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Abstract: Owing to the complexity of the climate system and limitations of numerical dynamical
models, machine learning based on big data has been used for climate forecasting in recent years. In
this study, we attempted to use an artificial neural network (ANN) for summer precipitation forecasts
in the Yangtze-Huaihe River Basin (YHRB), eastern China. The major ANN employed here is the
standard backpropagation neural network (BPNN), which was modified for application to the YHRB.
Using the analysis data of precipitation and the predictors/factors of atmospheric circulation and sea
surface temperature, we calculated the correlation coefficients between precipitation and the factors.
In addition, we sorted the top six factors for precipitation forecasts. In order to obtain accurate
forecasts, month (factor)-to-month (precipitation) forecast models were applied over the training and
validation periods (i.e., summer months over 1979–2011 and 2012–2019, respectively). We compared
the standard BPNN with the BPNN using a genetic algorithm-based backpropagation (GABP),
support vector machine (SVM) and multiple linear regression (MLR) for the summer precipitation
forecast after the model training period, and found that the GABP method is the best among the
above methods for precipitation forecasting, with a mean absolute percentage error (MAPE) of
approximately 20% for the YHRB, which is substantially lower than the BPNN, SVM and MLR values.
We then selected the best summer precipitation forecast of the GABP month-to-month models by
summing up monthly precipitation, in order to obtain the summer scale forecast, which presents
a very successful performance in terms of evaluation measures. For example, the basin-averaged
MAPE and anomaly rate reach 4.7% and 88.3%, respectively, for the YHRB, which can be a good
recommendation for future operational services. It appears that sea surface temperatures (SST) in
some key areas dominate the factors for the forecasts. These results indicate the potential of applying
GABP to summer precipitation forecasts in the YHRB.

Keywords: summer precipitation forecast; artificial neural network; genetic algorithm; Yangtze-
Huaihe River Basin

1. Introduction

Meteorological disasters account for more than 70% of the losses caused by various
natural disasters, of which precipitation-related droughts and floods account for a major
portion [1]. The Yangtze-Huaihe River Basin (YHRB; Figure 1), generally referred to as
the area of (110◦ E–122◦ E, 28◦ N–34◦ N) in eastern China [2], is affected by the East Asian
summer monsoon, where precipitation is largely received in summer with frequent floods.
Therefore, accurate forecasting of summer rainfall in the YHRB has a significant impact on
the economy and society of this fast-developing area.
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Precipitation prediction on seasonal and intra-seasonal scales has long been one of
the main challenges in the meteorological community [3] because of the complexity of the
climate system. The climate system is a huge and complex nonlinear system, in which
subsystems are interconnected with each other and act as an integrated system that ex-
changes mass and energy with the external environment. Therefore, it is extremely difficult
to understand the processes and mechanisms of nonlinear and open-climate systems [4].

The continuous development of science and technology has led to advances in obser-
vational technology and methods, which has resulted in the accumulation of meteorological
data on the order of petabytes, and the amount of data is still growing rapidly [5]. One of
the success stories in geosciences is weather prediction, which has significantly improved
through the integration of better theory, increased computational power and established
observational systems, allowing for the assimilation of large amounts of data into the
modeling system [6,7]. However, the exponential growth of meteorological data has not
resulted in a rapid improvement in the accuracy of climate predictions [8]. Traditional
methods have shown limited room for improvement in the accuracy of climate prediction;
hence, new methods for climate prediction are needed.

Machine learning is a big data-based artificial intelligence method that has been widely
used in recent years. It is good at finding the information needed for research from a large
amount of data, and then establishing nonlinear relationships. With advances in technology,
machine learning has become a general method for classification, as well as for variation
and anomaly detection problems in earth sciences [9–12]. For meteorology, which is a
branch of earth sciences, machine learning methods have also been successfully applied;
for example, artificial neural networks (ANN) have been used to improve precipitation
estimation [13], identify the stage of ENSO and predict its impact [14].

