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Abstract: Isometric feature mapping (ISOMAP) is a nonlinear dimensionality reduction method
used for extracting features from spatiotemporal data. The traditional principal component analysis
(PCA), a linear dimensionality reduction method, measures the distance between two data points
based on the Euclidean distance (line segment), which cannot reflect the actual distance between the
data points in a nonlinear space. By contrast, the ISOMAP measures the distance between two data
points based on the geodesic distance, which more closely reflects the actual distance by the view of
tracing along the local linearity in the original nonlinear structure. Thus, ISOMAP-reconstructed data
points can reflect the features of real structures and can be classified more accurately than traditional
PCA-reconstructed data points. Moreover, these ISOMAP-reconstructed data points can be used for
cluster analysis by emphasizing the differences among the points more than those by the traditional
PCA. In this study, sea surface temperature (SST) data points reconstructed using the traditional PCA
and ISOMAP were compared. The classification based on these reconstructed SST points was tested
using the Niño 3.4 index, which labels El Niño, La Niña, or normal events. The mean differences
from the ISOMAP data points were larger than those from the traditional PCA data points. The
ISOMAP not only helped differentiate the points in two different events but also provided better
difference measurement of the points belonging to the same class (e.g., 82/83 and 97/98 El Niño
events). On examining the evolution of the leading three temporal eigen components of the SST PCA,
or especially the SST ISOMAP, we found that the trajectories were similar to the Lorenz 63 model
on a phase space figure. This implies that NWP perturbations can be traced using the ISOMAP to
measure growing unstable behaviors. Spatial eigenmodes (empirical orthogonal function) between
the traditional PCA and ISOMAP were also determined and compared herein.

Keywords: El Niño; EOF; ISOMAP; La Niña; Niño 3.4; PCA; SST

1. Introduction

Classification or clustering is performed to understand differences among events
(e.g., numerical data, colors, and object shapes or figures). The success of the classification
method depends on the effective clarification for describing, measuring, and recognizing
these differences. For example, to analyze the high dimensional data takes time and
computing cost to extract information. Traditionally, the analyzed high dimensional data
are dimensional reduction to low dimension 2D or 3D points and the difference can be
measured simply by the distance in the low-dimensional space. Certainly, a meaningful
low-dimensional space that can appropriately extract features from data must be identified.

Principal component analysis (PCA) is a traditional linear dimensionality reduction
method. Leading PCA components extract the main variances of the original data, which
are called explained variances. Fewer the leading PCA components and more the explained
variances, the better the PCA results. For example, if the original data dimensions are
10,000, then three leading PCA components can be used to explain 80% original variances
and the PCA results are very good. By contrast, the PCA results are worse when an excess
of 100 leading PCA components are used to explain only 50% original variances. Therefore,
many PCA modifications and other alternative techniques [1–3] attempted to address this
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imperfect interpretation in real data analysis. For example, the modifications including:
rotation PCA [4], probabilistic PCA [5–7], Bayesian PCA [5,6], and kernel PCA [8], are
available. Other alternative techniques are the independent component analysis (ICA) and
independent subspace analysis (ISA), which found the hidden possible factors behind of
the physical phenomena based on source signals rather than prominent variances as PCA.
The framework of ICA or ISA was built on non-Gaussian distributions and the assumption
of composed linearly of source signals [9–11]. The ICA or ISA looked for components
or subspaces which were the most statistically independent as possible under the view
of non-Gaussian probability distributions. Better classification results can be obtained
after retrieving low-dimensional PCA or ICA components. Low-dimensional data points
from the PCA or ICA can be classified more easily than the original high-dimensional
data points.

