc. 2020, 54, 101997. [Google Scholar] [CrossRef]
- Abdullah, M. Evaluating Particulate Matter 2.5 in the Yangtze River Delta. Master’s Thesis, Missouri Statement University, Springfield, MO, USA, August 2020. [Google Scholar]
- Pang, W.; Christakos, G.; Wang, J.-F. Comparative spatiotemporal analysis of fine particulate matter pollution. Environmetrics 2009, 21, 305–317. [Google Scholar] [CrossRef]
- Whitworth, K.W.; Symanski, E.; Lai, D.; Coker, A.L. Kriged and modeled ambient air levels of benzene in an urban environment: An exposure assessment study. Environ. Health 2011, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, Y.; St-Onge, B.; Blanchet, J.-P.; Smargiassi, A. Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, X.; Kalo, M.; Piltner, R. Spatiotemporal interpolation methods for the application of estimating population exposure to fine particulate matter in the contiguous U.S. and a real-time web application. Int. J. Environ. Res. Public. Health 2016, 13, 749. [Google Scholar] [CrossRef] [Green Version]
- Lipsett, M.J.; Ostro, B.D.; Reynolds, P.; Goldberg, D.; Hertz, A.; Jerrett, M.; Smith, D.F.; Garcia, C.; Chang, E.T.; Bernstein, L. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am. J. Respir. Crit. Care Med. 2011, 184, 828–835. [Google Scholar] [CrossRef]
- Hoek, G.; Fischer, P.; Van Den Brandt, P.; Goldbohm, S.; Brunekreef, B. Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Kan, H.; Heiss, G.; Rose, K.M.; Whitsel, E.; Lurmann, F.; London, S.J. Traffic exposure and lung function in adults: The atherosclerosis risk in communities study. Thorax 2007, 62, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Pope III, C.A. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef] [Green Version]
- Yanosky, J.D.; Paciorek, C.J.; Schwartz, J.; Laden, F.; Puett, R.; Suh, H.H. Spatio-temporal modeling of chronic PM10 exposure for the nurses’ health study. Atmos. Environ. 2008, 42, 4047–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.L.; Abramson, M.J.; Dennekamp, M.; Williamson, G.J.; Guo, Y. Particulate matter modelling techniques for epidemiological studies of open biomass fire smoke exposure: A review. Air Qual. Atmos. Health 2020, 13, 35–75. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, Y.; Li, J.; Chao, C.-Y.; Liu, Q.; Wang, C.; Jia, S.; Ma, L.; Biswas, P. Using kriging incorporated with wind direction to investigate ground-level PM2.5 concentration. Sci. Total Environ. 2021, 751, 141813. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.D.; Breysse, P.N.; White, R.H.; Waugh, D.W.; Curriero, F.C. Evaluating methods for spatial mapping: Applications for estimating ozone concentrations across the contiguous United States. Environ. Technol. Innov. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Wan, Z. A temporal-spatial interpolation and extrapolation method based on geographic long short-term memory neural network for PM2.5. J. Clean. Prod. 2019, 237, 117729. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Li, L.; Gong, J.; Zhou, J. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance. PLoS ONE 2014, 9, e96111. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Gupta, I.; Brandt, J.; Kumar, R.; Dikshit, A.K.; Patil, R.S. Air quality mapping using GIS and economic evaluation of health impact for Mumbai city, India. J. Air Waste Manag. Assoc. 2016, 66, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Shad, R.; Mesgari, M.S.; Abkar, A.; Shad, A. Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput. Environ. Urban Syst. 2009, 33, 472–481. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Losser, T.; Yorke, C.; Piltner, R. Fast inverse distance weighting-based spatiotemporal interpolation: A web-based application of interpolating daily fine particulate matter PM2.5 in the contiguous U.S. using parallel programming and k-d tree. Int. J. Environ. Res. Public. Health 2014, 11, 9101–9141. [Google Scholar] [CrossRef] [PubMed]
