On the Possibility of Modeling the IMF By-Weather Coupling through GEC-Related Effects on Cloud Droplet Coalescence Rate
Abstract
:1. Introduction
2. The SOCOL Chemistry-Climate Model Description
3. Materials and Methods
3.1. IMF B and IMF B-Associated Changes in Ionosphere-to-Ground (Ionospheric) Electric Potential (IP), Fair-Weather Current Density (J), and Cloud Microphysics
3.2. Model Experiments
4. Results
Geographical Distribution of Surface Air Pressure and 2 m Temperature Anomalies
5. Discussion
6. Conclusions
- We investigated the reaction of surface meteorology to IMF B fluctuation using the chemistry-climate model SOCOLv3 to verify the mechanism in which this connection occurs through the altering of cloud droplet (ice) coalescence (accretion) rate under the action of the GEC.
- Model results and subsequent simple statistical analysis indicate that the IMF B signal is not manifest itself in ground-level air pressure and temperature.
- The internal model variability might interfere with revealing the IMF B signal in surface meteorology, which shows the magnitude consistent with the magnitude of the control run.
- The error in the mean of ensemble experiments is generally consistent with the magnitude of observed IMF B-related anomalies.
- The underlying unaccounted processes behind meteorological variability and remaining noise from the seasonal cycle or trend may also disrupt the distinguishing of the IMF B-related anomalies in ground-level weather parameters.
- The model results cannot confirm the hypothesis that the cloud droplet coalescence rate is the intermediate link for the IMF B-weather coupling. Therefore, we only rule out the considered microphysical mechanism for the Mansurov effect, without weakening the likelihood of others or the observational evidence for the reality of the effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IMF | interplanetary magnetic field |
IMF B | dusk-to-dawn (B) component of IMF |
GEC | global electric circuit |
CPCP | cross-polar-cap potential |
CCN | cloud condensation nuclei |
CCM | chemistry-climate model |
GSM | Geocentric Solar Magnetic |
HCS | heliospheric current sheet |
MA-ECHAM5.4 | the Middle Atmosphere version of the European Center/Hamburg Model |
version 5.4 | |
CTM | chemistry-transport model |
MEZON | Model for the Evaluation of oZONe Trends |
NSSDC | National Space Science Data Center |
IP | ionospheric (ionosphere-to-ground) potential |
References
- Mansurov, S.M.; Mansurova, L.G.; Mansurov, G.S.; Mikhnevich, V.V.; Visotskii, A.M. North-south asymmetry of geomagnetic and tropospheric events. J. Atmos. Terr. Phys. 1974, 36, 1957. [Google Scholar] [CrossRef]
- Page, D.E. The interplanetary magnetic field and sea level polar atmospheric pressure. Workshop Mech. Tropospheric Eff. Sol. Var.-Quasi-Bienn. Oscil. 1993, 98, 227. [Google Scholar]
- Tinsley, B.A.; Heelis, R.A. Correlations of atmospheric dynamics with solar activity evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics. J. Geophys. Res. (Atmos.) 1993, 98, 10375–10384. [Google Scholar] [CrossRef] [Green Version]
- Burns, G.B.; Tinsley, B.A.; Frank-Kamenetsky, A.V.; Bering, E.A. Interplanetary magnetic field and atmospheric electric circuit influences on ground-level pressure at Vostok. J. Geophys. Res. (Atmos.) 2007, 112, D04103. [Google Scholar] [CrossRef] [Green Version]
- Burns, G.B.; Tinsley, B.A.; French, W.J.R.; Troshichev, O.A.; Frank-Kamenetsky, A.V. Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic. J. Geophys. Res. (Atmos.) 2008, 113, D15112. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.A. The global atmospheric electric circuit and its effects on cloud microphysics. Rep. Prog. Phys. 2008, 71, 066801. [Google Scholar] [CrossRef]
- Lam, M.M.; Chisham, G.; Freeman, M.P. The interplanetary magnetic field influences mid-latitude surface atmospheric pressure. Environ. Res. Lett. 2013, 8, 045001. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.M.; Chisham, G.; Freeman, M.P. Solar wind-driven geopotential height anomalies originate in the Antarctic lower troposphere. Geophys. Res. Lett. 2014, 41, 6509–6514. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.P.; Lam, M.M. Regional, seasonal, and inter-annual variations of Antarctic and sub-Antarctic temperature anomalies related to the Mansurov effect. Environ. Res. Commun. 2019, 1, 111007. [Google Scholar] [CrossRef]