Tenebaum et al. [12] proposed iso metric feature mapping (ISOMAP) to solve the
classification problem and obtain well-distributed low-dimensional data points. They
pointed out that the traditional PCA considers the data linearly; for example, time evolution
is resolved by the linear evolution of the original data arrangement. The geopotential height
can be imagined to evolve in a month by daily data. The 30-times data being considered is
constrained by the linear time variation. The Geopotential height does not evolve linearly
in 1 month. However, despite this, the covariance matrix of the Geopotential height is
counted linearly in the PCA. When these linear considerations are used to determine
nonlinear variation, the data points cannot be discriminated and are sticky together by
the view of low dimensional principal axes. Classifying concentrated or sticky together
data points is difficult, and it leads to classification failure. The linear PCA separated
points cannot represent the actual distances between the data points, leading to imperfect
and false classification. In the ISOMAP, the original nonlinear relations in the data are
built by establishing the nearest neighbors. The ISOMAP maintains the linearity of small
domains but reflects nonlinear variations in the larger domain. In other words, this is
called manifold consideration or manifold learning. That means the small local domain
of the manifold is the homeomorphism as the Euclidean space. Dimensionality reduction
through the ISOMAP reflects the real and nonlinear variations between the data points; in
brief, data points can be pushed away more than that with the traditional linear PCA. Thus,
classification can be effectively performed after ISOMAP dimensionality reduction.

In this study, we used sea surface temperature (SST) data to perform traditional
El Niño classification. Classification results obtained through the traditional PCA and
ISOMAP were compared. We presented the leading eigen components constructed using
the PCA/ISOMAP as the space coordinate values over time, which depicted trajectories.
On examining the data point trajectories after the ISOMAP, we found that the evolution
exhibited the Lorenz 63 model on a phase space figure. The SST data points switched to
different El Niño, normal, and La Niña events and spiral trajectories were never repeated.
The ISOMAP SST point trajectories indicated that El Niño cycles like the chaotic behaviors
as the phase space plot showing. Based on this indication, we believe that ISOMAP analysis
can be a diagnostic tool for tracing the circulation evolution and evaluating ensemble
perturbations, ensemble forecast spread, or even the numerical weather prediction (NWP)
score between forecasts and analysis.

Some studies have reported that there are several types of El Niño/La Niña events
(e.g., warm pool, dateline, Central Pacific, Eastern Pacific, and El Niño Modoki [pseudo
El Niño] types) [13–15] and have differentiated these events by the geographical positions
in which the SST anomaly centers/patterns are located. They combined PCA, correla-
tion, regression-PCA methods, and different indices (Niño 1 + 2, Niño 3, Niño 4, and
Niño 3.4) for an improved recognition of these different types of El Niño/La Niña events.
These different events have varied connections with different weather/climate patterns.
The improved recognition allows a more accurate forecast and greater resilience of their
corresponding extreme weather events. However, the aforementioned methods are not
straightforward and their results do not allow simple data visualization. We found the SST
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points constructed using the ISOMAP to reflect the differences in the types of El Niño/La
Niña events in a simpler manner because these differences could be measured directly on
the basis of the distance between the constructed SST points.

The remainder of this paper is organized as follows. In Section 2, we explain the
definition of Niño 3.4 index for different SST events, the SST data, and the concept of
ISOMAP. In Section 3, we show PCA/ISOMAP-reconstructed points and classification
results. In the final section, we summarise major findings and the future applications
regarding ISOMAP.

2. Data and Methods

The SST data used herein were obtained from version 5 of the NOAA NCDC ERSST
(Extended Reconstructed global Sea Surface Temperature) data set, based on COADS data,
collected from January 1980 to December 2021. To distinguish the El Niño, normal, or La
Niña events are based on the Niño 3.4 (170◦ W–120◦ W, 5◦ S–5◦ N) index from NOAA’s
Climate Prediction Center. El Niño events were defined in Niño 3.4 region when the
moving 3-month average SST anomaly exceeded 0.5 ◦C for at least 5 months. By contrast,
La Niña events/anti-El Niño events were defined when the average SST anomaly was
lower than 0.5 ◦C for 5 months. Determining the relationship between this index and the
Pacific Ocean domain (120◦ E–60◦ W, 30◦ S–30◦ N) SST pattern would be interesting. Most
studies on El Niño have focused on the large-scale circulation patterns and not on the Niño
3.4 index area.

The concept of ISOMAP is shown in Figure 1. The real data points are located in the
warp surface, as shown in the arc curve in Figure 1. During PCA calculation, we assume
that the variation (temporal or spatial) is linear and the relation between data points is
like a short straight line. The PCA relation can be considered a type of Euclidean distance.
However, the real distance between point c and point d is greater than the Euclidean
distance. Thus, PCA always fails to present the real situation. To use a linear tool such
as linear algebra eigen solutions, we must rearrange the relation, the distance, according
to the longer straight line in Figure 1. The distance between point c and point d on the
geodesic line truly reflects the distance in the real warp surface, the curve, in Figure 1. In
brief, we consider the neighbor’s situation and we do not take the ‘shortcut’ between the
given data points.
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star points. The green segments are the measured distances of these data points.

