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Abstract: Air quality is highly related to the health of a human being. Urban morphology has a
significant influence on air quality; however, the specific relationship between urban morphology
characteristics and air quality at the neighborhood scale has yet to be investigated, especially the
vegetation effect on PM2.5 concentration and diffusion. The relevant morphological parameters based
on the affected pathways of urban morphology on air quality were selected, and the sensitivity
degree and laws of the selected morphological parameters to PM2.5 were quantified by numerical
simulation, bivariate correlation analysis, and regression analysis. The results showed that Building
Density (BD), Block Envelope Degree (BED), Average Building Volume (ABV), Average Building
Floors (ABF), Standard Deviation of Building Height (SDH) and Greenbelt Coverage Rate (GCR)
were Sensitive Morphological Parameters (SMPs). A positive and cosine curve trend of BD and
BED with PM2.5 was observed. GCR was significant to dust retention along with vertical canopy
height. When ABV = 40,000 m3 and ABF = 20F, the lowest PM2.5 concentration was examined,
while increased SDH could promote airflow and enhance the capacity of PM2.5 diffusion. Finally,
morphology-optimization strategies were proposed at the neighborhood scale: (1) Decreasing the
BED along the street; (2) considering the species of vegetation with the appropriate height and
increasing the GCR; (3) increasing the ABF of neighborhoods appropriately while controlling the
ABV and distinguishing the internal SDH of neighborhoods. The study could apply the scientific
basis for the planning and design of healthy and livable cities.

Keywords: sensitive morphological parameters; PM2.5; CFD; neighborhoods; Beijing

1. Introduction

Rapid urbanization has resulted in air pollution issues that had a negative impact on
many sectors of human lives. According to the Beijing State of the Environment Bulletin
2020 [1], the number of days that met air quality standards in 2020 was 276 days, accounting
for 75.4%. Although the overall air quality has improved compared to the previous period,
the distribution of pollution still showed north–south differences, and the concentration
of pollutants such as PM2.5 and PM10 in ecological zones in the north and northwest is
significantly lower than that in the southern high-density built-up areas and high-density
population areas, which showed a “Low-Northwest while High-Southeast” situation. As
urban planning became a more essential component of the development of livable cities,
how to enhance air quality by optimizing urban morphology evolved into a focus of
investigation in relevant disciplines [2,3].

Based on the foregoing, studies on urban morphology and air quality were steadily es-
tablished [4]. Studies mainly involve two scales: regional-urban [5] and neighborhoods [6].
At the regional-urban scale, most scholars had focused on exploring the intrinsic effects
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of different urban morphological features on air quality. Research elements included
physical spatial characteristics such as city size and urban shape, [7] vegetation cover [8],
and non-physical characteristics such as population density and employment density [9].
In addition, studies have also been conducted to analyze the correlation between urban
morphology and air quality from a spatial and temporal perspective [10].

At the neighborhood scale, most studies had conducted comparative studies of neigh-
borhoods with different morphological characteristics for the correlation between urban
morphology and pollutants [11,12] with air pollutant monitoring data from urban observa-
tories. However, the specific relationship between urban morphological parameters and
PM2.5 concentration as well as diffusion has not been investigated clearly. In addition,
the generalization of urban morphological characteristics needed a systematic and com-
prehensive framework. Since the selection of vegetation and non-physical morphological
indicators is relatively weak in existing studies, they are unable to provide universal laws.