- Frederick, J.E.; Tinsley, B.A.; Zhou, L. Relationships between the solar wind magnetic field and ground-level longwave irradiance at high northern latitudes. J. Atmos. Sol.-Terr. Phys. 2019, 193, 105063. [Google Scholar] [CrossRef]
- Tinsley, B.A.; Zhou, L.; Wang, L.; Zhang, L. Seasonal and Solar Wind Sector Duration Influences on the Correlation of High Latitude Clouds with Ionospheric Potential. J. Geophys. Res. (Atmos.) 2021, 126, e34201. [Google Scholar] [CrossRef]
- Tinsley, B.A. Uncertainties in Evaluating Global Electric Circuit Interactions With Atmospheric Clouds and Aerosols, and Consequences for Radiation and Dynamics. J. Geophys. Res. (Atmos.) 2022, 127, e35954. [Google Scholar] [CrossRef]
- Hairston, M.R.; Heelis, R.A. Model of the high-latitude ionospheric convection pattern during southward interplanetary magnetic field using DE 2 data. J. Geophys. Res. (Atmos.) 1990, 95, 2333–2343. [Google Scholar] [CrossRef]
- Weimer, D.R. A flexible, IMF dependent model of high-latitude electric potentials having “Space Weather” applications. Geophys. Res. Lett. 1996, 23, 2549–2552. [Google Scholar] [CrossRef]
- Weimer, D.R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. (Atmos.) 2001, 106, 407–416. [Google Scholar] [CrossRef]
- Pettigrew, E.D.; Shepherd, S.G.; Ruohoniemi, J.M. Climatological patterns of high-latitude convection in the Northern and Southern Hemispheres: Dipole tilt dependencies and interhemispheric comparisons. J. Geophys. Res. (Space Phys.) 2010, 115, A07305. [Google Scholar] [CrossRef] [Green Version]
- Cowley, S.W.H.; Lockwood, M. Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Ann. Geophys. 1992, 10, 103–115. [Google Scholar]
- Lucas, G.M.; Baumgaertner, A.J.G.; Thayer, J.P. A global electric circuit model within a community climate model. J. Geophys. Res. (Atmos.) 2015, 120, 12054–12066. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Nicoll, K.A.; Aplin, K.L.; Giles Harrison, R. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 2012, 90, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.T.R. A Theory of Thundercloud Electricity. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1956, 236, 297–317. [Google Scholar]
- Zhou, L.; Tinsley, B.A. Production of space charge at the boundaries of layer clouds. J. Geophys. Res. (Atmos.) 2007, 112, D11203. [Google Scholar] [CrossRef] [Green Version]
- Nicoll, K.A. Measurements of Atmospheric Electricity Aloft. Surv. Geophys. 2012, 33, 991–1057. [Google Scholar] [CrossRef]
- Harrison, R.G.; Nicoll, K.A.; Ambaum, M.H.P. On the microphysical effects of observed cloud edge charging. Q. J. R. Meteorol. Soc. 2015, 141, 2690–2699. [Google Scholar] [CrossRef]
- Tinsley, B.A.; Deen, G.W. Apparent tropospheric response to MeV-GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res. (Atmos.) 1991, 96, 22283–22296. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tinsley, B.A.; Wang, L.; Burns, G. The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential. J. Atmos. Sol.-Terr. Phys. 2018, 171, 111–118. [Google Scholar] [CrossRef]
- Harrison, R.G.; Lockwood, M. Rapid indirect solar responses observed in the lower atmosphere. Proc. R. Soc. Lond. Ser. A 2020, 476, 20200164. [Google Scholar] [CrossRef]
- Baumgaertner, A.J.G.; Lucas, G.M.; Thayer, J.P.; Mallios, S.A. On the role of clouds in the fair weather part of the global electric circuit. Atmos. Chem. Phys. 2014, 14, 8599–8610. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Xue, H. The enhancement of droplet collision by electric charges and atmospheric electric fields. Atmos. Chem. Phys. 2021, 21, 69–85. [Google Scholar] [CrossRef]
- Lachlan-Cope, T. Antarctic clouds. Natl. Inst. Polar Res. Mem. 2010, 29, 150–158. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Hines, K.M.; Kay, J.E.; Key, E.L.; Lazzara, M.A.; Lubin, D.; McFarquhar, G.M.; Gorodetskaya, I.V.; Grosvenor, D.P.; et al. Tropospheric clouds in Antarctica. Rev. Geophys. 2012, 50, RG1004. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.M.; Freeman, M.P.; Chisham, G. IMF-driven change to the Antarctic tropospheric temperature due to the global atmospheric electric circuit. J. Atmos. Sol.-Terr. Phys. 2018, 180, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Mareev, E.A.; Volodin, E.M. Variation of the global electric circuit and Ionospheric potential in a general circulation model. Geophys. Res. Lett. 2014, 41, 9009–9016. [Google Scholar] [CrossRef]