Tenebaum et al. [12] proposed to plot the nearest neighbor graph that is used to reflect
the distance on the warp surface. This means the distance between point c and point d
is not calculated using the Euclidean distance, the shortcut straight distance method, but
by including the other three points. Under geodesic framework, after considering the
neighbors, the shortest distance is decided again and one red circle point is bypass to the
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distance counting. The geodesic distance is calculated on the basis of this neighbor graph,
and then, this distance relation is used to form the covariance matrix that can be solved
by the traditional PCA or multi-dimensional scaling (MDS) method [16]. The ISOMAP
(Algorithm 1) is shown below [17–19].

Algorithm 1: ISOMAP

Step 1. construct the matrix of squared pairwise similarities D, Di j =
∣∣∣∣∣∣yi − yj

∣∣∣∣∣∣2, the distance
matrix, measured on temporal dimension. The i, j are temporal indexes.
Step 2. build the weighted graph based on the D according to how many neighbors of each point
Step 3. estimate the geodesic distances DG by finding the shortest paths on the weighted graph
(Dijkstra’s algorithm [20])
Step 4. define B = −1/2 J DG JT, where J = I − 1/N, I is the identity matrix, and N is the number
of data points
Step 5. solve eigen problem BP = PΣ
Step 6. computing the leading principal vectors by X = PΣ1/2

To measure the ISOMAP low dimensionality sufficient criterium is the residual vari-
ance [12], which is defined as follows:

1 − R2(DM , DG).

DG is the geodesic distance matrix used in steps 3 and 4 in Algorithm 1 for solving the
eigen problem, DM is the geodesic distance matrix reconstructed from the ISOMAP, the
low-dimensional eigen (principal) components (leading modes of step 6 in Algorithm 1),
and R is the coefficient of correlation. The larger the correlation between DM and DG
is, the lower the residual variance is, and low-dimensional components can be used to
approximate the original high-dimensional structure [12,18]. In this paper, we constructed
the distance matrix based on the temporal dimension. We assumed that the time variation
of the SST is not linear. The detailed arrangements of the matrices used are given in the
Appendix A.

The classifier used in this study is the smooth support vector machine (SSVM) that
replaces the plus function in the non-smooth SVM by a smooth function [21]. All test results
presented in the next paragraphs were obtained from 20-times 5-fold cross-validation. This
means that 80% data were randomly selected as the training set and the remaining 20%
data formed the testing set in each validation. Then, the average training errors/testing
errors of this 20-times validation were calculated.

3. Classification

Three leading temporal eigenvectors from the PCA and ISOMAP were used for
presenting points reconstructed after dimensionality reduction (step 6 in the Algorithm 1).
The leading 20 eigenvectors were used for testing the classification results. Figure 2a
presents the 3D structure of the PCA-reconstructed points, and Figure 2b shows the 2D
structure of the PCA-reconstructed points. The El Niño events were labeled red, normal
events were marked yellow, and La Niña events were labeled blue. In Figure 2, most El Niño,
normal, and La Niña events were already well separated. This means that meteorologists
are correctly using the Niño 3.4 index to define the El Niño event. Inevitably, some points
were stuck together, which probably led to the classifier failure. Under this situation, if
the sufficient distance between the PCA data points can be obtained, the better is for the
classification. As mentioned in the previous section, the solution can be the ISOMAP that
efficiently separates the points by measuring the geodesic distance, thus reflecting the
actual space distance variation between the data points.
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of the two leading PCA components.
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eigen components of the ISOMAP are presented in Figure 3a. The ISOMAP points were
indeed more separated than the PCA points. Some events were significantly different from
others even if they belonged to the same class (El Niño: 82/83, 97/98, 15/16; La Niña:
84/85, 88/89, 98/99). The 3D structure of the ISOMAP-reconstructed data points exhibited
more space variations, with the data points being well separated, and allowed grouping of
the data points into different clusters. Figure 3b is the 2D structure of Figure 3a and shows
well-separated data points compared with those in Figure 2b (PCA calculation).
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Figure 3. (a) 3D structure composed of the three leading ISOMAP components. (b) 2D structure
composed of the two leading ISOMAP components.