In the age of machine learning, it has been suggested that without considering complex
interactions among the studied parameters, highly nonlinear relationships could become
well established [15]. Although the success of machine learning for hydrological forecasting
could decouple science from modeling, hydrologists are obliged to determine means to
add value to hydrological simulations and forecasting based on hydrological theories [16].
In this sense, hydroclimatologists need to demonstrate the extent to which machine learn-
ing can improve precipitation forecasts, for example, in terms of conventional seasonal
precipitation anomalies.
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Using artificial intelligence, previous studies have paid attention to climate simulations
or forecasts [17–19], in addition to weather forecasts [20,21]. For example, a statistical down-
scaling approach was proposed to predict the daily rainfalls at a catchment in southeastern
China using random forest (RF) and least-square support vector regression (LS-SVR) [17];
He et al. [19] forecasted seasonal precipitation for the middle and lower reaches of the
Yangtze River valley (YRV), and found that the backpropagation neural network (BPNN)
and convolutional neural network (CNN) methods demonstrated the poorest performance
compared to the RF and decision tree (DT); meanwhile, long short-term memory (LSTM)
performed better than BPNN, emphasizing the importance of tuning parameters in ma-
chine learning methods. It appears that for different studied regions, the specific machine
learning methods perform differently, while optimization methods are needed for some
traditional machine learning approaches. For example, genetic algorithms (for simplicity,
GA) are often combined with other methods, such as neural networks. Kishtawal et al. [22]
evaluated the application effect of GA on summer precipitation prediction in India; Feng
et al. [23] used GA to optimize the BPNN in order to achieve higher prediction stability, and
Huang et al. [24] combined GA and ANN to predict the precipitation caused by tropical
cyclones, with comparative analysis showing that the GA scheme was better than that of
the ECMWF forecast.

Therefore, the objective of this study is to examine how well the optimized ANN
method can be applied to summer precipitation forecasts over the YHRB, and what an-
tecedent predictors are effective in the machine learning forecasts. The remainder of this
paper is organized as follows: Section 2 describes the data and models used in this study.
Section 3 presents the modeling process and subsequent results, including those of the
ANN and other methods, from which a “best” forecast model is chosen by comparing
various methods, and the final section provides the conclusions.

2. Data and Model Construction
2.1. Data

The data used in this study included the 0.5◦×0.5◦ global reanalysis of daily precipi-
tation provided by NOAA’s Climate Forecast Center from 1979 to 2019 (https://psl.noaa.
gov/data/climateindices/; accessed on 5 June 2022). The released large-scale circulation
and sea temperature factors or indices that have significant impacts on global climate are
listed in Appendix A, together with data sources. For application to seasonal forecasting,
the original daily precipitation data were processed into monthly precipitation data. This
study divides the seasons as follows: March to May for spring, June to August for summer,
September to November for autumn, and December to February for winter.

2.2. Model Introduction
2.2.1. Backpropagation Neural Network

The backpropagation neural network (BPNN) is a multilayer neural network trained
by an error backpropagation algorithm. The error after the output is used to estimate the
error of the direct leading layer of the output layer, and then the error is used to estimate
the error of the previous layer. If the reverse is passed down, the error estimates of all
other layers are obtained [25]. This study used a feedforward three-layer BPNN with a
mature algorithm. For details on the model algorithm, see Jin et al. [26]. A schematic of the
network structure is shown in Figure 2.

The BPNN is chosen because it has the following advantages:
(1) Nonlinear mapping capability. A BPNN essentially realizes a mapping function

from the input data to the output. Mathematical theories have proven that a three-layer
neural network can approximate any nonlinear continuous function with arbitrary preci-
sion. This makes it particularly suitable for solving problems involving complex internal
mechanisms.

https://psl.noaa.gov/data/climateindices/
https://psl.noaa.gov/data/climateindices/
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(2) Self-learning and self-adaptive abilities. During training, the BPNN can automati-
cally extract the “reasonable rules” between the input and output data through learning,
and adaptively memorize the learning content in the weight of the network.