In recent years, the development of simulation techniques such as Computational
Fluid Dynamics (CFD) has provided the technical support to establish the correlation
between urban morphology and pollutant dispersion at the neighborhood scale with the
Fluent simulation software being the most widely utilized. Studies could be divided
into two categories. First, ideal-neighborhood simulation based on traditional settlement
patterns [13] was constructed (lineal type, point group type, etc.). Different building
combinations [14] or vegetation layouts [15] were explored individually, and the effect
of different morphological features on the dispersion of pollutants based on simulation
results was qualitative or quantitative analyzed. Secondly, a simulation based on actual
cases was constructed. Different urban design schemes for the same neighborhoods [16]
or comparisons of different neighborhoods [17] have been studied to promote the air
quality. In general, the correlation between urban morphology and air quality had been
gradually established; however, the quantitative guidance was limited. The simulation
studies of ideal neighborhoods were separated from the complicated morphology of the
building arrangement in the actual environment, and the simulation data were based on
empirical data. In addition, in terms of modeling, the impact of the integrated neigh-
borhood environment of buildings and vegetation on pollution dispersion has not been
considered in previous studies, while the simulation studies of actual cases were aimed at
promoting the air quality of specific public spaces and neighborhoods, which lacked the
general application.

The study, which focused on two typical residential neighborhoods with different
features in central Beijing, explored the quantitative rules of affection between urban mor-
phology and air quality. We devised an urban morphology and air quality mechanism for
selecting morphological parameters. Through the neighborhood-scale CFD simulation,
which includes the calibration of vegetation factors and multi-source data, the Sensitive
Morphological Parameters (SMPs) impacting air quality (PM2.5, for example) at the neigh-
borhood scale were filtrated before statistical models. Therefore, the quantitative rules of
the influence of SMPs on the “pollutant-wind environment” could be estimated.

2. Data and Methods
2.1. Study Area

Taking a traditional residential area in central Beijing as the study area, the study
selected a low-rise residential neighborhood (Neighborhood A) and a high-rise residen-
tial neighborhood (Neighborhood B) as the core study area based on the street network,
buildings’ layout, and its group form (Figure 1a). Neighborhood A, which was built in
the 1990s, is dominated by enclosed low-medium-rise residential buildings with schools
and underlying retail; Neighborhood B, which was built in the early twenty-first century,
is dominated by row-slab high-rise residential buildings with a few underlying retails.
The aforementioned two neighborhoods differ in terms of building periods, functional
placement, and spatial arrangement, which might illustrate the main features of Beijing’s
residential neighborhood morphology.
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Figure 1. The study area: (a) the study area; (b) core study area, A refer to Neighborhood A, B refer
to Neighborhood B.

2.2. Wind Environment and Pollutant Monitoring

The objective of the field monitoring is to count the concentration levels of pollutants
in the neighborhoods as well as the characteristics of the wind environment and to conduct
a preliminary analysis of the differences in pollutant concentrations and wind environment
between neighborhoods, which serves as a foundation for testing and validating simulation
results. The XL68 intelligent environmental monitoring equipment is chosen to monitor
PM2.5 concentration (resolution: 1 µg/m3, range: 0~1000 µg/m3) and wind speed (reso-
lution: 0.1 m/s, range: 0~60 m/s) of the neighborhoods at monitoring points P1 and P2
(z = 3 m, z = 2 m) (Figure 1b). Details of equipment are shown in Table S1.

2.3. “Pollutant-Wind Environment” Model Setting

Micro-scale CFD numerical simulations have been widely used in the simulation of
outdoor wind environments and pollutant dispersion [17]. ANSYS FLUENT 21.0 based
on the finite volume method was adopted for numerical simulations, and the governing
equation was the Reynolds-averaged Navier–Stokes equation. The standard K-ε turbulence
model was adopted to simulate the airflow [18]. Pollutants and air were considered as
continuous phases, and the pollutant concentrations were solved with the component
transport model [19,20].

2.3.1. Computational Domain and Grid Generation

The calculation domain was constructed according to the method specified by the
European Cooperation in the Field of Scientific and Technical Research (COST) [21], keeping
a minimum of 5H for vertical distances (H—the maximum building height) and 5H for
horizontal and horizontal distances (Figure 2). At the same time, an unstructured meshing
method based on a hexahedron was adopted to save computational costs. Three sets of
coarse–medium–fine meshes were divided, and grid irrelevance was tested. The final grid
was 2.4 × 108 for Neighborhood A and 2.6 × 108 for Neighborhood B.