The data points for the recent 31 months were marked by a star sign outside the circle
of points. If the center of Figures 2 and 3 represented the climatology mean, the recent
31-month trajectory was far from the center. This indicates that the recent SST data evolved
differently from the previous SST data. Using the past data to describe the recent 31-month
variation would be difficult. To highlight this situation, we faded the data points before the
recent 31-month period but made those for the recent 31 months clear (Figure 4). We found
the trajectory to be like number 8, the circular shape. On using animation to demonstrate
these 41-year SST data points, we could find the trajectories in a circular motion, similar to
the Lorenz 63 model [22] on a phase space figure. The SST points swung between the El
Niño, normal, and La Niña events and would not repeat their passages. These trajectory
behaviors corresponded to those reported in previous studies [23,24], which indicated that
the change in ENSO events is a low-order chaotic system.
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1 
 

 Figure 4. 3D structure composed of the three leading ISOMAP components but only has the recent
31-month data points highlighted. The curves marked by arrow s depict the time evolution (May
2019 to December 2021) of these points. The trajectory shows the end of last El Niño (red arrows),
circling in normal events (yellow arrows), dramatically changing to be La Niña (blue arrows) with a
bigger circle route then back to two-month normal events, and to be La Niña again.

One spatial eigenmode and its corresponding temporal eigenmode acted as a pair in
the PCA or ISOMAP calculation. The original data matrix could simply be multiplied with
the temporal mode to obtain the spatial mode and vice versa. After the examination of the
temporal modes, the leading three spatial eigenmodes, the empirical orthogonal function
(EOF), were presented in Figures 5 and 6 (from the PCA and ISOMAP respectively). The
number in the top legend of all panels of Figures 5 and 6 is the ratio of the explained
variance. With the three leading eigenmodes, the explained variances of the ISOMAP were
not as good as those of the PCA. The first eigenmodes of both methods were similar, but the
second and third eigenmodes were slightly different. These small differences in the three
leading eigenmodes led to obvious differences in the distribution of the corresponding
temporal points. In fact, no obvious differences were observed between the PCA and
ISOMAP in the first 20 leading spatial eigenmodes (not shown). Slight rearrangement
by using the ISOMAP can help separate the data points, allowing their grouping into
different clusters.

The residual variances mentioned in the previous section reflect the similarity between
the original covariance and low-dimensional covariance. Residual variances of the ISOMAP
with the different nearest neighbor numbers are presented in Figure 7. Residual variances
became smaller as the neighbor number increased. However, the lower residual variance
values did not mean that the nearest neighbor number in ISOMAP was considerably better.
It depends on what kind of purpose the ISOMAP needs to achieve. If we want to do
classification, we cannot choose the largest nearest neighbor number. Basically, when we
connected all the points together in the ISOMAP, the matrix used to solve eigenmodes was
similar to the covariance matrix in the PCA. The method connected all points is actually
the MDS. When the distance is measured in Euclidean space, the MDS is identical to
the PCA [18]. The PCA-reconstructed points in Figure 2 were not distributed well for
classification. This is also the reason for not considering all neighbors to count the ISOMAP
because the temporal data points are all connected to each other, and thus, the advantage of
the ISOMAP is lost. On the other hand, the explained variances from the ISOMAP were not
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good, but their residual variances were sufficiently lower to reconstruct low-dimensional
structures approximate to the high-dimensional structures. The advantage of ISOMAP
gave the reasonable distance estimations between the disconnected points through the
Dijkstra’s algorithm, which decided the shortest path through the neighbors and visited all
the points. In brief, the disconnected two points were connected by their neighbors, while
preferably no single point is isolated. It also pointed out that try to avoid using too small
nearest neighbor number to prevent some points from being isolated.

 

 

 

 
 Figure 5. The first three spatial eigen modes (EOFs) of the PCA. The number in the top legend of

every figure is the ratio of the explained variance.
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Figure 6. The first three spatial eigen modes (EOFs) of the ISOMAP. The number in the top legend of
every figure is the ratio of the explained variance.