(3) Fault tolerance. The BPNN does not have a significant impact on the overall
training results after its local or partial neurons are damaged, that is, the system can still
work normally when it is locally damaged.
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Figure 2. Schematic diagram of the three-layer BPNN structure, where X and Y are the input and
output layer variables, respectively. The input and output layers are connected, separately, by the
neuron with the hidden layer as the node.

2.2.2. BPNN Optimized by Genetic Algorithm

Although the BPNN has some advantages, as stated above, it still has several short-
comings. For example, its algorithm is sensitive to the initialization weight matrix, and it
easily falls into the local optimal solution; thus, the obtained solution is not the globally
optimal solution. Therefore, researchers have proposed optimizing BPNN with intelligent
algorithms [27], such as the particle swarm optimization algorithm and genetic algorithm
(GA). After reviewing the literature, the present study applies the BPNN optimized by
the GA.

The GA is an artificial intelligence optimization search algorithm that simulates bio-
logical evolution and natural selection in nature [28]. It has the characteristics of random
search and global optimization, and is mainly used to solve optimization problems [29].

2.2.3. Multiple Linear Regression

Multiple linear regression models are used to investigate the relationship between
dependent variables and multiple independent variables. They are usually used to describe
the random linear relationship between variables as follows:

y = β0 + β1x1 + . . . + βkxk + ζ, (1)

where x1 . . . xk are non-random variables, y is the dependent variable, β0 . . . βk are
regression coefficients, and ξ is the random error term.

2.2.4. Support Vector Machine

The support vector machine (SVM) method is also a type of machine learning method
that can be used to solve regression and classification problems. Here, we also introduce
SVM to solve the problem of precipitation prediction in the YHRB. The basic principle is to
find an optimal dividing line in a plane, in order to divide the data on the plane.
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We used the built-in function newff of MATLAB 2016b for the BPNN, and the LIBSVM
toolbox of MATLAB for the SVM method. The optimization algorithm comes from online
forums with the improvement in this study.

2.3. Modeling Process

This study used data sets from 1979 to 2019. We used 33 (i.e., 1979–2011) and 8 (i.e.,
2012–2019) years for the training and validation periods, respectively. In order to choose an
appropriate method for summer precipitation forecasting, we compared several methods in
which machine learning was dominant. Furthermore, to make the forecasts more accurate
and obtain detailed information about the forecasts, we employed antecedent (i.e., winter
and spring) factors for summer precipitation forecasts based on the information about
single months; that is, a matrix of winter and spring months (i.e., six months) for factors
and summer months (i.e., three months) for precipitation, constructed 18 schemes/models
for monthly forecasts, and obtained the summer forecasts by summing up three monthly
precipitation values.

2.3.1. Factor Selection

As ANNs cannot automatically screen factors (i.e., predictors), a large number of
factors will reduce the forecasting ability of the model. Therefore, prior to modeling, the
factors must be screened in order to identify relatively more suitable variables for forecasts.
Modeling uncertainties will certainly be an important aspect and will require concepts
from Bayesian/probabilistic inference to be integrated, in order to directly address such
uncertainties [30]. Factor selection can be performed using Pearson correlations between
factors and precipitation, or principal component analysis (PCA) can be used to reduce
the dimensionality of factors and form a set of new factors for forecasting [31]. This study
aims to explore the relationship between the initial factors and summer precipitation in
the YHRB; thus, the first method was used for factor screening. The absolute values of
the obtained correlation coefficients were sorted from the largest to the smallest, and the
confidence level was considered after calculating the correlation coefficients. Finally, the
top six factors ranked by the absolute values of the correlation coefficients were selected
from the factors that passed Student’s t-test at the 90% confidence level. Some models met
the above conditions with fewer than six factors. Finally, the following factors were used to
model the 18 schemes, as illustrated in Figure 3.
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Figure 3 is the factor display diagram that is finally substituted into the model after the
correlation analysis. In totality, 18 schemes correspond to 18 models. Each of the 18 models
uses the factors of each of the previous 6 months (from December of the previous year to
May of the current year) to predict the precipitation in a single month of June, July and
August in the current summer.