Atmosphere 2022, 13, 921 4 of 16Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 16 
 

 

 
 

(a) (b) 

Figure 2. Computing domain construction of neighborhoods: (a) Neighborhood A; (b) Neighbor-

hood B. 

2.3.2. Boundary Condition 

The incoming wind speed is exponentially distributed with height [22]. For the sim-

ulation, the calculation domain entry was set as the velocity-inlet boundary condition and 

adopted a user-defined function: 

U = 
U*

κ
ln(

z + z0

z0

) (1)

U—horizontal wind speed at height z(m), m/s 

U*—ground friction speed, m/s 

κ—Von·Karman constant, κ = 0.42 

z0—surface roughness, z0 = 0.25 

PM2.5 was mainly emitted from traffic emissions and was relatively stable by default. 

Pollutants were emitted vertically upwards at 0.5 m/s, and the source intensity was from 

the nearest urban monitoring station on the simulation day. The zero static gauge pressure 

outlet was used for the downstream boundary condition, and the standard wall functions 

with roughness modification were used for the building surface and the bottom of the 

computational domain. The roughness height was 0.0025–0.003 m, and the roughness con-

stant was 0.75. Symmetry boundary conditions were served to the side-face computa-

tional domain and the upper-face computational domain [23]. Detailed boundary condi-

tions are shown in Figure 3. 

 

Figure 3. Calculation of domain boundary condition settings. 

The study treated the canopy section of the tree with a porous medium due to the 

influence of trees on the surrounding flow field in reducing wind speed and increasing 

flow disturbance. According to the relevant literature [24], the modeling of the influence 

of tree canopy on the flow field was accomplished by adding source terms to the momen-

tum equation, the K equation and the ε equation, respectively. The porosity was 0.7, the 

inertial resistance was 0.18, and the viscous resistance was 1.67. Meanwhile, pollutant 

sorption and deposition by trees were adjusted to a constant value, and the rate of depo-

sition was determined by wind speed and pollutant concentration [25]: 

Figure 2. Computing domain construction of neighborhoods: (a) Neighborhood A; (b) Neighborhood B.

2.3.2. Boundary Condition

The incoming wind speed is exponentially distributed with height [22]. For the
simulation, the calculation domain entry was set as the velocity-inlet boundary condition
and adopted a user-defined function:

U =
U∗
κ

ln(
z + z0

z0
) (1)

U—horizontal wind speed at height z(m), m/s
U*—ground friction speed, m/s
κ—Von·Karman constant, κ = 0.42
z0—surface roughness, z0 = 0.25

PM2.5 was mainly emitted from traffic emissions and was relatively stable by default.
Pollutants were emitted vertically upwards at 0.5 m/s, and the source intensity was from
the nearest urban monitoring station on the simulation day. The zero static gauge pressure
outlet was used for the downstream boundary condition, and the standard wall functions
with roughness modification were used for the building surface and the bottom of the
computational domain. The roughness height was 0.0025–0.003 m, and the roughness con-
stant was 0.75. Symmetry boundary conditions were served to the side-face computational
domain and the upper-face computational domain [23]. Detailed boundary conditions are
shown in Figure 3.

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 16 
 

 

 
 

(a) (b) 

Figure 2. Computing domain construction of neighborhoods: (a) Neighborhood A; (b) Neighbor-

hood B. 

2.3.2. Boundary Condition 

The incoming wind speed is exponentially distributed with height [22]. For the sim-

ulation, the calculation domain entry was set as the velocity-inlet boundary condition and 

adopted a user-defined function: 

U = 
U*

κ
ln(

z + z0

z0

) (1)

U—horizontal wind speed at height z(m), m/s 

U*—ground friction speed, m/s 

κ—Von·Karman constant, κ = 0.42 

z0—surface roughness, z0 = 0.25 

PM2.5 was mainly emitted from traffic emissions and was relatively stable by default. 