The first 20 leading components were considered as data points for classification, and
SSVM results are presented in Table 1 (the PCA) and Table 2 (the ISOMAP). We performed
20-times 5-fold cross-validation to obtain these results. The ISOMAP results were slightly
better than the PCA results. We defined two classes problem as El Niño/non El Niño or
La Niña/non La Niña, because the simple SVM was the 2-class classifier. To classify El
Niño/non El Niño was little easier than to classify La Niña/non La Niña. The clues were
already in Figures 2 and 3, because the blue La Niña points were closer each other and more
difficult to distinguish. No special reason existed for taking the 20 dimensionalities to form
data points for the classification. We tested from 1–20 dimensionalities for classification,
and the accuracy was approximately 90% with 2–20 dimensionalities, whereas it was
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approximately 84% with 1 dimensionality. Removal of the normal events from the testing
would have led to considerably better classification results and 99% accuracy. All these test
results support that the Niño 3.4 index is a good index for defining ENSO events. 

 

 

Figure 7. ISOMAP residual variances. The different nearest neighbor numbers in ISOMAP calculation
are shown in different colors.

Table 1. The training errors and the testing errors from the 20-dimensionality PCA with SVM.

PCA with SVM Training Error Testing Error

El Niño and non El Niño 0.0525 0.1115

La Niña and non La Niña 0.0525 0.1001

Table 2. The training errors and the testing errors from the 20-dimensionality ISOMAP with SVM.

ISOMAP (44 *) with SVM Training Error Testing Error

El Niño and non El Niño 0.0385 0.0922

La Niña and non La Niña 0.0545 0.0801
* 44 is the number of neighbors.

4. Conclusions and Discussion

The ISOMAP could help identify extreme El Niño events and easily measure the
differences between any two events from the reconstructed space and data points. The
distances far or close in the ISOMAP-reconstructed space provide the measurement of the
similarities between data points and were more accurate than the distances in the traditional
PCA-reconstructed space. The ISOMAP residual variances provided the reference values
to decide whether the number of lower dimensionalities was sufficient for the classification.
The ISOMAP results could be easily used to perform clustering. Moreover, the ISOMAP
allowed grouping of some events or clarified why two events belonging to the El Niño class
were different. Although studies have indicated that no two El Niño events are identical,
measuring the extent of differences between two events in the same class was possible
because of the ISOMAP tool. Meanwhile, we are also proceeding the test that if it is possible
to define or predict the ENSO event through SSVM with ISOMAP-reconstructed points
instead of the Niño 3.4 index.
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Besides solving the El Niño problem, the ISOMAP method can also be used to per-
form composite analysis when similar cases are to be selected among other meteorological
problems. The ISOMAP can be used as a tool for diagnosing different atmospheric cir-
culations. Of course, the ISOMAP can be a score measurement for evaluating the NWP
outputs and observation. For example, the SST NWP model output can be projected on the
leading components of the ISOMAP SST observational data and some forecasts with a high
probability to be true can be analyzed. Moreover, the same procedure can be used to trace
the NWP perturbations and detect the growing unstable behaviors. The ISOMAP trajectory
behaviors showing in Figure 4 are only similar to Lorenz 63 model trajectory in shapes.
It is worth doing more researches in ISOMAP trajectory behavior to check the profound
meaning of sensitivity to initial conditions in Lorenz 63 model or other NWP models.

In this study, the number of nearest neighbors was 44 for the ISOMAP calculation.
In fact, we tested the neighbor number from 8 to 60, and the number 44 was selected as
it could provide the best SSVM classification results. We used the monthly SST data and
do not know whether the selected neighbor number is related to the El Niño period of
2–10 years. With a neighbor number greater than 480, the classification results are similar to
those of the PCA method. Actually, if we use Euclidean space to measure the distance and
take all points connected (any one point connecting to others), the ISOMAP is degenerated
to MDS which is identical to the PCA [18]. The reconstructed data points are closer to each
other (same as Figure 2), and the advantage of using the ISOMAP is lost.