2.3.2. Procedure of BPNN Forecasts

(a) Standard BPNN modeling process

We employed standard BPNN for the summer precipitation forecast with the proce-
dure as follows:

(i) Prescribing training and test periods. The precipitation and factor data for each
of the 18 schemes were divided into training and test sets according to a certain ratio
of time periods, and were used as the input and output of the BPNN, respectively, after
normalized processing.

(ii) Determining the number of network input layers and hidden layer nodes. With
regard to the hidden layer nodes, this study used Euler’s optimization algorithm. Consid-
ering the balance between computational resources and forecast precision, we selected six
input layer factors for the seasonal precipitation forecast.

(iii) Performing network training. Weights and thresholds are constantly updated until
the error requirements are met or until the prescribed maximum training times are reached.

(iv) Performing network testing, denormalizing the output values and completing
precipitation prediction.

In modeling, the ratio of the length of the training set to the length of the test set is
prescribed as 7:3 or 8:2 [32]. Considering the research sequence of the data used, the first
80% of the time series (from 1979 to 2011) was used as the training set, and the remaining
20% (from 2012 to 2019) of the data was used as the test set. Since this overall training set is
subdivided into a training subset and a cross-validation subset when the built-in function
of building a neural network is called in the process, there is no need to set part of the data
for the cross-validation subset.

(b) Activation function selection and parameter tuning

The widely used activation functions in ANNs include Sigmoid, Softmax, and ReLU.
By considering the characteristics of the BPNN, this study uses the Sigmoid function
(shown in Figure 4), with the horizontal and vertical axes corresponding to the value of the
normalized data and calculated result, respectively, after introducing the function, which is
expressed as follows:

f (x) = 1/[1 + exp(ax)] (2)

Since the model selects the top six factors in the order of absolute values of the
correlation coefficients, from the largest to the smallest, after the calculation of Pearson
correlations and Student’s t-test at the 90% confidence level, with the final forecast as a
variable of summer precipitation in the YHRB, the number of neurons in the input layer
is the same as the number of input factors, and the number of neurons in the output
layer is one.
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The key parameter adjustment objective is the number of hidden layer nodes during
the adjustment of the neural network parameters. Considering that the actual topography
and climatic characteristics of each grid point of the calculated precipitation are different,
this study builds different BP networks, one by one, for 342 grid points in the YHRB and
adjusts the parameters of each network. For the number of hidden layer nodes, if the
number of nodes is too small, the data features cannot be fully extracted; if the number of
nodes is too large, the network complexity will increase and lead to overfitting. For the
number of hidden layer nodes, the empirical formula is expressed as follows [33]:

m =
√

n + l + b, (3)

where m and n are the number of hidden layer nodes and nodes in the input layer, respec-
tively, and b is a constant in the range of 1–10.

Currently, most studies use a fixed value for the number of nodes in the middle layer
within the range calculated according to empirical formulas [32]. In the ANN training
process between grid points, the number of nodes in the middle layer is not necessarily the
same. The present study used the Euler optimization algorithm to debug the parameter
of the number of hidden layer nodes. The Euler optimization algorithm is a sub-function
program developed in this study to determine the hidden layer nodes. The principle
is based on the exhaustive method [33]. This algorithm takes the values of the hidden
layer node range calculated by the empirical formula in turn, performs normalization and
simulation, and calculates the mean square error of the training set and the mean square
error (MSE) of each hidden layer. Finally, it finds the values of the hidden layer nodes
corresponding to the minimum MSE, and uses the changed values as the number of hidden
layer nodes of the grid points during modeling. According to the range of the parameter
calculated using Equation (3), a cycle script was written in order to traverse the values
within the range, and the value corresponding to the smallest calculated square error was
used as the number of nodes in the hidden layer.