Pollutants were emitted vertically upwards at 0.5 m/s, and the source intensity was from 

the nearest urban monitoring station on the simulation day. The zero static gauge pressure 

outlet was used for the downstream boundary condition, and the standard wall functions 

with roughness modification were used for the building surface and the bottom of the 

computational domain. The roughness height was 0.0025–0.003 m, and the roughness con-

stant was 0.75. Symmetry boundary conditions were served to the side-face computa-

tional domain and the upper-face computational domain [23]. Detailed boundary condi-

tions are shown in Figure 3. 

 

Figure 3. Calculation of domain boundary condition settings. 

The study treated the canopy section of the tree with a porous medium due to the 

influence of trees on the surrounding flow field in reducing wind speed and increasing 

flow disturbance. According to the relevant literature [24], the modeling of the influence 

of tree canopy on the flow field was accomplished by adding source terms to the momen-

tum equation, the K equation and the ε equation, respectively. The porosity was 0.7, the 

inertial resistance was 0.18, and the viscous resistance was 1.67. Meanwhile, pollutant 

sorption and deposition by trees were adjusted to a constant value, and the rate of depo-

sition was determined by wind speed and pollutant concentration [25]: 

Figure 3. Calculation of domain boundary condition settings.

The study treated the canopy section of the tree with a porous medium due to the
influence of trees on the surrounding flow field in reducing wind speed and increasing
flow disturbance. According to the relevant literature [24], the modeling of the influence of
tree canopy on the flow field was accomplished by adding source terms to the momentum
equation, the K equation and the ε equation, respectively. The porosity was 0.7, the inertial
resistance was 0.18, and the viscous resistance was 1.67. Meanwhile, pollutant sorption
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and deposition by trees were adjusted to a constant value, and the rate of deposition was
determined by wind speed and pollutant concentration [25]:

YPM2.5= v·d·LAD·t (2)

YPM2.5—Pollutant adsorption capacity per unit area (µg/m2)
v—Adsorption rate (m/s)
d—Pollutant concentration (µg/m3)
LAD—leaf area density; (m2/m3)
t—Adsorption time (s)

2.3.3. Solution Settings

The finite volume method was used to discretize the control equation, solved by
the SIMPLE algorithm, and the second-order upwind algorithm was adopted. In the
initial condition setting, the ground observation data of the Beijing meteorological station
on typical dates (Table 1) were used as the initial conditions for the simulation. PM2.5
monitoring concentrations close to those of national control stations were used as the basis
for selecting typical dates, and four typical dates with typical meteorological characteristics
during the monitoring period were selected to establish the CFD numerical model.

Table 1. Meteorological data of national control stations on simulation dates.

Date Wind Direction Wind Speed (m/s) PM2.5 (µg/m3) Temperature (◦C)

7.10 E 2.0 44 24.6
7.13 SE 1.7 55 28.6
10.14 N 1.8 9 9.2
10.26 NW 1.6 30 8.8

2.4. Selection and Extraction of Urban Morphological Parameters
2.4.1. Selection of Urban Morphological Parameters

Based on the research framework of urban morphology influencing air pollutant
transport (Figure 4) and the generalization of existing studies, a system of six categories of
urban morphological characteristics, including size, density, function, structure, shape and
immaterial morphological characteristics, were constructed.
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The six morphological characteristics stated above have been proved to have a direct
or indirect impact on air quality and the urban microclimate. In particular, urban size
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affects the urban microclimate, pollutant emissions, and dispersion transport, and pollutant
concentrations increase significantly as urban size increases [26]. The association between
land use and air pollutants is more obvious, and air pollution is severe in industrial sites
and commercial districts with greater emission sources [27]. In contrast, green spaces
and water bodies can improve the local microclimate [28] and reduce the concentration
of PM2.5 in the region [29]. Different density characteristics demonstrate a broad range of
heterogeneity in the routes of effect on air quality, such as the impact of building density
on the alteration of local wind fields, which influences pollution dispersion [30,31], and
the impact of road density on traffic pollutants [9]. Urban layout structure is a major
factor affecting the wind environment, and a large number of scholars have conducted
detailed studies on the elements of layout structure with wind environment and pollutant
levels [32,33]. Most of the studies on shape features have focused on investigating the
effects of different building shapes and combinations of building morphologies on the wind
environment and pollutant dispersion [34]. Furthermore, since physical urban morphology
is the spatial projection of non-physical urban morphology on land use [35], the adoption
of the immaterial morphological indicator is highly relevant to the overall morphology of
the neighborhoods.