- Bell, M. The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia region of the United States. Environ. Int. 2006, 32, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-Y.; Bell, M.L.; Lee, J.-T. Individual exposure to air pollution and lung function in Korea: Spatial analysis using multiple exposure approaches. Environ. Res. 2010, 110, 739–749. [Google Scholar] [CrossRef]
- Halek, F.; Kavousi-rahim, A. GIS assessment of the PM10, PM2.5 and PM10 concentrations in urban area of Tehran in warm and cold seasons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-2/W3, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Chae, S.; Shin, J.; Kwon, S.; Lee, S.; Kang, S.; Lee, D. PM10 and PM2.5 Real-time prediction models using an interpolated convolutional neural network. Sci. Rep. 2021, 11, 11952. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Lloyd, C.D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol. 2005, 308, 128–150. [Google Scholar] [CrossRef]
- Liao, D.; Peuquet, D.J.; Duan, Y.; Whitsel, E.A.; Dou, J.; Smith, R.L.; Lin, H.-M.; Chen, J.-C.; Heiss, G. GIS Approaches for the estimation of residential-level ambient PM concentrations. Environ. Health Perspect. 2006, 114, 1374–1380. [Google Scholar] [CrossRef]
- Gan, R.W.; Ford, B.; Lassman, W.; Pfister, G.; Vaidyanathan, A.; Fischer, E.; Volckens, J.; Pierce, J.R.; Magzamen, S. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions: Estimates of smoke and health outcomes. GeoHealth 2017, 1, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Halimi, M.; Farajzadeh, M.; Zarei, Z. Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps. Pollution 2016, 2, 375–386. [Google Scholar]
- Gentile, M.; Courbin, F.; Meylan, G. Interpolating point spread function anisotropy. Astron. Astrophys. 2013, 549, A1. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.L.; Rathbun, S.L.; Aguilar-Villalobos, M.; Naeher, L.P. Characterizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging with external drift. Atmos. Environ. 2009, 43, 2060–2069. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Yi, S.-J.; Eum, Y.S.; Choi, H.-J.; Shin, H.; Ryou, H.G.; Kim, H. Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities. Environ. Health Toxicol. 2014, 29, e2014012. [Google Scholar] [CrossRef]
- Karydas, C.G.; Gitas, I.Z.; Koutsogiannaki, E.; Lydakis-Simantiris, N.; Silleos, G.N. Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. EARSeL eProceedings 2009, 8, 26–39. [Google Scholar]
- Adhikary, S.K.; Muttil, N.; Yilmaz, A.G. Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrol. Processes 2017, 31, 2143–2161. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; M Winer, A.; J Delfino, R. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires. Atmos. Environ. 2006, 40, 3333–3348. [Google Scholar] [CrossRef] [Green Version]
- Sajjadi, S.A.; Zolfaghari, G.; Adab, H.; Allahabadi, A.; Delsouz, M. Measurement and modeling of particulate matter concentrations: Applying spatial analysis and regression techniques to assess air quality. MethodsX 2017, 4, 372–390. [Google Scholar] [CrossRef]
- Jha, D.K.; Sabesan, M.; Das, A.; Vinithkumar, N.V.; Kirubagaran, R. Evaluation of interpolation technique for air quality parameters in Port Blair, India. Univers. J. Environ. Res. Technol. 2011, 1, 301–310. [Google Scholar]