2.3.3. GABP Calculation Process

When a genetic algorithm is optimized, the relevant parameters are set. For example,
the population number, crossover rate, mutation rate, and evolutionary generation number
are prescribed as 50, 0.8, 0.1, and 100, respectively. A schematic of the calculation process is
shown in Figure 5.
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2.3.4. Multiple Linear Regression Calculation Process

The multiple linear regression method (MLR) is one of the most widely used traditional
statistical methods, with a structure that is simple and easy to identify [34]. It assumes
that there is a linear relationship between the forecasted quantity and predictors/factors.
The conventional procedure is to use the training period data to calculate the unknown
parameters, establish the forecast equation, and apply this equation to the forecast in the
validation period. In this study, we established a linear regression model between multiple
predictors and precipitation. Subsequently, correlation tests at the 0.95 confidence level
were conducted.
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2.4. Model Evaluation Measures

Three measures, that is, the average absolute error (MAE), mean absolute percentage
error (MAPE) and root mean square error (RMSE), were used to evaluate and analyze the
fitting and prediction accuracy of the models. They are calculated as follows:

MAE =
1
n
(

n

∑
i=1
|yi − oi|) (4)

RMSE =

√
1
n

n

∑
i=1

(yi − oi)
2 (5)

MAPE =
1
n

n

∑
i=1
|yi − oi

yi
| × 100% (6)

where oi is the observed precipitation, yi is the precipitation predicted by the model, and n
is the grid number.

Additionally, previous studies [35–37] have used the anomaly rate (AR) to qualita-
tively evaluate the predicted precipitation and observations. The AR is based on whether
the anomaly signs of the grid points in the forecast are consistent with those of the corre-
sponding observations, which are evaluated over all of the stations (or grids) in the study
domain [37]. The AR is computed using the following:

AR =
niden

n
× 100% (7)

where niden is the number of the grids with identical signs of forecast and observed anoma-
lies. Following previous studies [38], it is considered a good forecast when AR exceeds 50%.

3. Predicted Results
3.1. Comparison of Basin-Averaged Measures among the Four Methods

Figure 6 shows the overall basin-averaged statistical measures of precipitation pre-
dicted by the four methods, with the variability of each method included. It can be
concluded that the prediction accuracies of BPNN and MLR are comparable, but the stabil-
ity of BPNN is stronger than that of MLR; that is, MLR has higher variability. In addition,
the SVM produces better forecasts than the BPNN and MLR, while the GABP outperforms
the BPNN, SVM and MLR; for example, the BPNN yields overall MAPE, MAE and RMSE
values of approximately 87%, 115 mm and 138 mm, respectively, for the YHRB, whereas
GABP yields significantly reduced values of 20%, 27 mm and 35 mm, respectively.

Table 1 lists specific values of the month (predictor)-to-month (forecast) results of
the measures. It can be noted that the GABP gives better predictions than the BPNN,
SVM and MLR for monthly precipitation in summer, which is consistent with the above-
mentioned results. For example, the GABP presents MAPE values of approximately
20–50%, corresponding to the SVM, BPNN and MLR values of 30–62%, 70–110% and
46–215%, respectively, showing the order of a worsening performance. Additionally, the
GABP accuracies of the summer precipitation forecast models established by the previous
winter factors are higher than those by the spring factors. For example, using the December
factors, GABP presents region-averaged MAPE values of 19.7%, 27.4% and 15.9% for June,
July and August, respectively, which are lower than those by March, April or May factors.
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Figure 6. Box diagrams of the maximum, minimum and average errors of predicted summer precipi-
tation using the four methods for the YHRB, where (a–c) are for MAPE, MAE and RMSE, respectively.

Table 1. Basin-averaged evaluation measures of various models, where each model is denoted with a
subscript that contains two numbers; the former and latter numbers are respectively for the month
of factors selected and the month of forecasted precipitation; e.g., M12-6 means the model using
the December factors to predict the June precipitation (also shown are the values in brackets in
correspondence with the model in brackets).