- Karagodin, A.; Rozanov, E.; Mareev, E.; Mironova, I.; Volodin, E.; Golubenko, K. The representation of ionospheric potential in the global chemistry-climate model SOCOL. Sci. Total. Environ. 2019, 697, 134172. [Google Scholar] [CrossRef] [PubMed]
- Golubenko, K.; Rozanov, E.; Mironova, I.; Karagodin, A.; Usoskin, I. Natural Sources of Ionization and Their Impact on Atmospheric Electricity. Geophys. Res. Lett. 2020, 47, e88619. [Google Scholar] [CrossRef]
- Karagodin, A.; Mironova, I.; Rozanov, E. Sensitivity of Surface Meteorology to Changes in Cloud Microphysics Associated with IMF By. In Problems of Geocosmos–2020; Springer Proceedings in Earth and Environmental Sciences; Springer Nature: Cham, Switzerland, 2022; pp. 413–420. [Google Scholar] [CrossRef]
- Edvartsen, J.; Maliniemi, V.; Tyssøy, H.N.; Asikainen, T.; Hatch, S.M. The Mansurov effect: Statistical significance and the role of autocorrelation. J. Space Weather Space Clim. 2022, 12, 11. [Google Scholar] [CrossRef]
- Stenke, A.; Schraner, M.; Rozanov, E.; Egorova, T.; Luo, B.; Peter, T. The SOCOL version 3.0 chemistry-climate model: Description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev. 2013, 6, 1407–1427. [Google Scholar] [CrossRef] [Green Version]
- Manzini, E.; Giorgetta, M.A.; Esch, M.; Kornblueh, L.; Roeckner, E. The Influence of Sea Surface Temperatures on the Northern Winter Stratosphere: Ensemble Simulations with the MAECHAM5 Model. J. Clim. 2006, 19, 3863. [Google Scholar] [CrossRef]
- Rozanov, E.V.; Zubov, V.A.; Schlesinger, M.E.; Yang, F.; Andronova, N.G. The UIUC three-dimensional stratospheric chemical transport model: Description and evaluation of the simulated source gases and ozone. J. Geophys. Res. (Atmos.) 1999, 104, 11755–11781. [Google Scholar] [CrossRef]
- Egorova, T.; Rozanov, E.; Zubov, V.; Karol, I. Model for investigating ozone trends (MEZON). Izv.-Atmos. Ocean. Phys. 2003, 39, 277–292. [Google Scholar]
- Lohmann, U.; Roeckner, E. Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim. Dyn. 1996, 12, 557–572. [Google Scholar] [CrossRef]
- Markson, R. Aircraft measurements of the atmospheric electrical global circuit during the period 1971–1984. J. Geophys. Res. (Atmos.) 1985, 90, 5967–5977. [Google Scholar] [CrossRef]
- Tinsley, B.A.; Zhou, L. Parameterization of aerosol scavenging due to atmospheric ionization. J. Geophys. Res. (Atmos.) 2015, 120, 8389–8410. [Google Scholar] [CrossRef]
- Zhang, L.; Tinsley, B.; Zhou, L. Parameterization of In-Cloud Aerosol Scavenging Due to Atmospheric Ionization: Part 4. Effects of Varying Altitude. J. Geophys. Res. (Atmos.) 2019, 124, 13105–13126. [Google Scholar] [CrossRef]
- Sukhodolov, T.; Egorova, T.; Stenke, A.; Ball, W.T.; Brodowsky, C.; Chiodo, G.; Feinberg, A.; Friedel, M.; Karagodin-Doyennel, A.; Peter, T.; et al. Atmosphere-ocean-aerosol-chemistry-climate model SOCOLv4.0: Description and evaluation. Geosci. Model Dev. 2021, 14, 5525–5560. [Google Scholar] [CrossRef]
Name of Experiment | Experiment Description | Period of Simulation |
---|---|---|
Control | No IMF B is used (10 ensemble members) | 1999–2002 |
B(loc) experiment | IMF B contributes locally near the magnetic pole (|70| < mlat) (10 ensemble members) | 1999–2002 |
B(glob) experiment | IMF B contributes globally within the entire hemisphere (10 ensemble members) | 1999–2002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagodin, A.; Rozanov, E.; Mironova, I. On the Possibility of Modeling the IMF By-Weather Coupling through GEC-Related Effects on Cloud Droplet Coalescence Rate. Atmosphere 2022, 13, 881. https://doi.org/10.3390/atmos13060881
Karagodin A, Rozanov E, Mironova I. On the Possibility of Modeling the IMF By-Weather Coupling through GEC-Related Effects on Cloud Droplet Coalescence Rate. Atmosphere. 2022; 13(6):881. https://doi.org/10.3390/atmos13060881
Chicago/Turabian StyleKaragodin, Arseniy, Eugene Rozanov, and Irina Mironova. 2022. "On the Possibility of Modeling the IMF By-Weather Coupling through GEC-Related Effects on Cloud Droplet Coalescence Rate" Atmosphere 13, no. 6: 881. https://doi.org/10.3390/atmos13060881
APA StyleKaragodin, A., Rozanov, E., & Mironova, I. (2022). On the Possibility of Modeling the IMF By-Weather Coupling through GEC-Related Effects on Cloud Droplet Coalescence Rate. Atmosphere, 13(6), 881. https://doi.org/10.3390/atmos13060881