- Xu, M.; Guo, Y.; Zhang, Y.; Westerdahl, D.; Mo, Y.; Liang, F.; Pan, X. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China. Environ. Health 2014, 13, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Jo, W.-K. Assessment of PM-10 monitoring stations in Daegu using GIS interpolation. J. Korean Soc. Geospatial Inf. Syst. 2012, 20, 3–13. [Google Scholar] [CrossRef]
- Gómez-Losada, Á.; Santos, F.M.; Gibert, K.; Pires, J.C.M. A data science approach for spatiotemporal modelling of low and resident air pollution in Madrid (Spain): Implications for epidemiological studies. Comput. Environ. Urban Syst. 2019, 75, 1–11. [Google Scholar] [CrossRef]
- Dirks, K.N.; Hay, J.E.; Stow, C.D.; Harris, D. High resolution studies of rainfall on Norfolk Island part II: Interpolation of rainfall data. J. Hydrol. 1998, 208, 187–193. [Google Scholar] [CrossRef]
- Hodam, S.; Sarkar, S.; Marak, A.G.R.; Bandyopadhyay, A.; Bhadra, A. Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and kriging methods. J. Inst. Eng. India Ser. A 2017, 98, 511–524. [Google Scholar] [CrossRef]
- de Mesnard, L. Pollution models and inverse distance weighting: Some critical remarks. Comput. Geosci. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Amidror, I. Scattered data interpolation methods for electronic imaging systems: A survey. J. Electron. Imaging 2002, 11, 157. [Google Scholar] [CrossRef]
Number of Reference Stations | 70 | ||
---|---|---|---|
Number of Validation Stations | 30 | ||
Distance | from a reference station to the nearest four reference stations | mean | 7.75 km |
min | 2.42 km | ||
max | 22.95 km | ||
from validation station to the nearest four reference stations | mean | 5.45 km | |
min | 1.59 km | ||
max | 15.27 km |
Modified IDW | IDW | Kriging | Linear Triangular | ||
---|---|---|---|---|---|
PM10 | RMSE (μg/m3) | 10.17 | 10.81 | 11.06 | 10.88 |
MAPE (%) | 13.91 | 15.44 | 15.86 | 15.54 | |
PM2.5 | RMSE (μg/m3) | 6.45 | 7.12 | 7.56 | 7.40 |
MAPE (%) | 20.50 | 23.02 | 24.63 | 24.51 |
PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|
Station ID | RMSE (μg/m3) | Station Identify (ID) | RMSE (μg/m3) | Station ID | RMSE (μg/m3) | Station ID | RMSE (μg/m3) |
111124 | 6.03 | 131145 | 12.03 | 111124 | 7.45 | 131145 | 7.83 |
111142 | 8.44 | 131163 | 13.67 | 111142 | 4.77 | 131163 | 5.80 |
111151 | 8.74 | 131192 | 20.98 | 111151 | 2.86 | 131192 | 8.46 |
111202 | 5.14 | 131193 | 8.67 | 111202 | 5.48 | 131193 | 7.27 |
111213 | 7.28 | 131223 | 9.59 | 111213 | 4.59 | 131223 | 6.56 |
111232 | 5.65 | 131232 | 14.49 | 111232 | 2.5 | 131232 | 15.10 |
111241 | 5.07 | 131341 | 10.57 | 111241 | 6.69 | 131341 | 6.45 |
111261 | 6.55 | 131382 | 14.26 | 111261 | 3.37 | 131382 | 5.66 |
111282 | 12.37 | 131383 | 10.66 | 111282 | 5.67 | 131383 | 5.97 |
111311 | 5.31 | 131413 | 9.20 | 111311 | 4.44 | 131413 | 6.81 |
131116 | 11.77 | 131442 | 11.72 | 131116 | 4.3 | 131442 | 7.34 |
131125 | 8.16 | 131502 | 6.58 | 131125 | 6.46 | 131502 | 4.61 |
131126 | 6.06 | 131532 | 7.80 | 131126 | 5.14 | 131532 | 5.92 |
131132 | 6.81 | 831154 | 6.67 | 131132 | 5.88 | 831154 | 6.55 |
131133 | 15.96 | 831155 | 8.16 | 131133 | 7.31 | 831155 | 4.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere 2022, 13, 846. https://doi.org/10.3390/atmos13050846
Choi K, Chong K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere. 2022; 13(5):846. https://doi.org/10.3390/atmos13050846
Chicago/Turabian StyleChoi, Kanghyeok, and Kyusoo Chong. 2022. "Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping" Atmosphere 13, no. 5: 846. https://doi.org/10.3390/atmos13050846
APA StyleChoi, K., & Chong, K. (2022). Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere, 13(5), 846. https://doi.org/10.3390/atmos13050846