Measure Method M12-6 M12-7 M12-8 M1-6 M1-7 M1-8 M2-6 M2-7 M2-8

(M3-6) (M3-7) (M3-8) (M4-6) (M4-7) (M4-8) (M5-6) (M5-7) (M5-8)

MAPE/%

BPNN 108.3 94.1 73.4 84.6 57.7 94.3 79.7 94 89
(98.1) (86.6) (92.7) (80.7) (62.7) (88.8) (71.7) (78.6) (109.5)

GABP 19.7 27.4 15.9 29.6 13.9 18.8 23.8 21.3 16
(31.5) (19.9) (17.1) (27.6) (12.9) (20.4) (31.3) (18.3) (20.6)

SVM 43.8 58.6 32.3 51.3 61.9 39 51.5 45.4 41.5
(52.8) (45.6) (43.1) (52) (33.5) (44.3) (46.5) (61.5) (44.9)

MLR 51.9 76.6 69.5 71.2 45.7 57.5 63.5 72 121
(98.6) (160.1) (87.7) (60) (171.8) (63.9) (81.3) (79.9) (214.3)

MAE/mm

BPNN 130.3 115.7 100.4 122.4 112.7 108.2 107.7 132.2 109.7
(136.3) (127.9) (106.2) (123.9) (112.4) (107.4) (104.4) (116.8) (121.7)

GABP 25 31.6 20.2 38.6 23.3 21.4 31.8 29.4 18.8
(42.5) (29.7) (18.8) (41.2) (21.8) (24.1) (32.9) (26.8) (23.8)

SVM 50.4 65.4 46.2 71.7 61.2 43.5 65.4 68.1 49.2
(80.4) (66.3) (47.4) (78.3) (60) (52.8) (69) (62.1) (53.4)

MLR 66 100.8 88.4 134.9 80.6 79.9 83.3 123.3 143.8
(167.6) (253.1) (102.2) (109.3) (458.6) (91.2) (153.6) (144.5) (264.8)

RMSE/mm

BPNN 169.4 140 120.5 154.9 137 126.8 131.6 152.6 130.7
(169.5) (150.8) (128.9) (148.4) (136) (126.3) (130.6) (138.3) (142.1)

GABP 30.9 38.8 24.6 47.2 28.7 26.1 38.5 35.5 23.1
(51.8) (36.3) (22.8) (50.6) (26.8) (29.5) (40.5) (32.8) (28.9)

SVM 59.4 79.8 60.6 87 76.8 52.8 80.4 81 60.8
(97.5) (81.0) (58.2) (96.3) (73.8) (65.4) (85.5) (77.4) (66.0)

MLR 81.9 132.8 113.8 202.7 99.2 99.0 103.6 156.2 202.1
(250.9) (426.6) (128.2) (146.9) (961.8) (110.4) (258.9) (214.5) (74.6)

AR/%

BPNN 49.4 82.4 78.6 65.8 98.2 78.6 61.4 34.7 35.0
(75.1) (37.4) (40.9) (75.1) (38.6) (35.1) (72.5) (98.2) (35.3)

GABP 27.8 78.6 74.6 77.5 93.8 77.2 68.1 21.6 41.2
(81.6) (21.7) (48.5) (81.6) (34.5) (41.5) (81.6) (92.1) (41.8)

SVM 35.3 74.5 49.7 61 82.9 62.6 54.6 55.3 44.2
(66.0) (43.6) (40.9) (70.5) (48.1) (33.5) (74.7) (82.3) (42.9)

MLR 38.6 70.7 54.6 63.7 86.2 58.7 53.5 51.1 41.5
(62.0) (41.8) (39.2) (67.1) (52.0) (36.8) (70.5) (86.8) (45.3)
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3.2. GABP-Produced Spatial Distributions of the Measures

Because the above results indicate that GABP is the best among the methods, this
subsection presents the distributions of evaluation measures of MAPE and AR using
GABP only.