Thus, ten morphological parameters were selected for investigation based on the prin-
ciples of neighborhood scale, potential impact on pollutant levels, ease of implementation
at the control and design stages, and the interaction mechanisms between the preceding
morphological features and air quality, as well as the research progress of relevant literature
(Table 2).

Table 2. Selection of characteristic morphological parameters of neighborhoods.

Morphological Characteristics Morphological Parameters Calculation Method

Size Characteristics
Total building area, TBA

TBA =∑n
i=1 Si∗Fi

Si—Building single-story area
Fi— buildings Floors

Floor area ratio, FAR FAR = TBA/SA
SA—Neighborhoods area

Functional Characteristics Greenbelt coverage rate, GCR GCR = TGA/SA
TGA—Area of horizontal vegetation projection

Density Characteristics Building density, BD BD = BBA/SA
BBA—Building footprint

Structural Characteristics
Block envelope degree, BED

BED = TBP/TSP
TBP—Building envelope perimeter

TSP—Neighborhood perimeter

Space openness, SO SO = (1 − BD)/FAR

Shape Characteristics

Average building volume, ABV ABV =
∑n

i =1 Vi
n

Vi—Building volume

Average building floors, ABF ABF = FAR/BD

The standard deviation of building height, SDH SDH =

√
∑n

i=1 (h i − h)
2

n

h—Average building height

Immaterial Characteristics Population density, PD PD = TP/SA
TP—Neighborhoods population

2.4.2. Extraction of Urban Morphological Parameters

The subject area’s similarities and differences can be quantitatively investigated by the
division of calculating units. The neighborhoods were divided into 20 units according to
road boundaries, spatial structure divisions and the size of typical urban neighborhoods by
a 200 × 200 m grid (Figure 5). The Beijing Institute of Surveying and Mapping was used to
obtain the 3D environmental data of the neighborhoods, while the sociological data were
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obtained from the field survey. The selected morphological parameters were calculated
separately in ArcGIS 10.5.
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2.5. Selection of Indicators for the Evaluation of “Pollutants–Wind Environment”

The “wind speed ratio” [23] evaluation index refers to the ratio of the wind speed
at the actual selected location to the incoming wind speed on that day, which is often
used to reflect the degree of influence of different areas or buildings on the wind speed,
as a way to evaluate the condition of the wind environment in the region. “Pollutant
concentration ratio” means the ratio of the concentration of pollutants in different areas
to the concentration of incoming pollutants, which is used to quantify the relative level of
pollution in a local area.

VRw =
Vp

V∞
(3)

CRp =
Cp

C∞
(4)

In Equations (3) and (4), VRw is the wind speed ratio; Vp is the wind speed value at a
certain height in a region (m/s); CRp is the pollutant concentration ratio; Vp is the average
concentration of pollutants at a certain height in a region (µg/m3); V∞ is the average
concentration of incoming pollutants in a region (µg/m3).

2.6. Statistic Analysis Model

The Pearson bivariate correlation analysis was used to filtrate the Sensitive Morpho-
logical Parameters (SMPs) with a high correlation to PM2.5 and wind speed. To avoid
the effect of excessive differences in the morphology of different neighborhoods, a corre-
lation analysis was used between the GCR (A) in Neighborhood A and the GCR (B) in
Neighborhood B separately.
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The Curvilinear Regression was used to estimate the influence pattern of SMPs with
PM2.5 and wind speed. SMPs in 20 calculation units are used as independent variables, and
the simulation results of the CRp and VRw at 1.5 m height are used as dependent variables.