The traditional PCA is sensitive to the counting domain chosen. If we are concerned
about the ENSO, the SST in Pacific Ocean, we should perform a PCA calculation in the
tropical Pacific region. If the global domain SST is used to calculate the PCA, global EOF
structures that are difficult to explain are obtained. However, the ISOMAP can maintain
the local structures even it is not wise to take this kind of calculation. Because the PCA or
ISOMAP extracts the counting domain maximum variance patterns out, the bigger domain
contains the irrelevant pattern with Pacific Ocean SST pattern. The ISOMAP builds the
nearest neighbors first and it has the limitation of the irrelevant pattern.

During this study, the SST ISOMAP-reconstructed point returned to the cluster of the
last La Niña event since August 2021. At that time, according to the Niño 3.4 index, La
Niña was defined as 3-month running mean SST anomalies lower than 0.5 ◦C for at least
5 consecutive months. Thus, NOAA declared the recent La Niña event until January 2022.
Are there any methods to determine the ISOMAP point trajectory in the moment of August
2021 toward the La Niña event or back to the normal year? The ISOMAP-reconstructed
points from the NWP ensemble results can probably predict the SST after the moment of
August 2021 would be a La Niña event.
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Appendix A

The data matrix is YKN . It can be formed by the SST anomaly, that is, the SST value
subtracting its climatological mean. Moreover, M is the dimension of the space, and N
is the dimension of time. During the PCA calculation, we solved the eigen problem of

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/
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YTY or YYT . In meteorology, temporal eigen components are called principal components,
and spatial eigen components are called empirical orthogonal functions. YTY or YYT is
the covariance matrix of the data Y. However, we can count the distance between any
two temporal points (pairwise) and take the sum of all spatial points to build the square
distance matrix DNN . This distance matrix can also be used for counting the eigen problem.
This method is often called multidimensional scaling.

The detailed arrangements are as follows:

(1) The covariance matrix for the PCA is

YTY = CNN =



K
∑

k=1
yT

k, t=1yk, t=1
K
∑

k=1
yT

k, t=1yk, t=2 . . .
K
∑

k=1
yT

k, t=1yk, t=N

K
∑

k=1
yT

k, t=2yk, t=1 . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . .
K
∑

k=1
yT

k, t=Nyk, t=N


(2) The distance matrix for MDS is

D =



K
∑

k=1
(yk, t=1 − yk, t=1)

2 K
∑

k=1
(yk, t=1 − yk, t=2)

2 . . .
K
∑

k=1
(yk, t=1 − yk, t=N)

2

K
∑

k=1
(yk, t=2 − yk, t=1)

2 . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . .
K
∑

k=1
(yk, t=N − yk, t=N)

2


We can choose the number of neighbors (e.g., 44 neighbors in this study) required

to plot the weighted graph and construct the geodesic distance matrix. This geodesic
distance matrix can be implemented using Dijkstra’s algorithm [20], one of the shortest
path algorithms. This means that the direct distance (shortcut) between number 1 and
number 45 is replaced by the shortest path through the 44 neighbors to neighbor 45. The
new geodesic distance matrix is called DG in this article. The ISOMAP method first
establishes the weighted graph and constructs the geodesic distance matrix and then solves
the MDS problem.

The data point coordinate is calculated as the PCA/ISOMAP temporal principal
component multiplied by its square root of the eigenvalue (step 6 in Algorithm 1). We
employ subscript M to represent the number of eigen components used. For example, we
take the first three leading components to form the distance matrix DM as follows:

DM =


dM(t=1, t=1) . . . . . . dM(t=1, t=N)

. . . . . . . . . . . .

. . . . . . . . . . . .
dM(t=N, t=1) . . . . . . dM(t=N, t=N)


The element of DM, the distance between any two-time interval steps is defined as

follows:

dM(t, t) =
M

∑
i=1

(σ1/2
i pcai (t, t) − σ1/2

i pcai (t, t))
2

where pca is the temporal eigenmode from the PCA/ISOMAP (steps 4 and 5 in the Algo-
rithm 1), and σ is the corresponding eigenvalue.
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The coefficient of correlation R2(DM, DG) is calculated using all the matrix elements
of DM and DG as follows:

R2 =
(∑ (dM − dM)(dG − dG))

2

∑ (dM − dM)
2
∑ (dG − dG)

2

Then, the residual variance is defined as

1 − R2(DM, DG)

We can count M = 1, 2, . . . , 20 consecutively to obtain residual variances of the leading
20 eigen components. In PCA’s residual variance calculation, we use the D instead of DG.
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