Figure 7 shows the spatial distributions of MAPE, indicating that the MAPE values
decrease in the order of June, July and August, with large total areas of values lower
than 20% and small areas of values larger than 50%. In addition, large MAPE values
were observed over the northern YHRB. However, the accumulated summer precipitation
showed reduced MAPE values, which were lower than 30%. It appears that the model with
January factors had the lowest overall MAPE values (as low as less than 10%) among the
models with factors of different winter or spring months.
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Figure 7. Spatial distributions of MAPE by GABP, where the six rows are for models using the
factors of December, January, February, March, April and May (from top to bottom; e.g., (a–d) are
for December factors), with four columns for the forecasted precipitations of June, July, August and
summer (from left to right; e.g., (b,f,j,n,r,v) are for July precipitations), respectively.

It can be observed from Figure 8 and Table 1 that most of the basin-averaged AR
values of 18 GABP models for single months exceed 50%, which indicates the reliability of
the precipitation forecasts. The summer AR (i.e., the right column in Figure 8) shows good
performance of GABP forecasts, except for the model using February factors (Figure 8l),
whereas the model using January factors is the best with an AR of 88.3% (Figure 8h; Table 2).
Furthermore, there is a correlation between MAPE and AR; that is, smaller MAPE values
correspond to larger AR values (e.g., for summer forecasts in the right columns of MAPE
and AR; Figure 7d,h,l,p,s,t,v,x; Figure 8d,h,l,p,t,x).
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Figure 8. Spatial distribution of identical signs of GABP forecast precipitation anomalies, where rows
and columns are the same as those in Figure 7 for various months of factors and months/season
of precipitation forecast (e.g., (e–h) are for January factors, and (m–p) are for identical signs of
precipitations of June, July, August and summer, respectively), respectively, and the grids with
identical signs of forecast and observed anomalies are marked with crosses (i.e., “+”), through which
the AR is calculated.

Table 2. Basin-averaged evaluation measures of various GABP models using winter and spring
monthly factors, where a model is denoted as “M”, with the subscripts of a number in addition to
“-S” representing a corresponding month of factors and summer precipitation forecast, respectively.

Measure M12-S M1-S M2-S M3-S M4-S M5-S

MAPE/% 9.1 4.7 21.5 18.5 18.0 7.4
AR/% 74.0 88.3 37.7 51.5 57.9 78.4

3.3. Spatial Distributions of Forecasted Summer Precipitation by the Best GABP Model

It is noteworthy that the prediction plots versus observed values can provide useful
information for the training and validation periods. However, because there are a large
amount of results in this study, we only present some of them. For example, we have
18 month (predictors)-to-month (precipitation) models for each of the BPNN, GABP, SVM
and MLR methods, which make it inappropriate to present the plots of all models of the
specific training and validation periods. Please see Supplementary Information for more
details of the BPNN, GABP, SVM and MLR precipitations and an example using March
factors in the training and validation periods (Figures S1–S8; Table S1), which indicates that
there is no significant underfitting or overfitting for monthly precipitations in this study.

The above-mentioned results indicate that GABP is the best method, in which the
model using January factors is the best among the models with different monthly factors.
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Therefore, for the sake of concise presentation we can choose the GABP model with January
factors as the “best” forecast model for future operational services.

Figure 9 shows the spatial distributions of the “best” GABP precipitation forecast
averaged over the test period of 2012–2019. It can be noted that the GABP model using
January factors successfully produces the precipitation forecast both in absolute values
and anomalies; for example, forecasted summer precipitation in the YHRB gradually
decreased from southeast to northwest, and higher-than-normal precipitation occurred
in the southeastern YHRB, which is consistent with observations. In addition, the MAPE
values were generally lower than 10%, corresponding to a very low basin-averaged value
of 4.7% (Table 1).
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Figure 9. Spatial distributions of the “best” summer precipitation forecasts using January factors by
GABP over the test periods [i.e., eight-month (summer) means over 2012–2019], where the first and
second rows indicate forecasted precipitations with absolute values and corresponding observations,
respectively (e.g., (a–d) are for forecasted June, July, August and summer precipitations, respectively,
with (e–h) corresponding to the observations, respectively); the third and fourth rows are the same as
the first and second rows, respectively, but for anomalies; the fifth row represents MAPE distributions;
the columns from left to right show results for June, July, August and summer, respectively.