3. Results
3.1. Monitoring Results

Field monitoring is shown in Figure 6. Overall, trends in pollutant concentrations
within neighborhoods are influenced by overall urban background concentrations, and the
two neighborhoods are relatively close but again show part of the local variability.
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3.2. Simulation Results and Error Analysis

In the correlation test (Figure 7), the two data sets showed a high correlation
(R2 = 0.82, 0.77). In the paired t-test (Table 3), the data significance (P) was greater than 0.05
for both groups at 95% confidence, which means that there was no significant difference
before and after the simulation.

As a result, the CFD numerical model developed can predict the neighborhoods’ PM2.5
concentration and wind environment more accurately. It can be used to predict a neighborhoods’
PM2.5 concentration and wind environment under different morphological parameters.
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Table 3. P1 and P2 simulated data were paired with measured data for the sample test.

Comparing
Criteria

Paired Differences

t sig. (2-Tailed)
Means Std. Deviation Std. Error Mean

95% Confidence Interval
of the Difference

Lower Upper

Velocity 0.00875 0.026424 0.009342 −0.013341 0.030841 0.937 0.380
PM2.5 8.27500 13.066615 4.619746 −2.648964 19.198964 1.79 0.116

3.3. Sensitive Morphological Parameters Filtrating

Table 4 shows the results of the correlation analysis between morphological param-
eters and the CRp and VRw of different neighborhoods. Among the 10 morphological
parameters, BD, BED, ABV, ABF, SDH and GCR showed strong sensitivity (p < 0.05) to
CRp and VRw with correlation coefficients between 0.4 and 0.8. It is suggested that there
is a slight interaction between morphological parameters and pollutant concentrations
and wind speeds, and alterations in these morphological parameters can result in more
sensitive responses in PM2.5 concentrations and wind conditions, which are Sensitive Mor-
phological Parameters (SMPs). In contrast, the four parameters TBA, FAR, SO and PD
were less sensitive (p > 0.05) to the PM2.5 concentration ratio and wind speed ratio, with
correlation coefficients below 0.3. It is suggested that alterations in these morphological
features do not appear to produce more sensitive changes in PM2.5 concentration and wind
environment response.

Table 4. Correlation analysis of morphological parameters with PM2.5 and wind speed.

Analysis of
Variables

CRp VRw

R P R P

TBA −0.246 0.325 0.114 0.268
FAR −0.246 0.325 0.114 0.268
BD 0.443 0.025 −0.709 ** 0.000
SO 0.221 0.379 −0.217 0.388

BED 0.401 0.035 −0.636 ** 0.001
ABV −0.564 ** 0.005 0.505 * 0.012
ABF −0.628 ** 0.002 0.684 ** 0.000
SDH −0.612 ** 0.001 0.573 ** 0.004

GCR (A) −0.912 ** 0.001 −0.818 ** 0.007
GCR (B) −0.726 ** 0.001 −0.810 ** 0.003

PD 0.162 0.520 −0.128 0.296
** The correlation is significant at the 0.01 level (two-tailed). * The correlation is significant at the 0.05
level (two-tailed).

Furthermore, the correlation coefficient R suggests that each SMP demonstrates an
inverse trend of association between wind speed and PM2.5. Among them, BD, BED
and GCR show a positive correlation with PM2.5 and a significant negative correlation
with wind speed. ABV, ABF and SDH show part of negative correlation with PM2.5 and
a significant positive correlation with wind speed. Therefore, the SMPs influence the
transport and dispersion of air pollutants primarily via altering the wind environment
in the surrounding area: increased wind speed enhances the transport and dispersion
of air pollutants, resulting in reduced air pollutant concentrations. In general, the wind
environment is still the main factor influencing the dispersion of pollutants. In the case
of identical neighborhoods’ land uses, the different morphological parameters affect the
dispersion of pollutants mainly indirectly by influencing the wind environment.
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4. Discussion
4.1. Trend Analysis of the Influence of SMPs

Figure 8 shows the interaction curves of the six SMPs with PM2.5 and wind speed. It
also demonstrates that the effect of each SMP on PM2.5 concentration and wind speed has
an inverse connection within a particular interval, but the outcomes of other intervals on
PM2.5 concentration and wind speed are different.
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According to Figure 8, wind speed is the most important element influencing PM2.5
dispersion, and high wind speeds promote pollution transport and dispersion. The spatial
morphological characteristics of distinct neighborhoods define their internal wind envi-
ronment under the same incoming wind speed conditions, which has an impact on the
transport dispersion and concentration distribution of air pollutants. Furthermore, the
different impact results are exhibited by the morphological parameters in different intervals.
It is claimed that there are parameter intervals for each morphological parameter that are
more positive (or less positive) to the transmission and dispersion of air contaminants.

4.1.1. BD and BED

The relationship between BD, BED and PM2.5 and wind speed all show a trend of sine
and cosine curves (Figure 8a,c). As BD or BED rises, PM2.5 shows a trend of decreasing,
while wind speeds show a decrease followed by an increase, then increasing and then
decreasing. In particular, PM2.5 is lowest when BD is around 10% and continues to rise
above 10%, reaching a maximum of PM2.5 at around 20%. PM2.5 is lowest at a BED
of around 3 and highest at 5. When BD = 20% or BED = 5, the corresponding wind
speed is at its minimum. The effect of BD and BED on the wind environment can be
further seen by comparing the local area wind speed vectors for Neighborhood A and
Neighborhood B (Figure 9): BD and BED of Neighborhood A with the relatively smooth
internal wind environment is higher than Neighborhood B. This is because when the BD
and BED are within a specific range, the transport of pollutants from outside is considerably
restricted. However, when the BD and BED rise to a certain level, the neighborhood’s wind
environment tends to stabilize, which is not conducive to the migration and dispersion of
atmospheric pollutants and creates a cumulative effect. Therefore, keeping the building
density and block envelope degree of neighborhoods within a reasonable range can assist
in enhancing air quality.
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4.1.2. GCR

As the GCR increases, PM2.5 concentration and wind speed all showed a decreasing
trend (Figure 8b). This is because wind speed is reduced and dust is suppressed by
vegetation in the vertical zone beneath the canopy, with a progressive decrease in the
zone above the canopy. As an example, Figure 10 illustrates the local vegetation XZ plane
wind speed and PM2.5 distribution in Neighborhood A, which suggests that the influence
of vegetation on pollutant concentrations and wind speed is related to the height of the
vegetation and its dust retention effect is most noticeable in the vertical zone beneath the
canopy, with a progressive decrease in the zone above the canopy.
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4.1.3. ABF, ABV and SDH

ABF, ABV and SDH demonstrated varying degrees of positive and negative correla-
tions with PM2.5 and wind speed, respectively. When ABV = 40,000 m3 and ABF = 20F, the
lowest PM2.5 concentration was observed. The rise in ABF indirectly increases the building
separation and enhances the air circulation within and outside the neighborhoods. When
ABF exceeds 20, wind speed is further increased, but the static wind zone is formed on
the leeward side of the building, which hinders the diffusion of pollutants (Figure 8d). As
the ABV increases, PM2.5 concentration shows a tendency to decrease and then increase
(Figure 8e). This is because, within a certain volume range, increasing ABV helps to increase
the open space and reduces the weakening effect on wind speed due to a large number of
buildings. However, excessive ABV might increase the static wind area in the neighborhood
and limit the effect of wind on pollution transmission.

The results reveal that the difference in height between buildings on the windward
and leeward sides of the neighborhoods affects wind speed in the direction of incoming
airflow differently (Figure 8f). Taking the example of four street valleys in the typical YZ
plane of two neighborhoods (Figure 11), rising valley 1 and valley 4 are more effective in
diffusing PM2.5 in vertical space than falling valley 2 and valley 3. Therefore, reasonable
SDH regulation promotes airflow rising, establishing a pleasant neighborhood wind envi-
ronment, and boosting pollutant dispersion in vertical space. Moreover, angular flow zones
are created with building heights up to a certain level, which enhances the dispersion of
pollutants to the leeward side.
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4.2. Morphology-Optimization Strategies for Pollutant Dispersion at Neighborhood-Scale

Based on the findings of the preceding investigation, strategies for optimizing neigh-
borhood morphology based on air quality improvements were proposed. First, the rela-
tionship between BD, BED and PM2.5 show a trend of sine and cosine curves. Therefore,
BD should be reasonably controlled in the neighborhoods, and the BED of residential
buildings along the street should be reduced while increasing the commercial buildings
along the street (Figure 12a). Second, in terms of functional morphological characteristics,
GCR showed a reduced influence on wind speed and PM2.5 below the canopy, and the
reducing effect decreases as the vertical height above the canopy increases. Therefore, it
is critical to plant a diverse variety of vegetation species of varying heights (Figure 12b).
Furthermore, it is important to increase the GCR while ensuring the functional integrity of
the neighborhoods. Third, in terms of the shape morphological characteristics, ABF and
ABV showed a trend of increasing and then decreasing with PM2.5 values. Therefore, when
the intensity of development is identified, specific buildings’ heights should be increased,
and the individual building’s masses and number of total buildings in the neighborhood
should be limited (Figure 12c). Additionally, the difference of building heights should be
reasonably delineated (Figure 12d), according to the SDH curve fitting, to promote the
climbing of incoming winds.
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5. Conclusions

This study aims to investigate the mechanisms underlying the correlation between
urban form and atmospheric pollutants (PM2.5, for example), and two types of typical
residential neighborhoods in Beijing were selected as the study area. Morphological
parameters were selected according to the research pathway of urban morphology affecting
air quality, and a sensitivity analysis of morphological parameters with PM2.5 and wind
speed was carried out through field monitoring and CFD numerical simulation.

In the sensitivity filtrating, six morphological parameters, such as BD, BED, etc.,
showed high sensitivity to PM2.5 concentrations and wind speed within the neighborhood,
which are called the Sensitive Morphological Parameters (SMPs). The different correlations
of SMPs between PM2.5 and wind speed were observed. This demonstrates the existence
of a tripartite relationship between morphological characteristics, wind environment, and
pollutant dispersion.

The SMPs showed different influent rules on the PM2.5 diffusion. It revealed a positive
and cosine curve trend of BD and BED with PM2.5. PM2.5 is lowest when BD is around
10% and BED around 3 and continues to rise when BD is above 10%, reaching a maxi-
mum of PM2.5 when BD is at around 20% and BED is at 5. GCR was significant to dust
retention along with vertical canopy height, with a most noticeable effect in the vertical
zone beneath the canopy and a progressive decrease in the zone above the canopy. When
ABV = 40,000 m3 and ABF = 20F, the lowest PM2.5 concentration was observed. Increased
SDH could promote airflow and enhance the capacity of PM2.5 diffusion.

To optimize the circumstances of pollutant dispersion, three residential planning
strategies were proposed. First, the BED of residential buildings along the street should
be minimized while commercial buildings along the street should be expanded, and BD
should be reasonably managed. Second, vegetation species of appropriate height should
be considered, and GCR should be increased. Third, building height should be increased
appropriately, as should a proper division of building height disparities in neighborhoods.
Furthermore, acceptable control of individual building mass and the total number of
buildings in the neighborhood should be considered.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13060921/s1, Table S1: The Details of XL68 Equipment.
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