4. Concluding Remarks

In this study, we used an ANN for summer precipitation forecasts in the YHRB. Using
NOAA CPC analysis of precipitation and the previous large-scale predictors/factors and
sea surface temperatures that are openly available via Internet resources, we calculated the
correlation coefficients between the precipitation and the factors. In addition, we sorted
the top six factors for precipitation forecast according to the principle of the significant
correlations at the 90% confidence level. Then, the month (factors)-to-month (precipitation)
models were trained and tested over 33 (i.e., 1979–2011) and 8 (i.e., 2012–2019) years
of summer months for the training and validation periods, respectively. These models
employed the BPNN, GABP (i.e., BPNN with a genetic algorithm) and MLR methods,
whose results of forecasted precipitation for the summer months were compared. The
major conclusions are as follows:
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(1) The GABP method was the best among the above methods for precipitation fore-
casting. While the BPNN model had a strong nonlinear mapping ability and performed
slightly better than the traditional MLR models with less variability, the GABP models
had much higher precision than the standard BPNN models in terms of the MAE, MAPE,
RMSE and AR measures. For example, the BPNN yielded basin-averaged MAPE, MAE
and RMSE values of approximately 87%, 115 mm and 138 mm, respectively, whereas the
GABP errors were significantly reduced with corresponding values of approximately 20%,
27 mm and 35 mm, respectively.

(2) By comparing the month-to-month forecasts, the best forecast was found to be
produced by the GABP model using January factors by summing up the forecasted June,
July and August precipitation, which is suggested as a recommendation for future opera-
tional service. This GABP model has a basin-averaged MAPE of 4.7% and an AR of 88.3%,
making it a substantially more successful tool than the current operational service [39].

(3) There are many uncertainties in the model building process, including the selection
of the type and number of predictors in the early stage, determination of the number of
network layers and nodes in the neural network, and optimization of parameters. For
practical applications of machine learning, it is recommended that the differences between
different models and predictors be compared. In this case, we used the month (factors)-to-
month (precipitation) mode, and obtained the best GABP model using the January factors
for individual summer months. Since these January factors are currently openly available
with regularly updated values, the GABP forecast is practical in the operational service.
Furthermore, some specific algorithms should be elaborated for the ANN forecasts. For
example, the Euler optimization algorithm used in this study calculates the error to adjust
the number of neurons in the hidden layer in order to fix a certain value, which is effective
in the GABP forecast.

In this study, according to the factor selection criteria, 28 of the 42 factors provided
by the websites are used, and they appear 103 times in total in our 18 month-to-month
models. More than half of the 28 factors are SST factors, and the total frequency of these
SST factors is 52 out of 103 times. This clearly shows the importance of SST factors in
summer precipitation prediction in the YHRB, which is consistent with previous studies
that emphasized the importance of SST [19]. The YHRB is located in the East Asian
monsoon zone [40], featuring low terrain and high vegetation coverage in the semi-humid
and humid climates [41] where summer precipitation is highly affected by SSTs over some
key areas. The issue that the SSTs highly influence seasonal precipitation forecasts has been
found for various regions worldwide [42,43]. For example, the statistical forecasts were
achieved using a correlation coefficient up to 0.75 and the lowest mean relative error of 6%
by establishing a linear regression relationship between the SST and rainfall for the Yangtze
River basin [43]. The reason that the SSTs substantially affect the East Asia precipitation is
as follows: The atmospheric thermal state over the oceans can be influenced by the SSTs,
which induce convective activities and further cause the change in atmospheric circulation
regionally and then globally with the propagation of atmospheric waves [44–46]. With the
SST-induced circulation changes in the YHRB, the precipitation is subsequently changed.
It appears that the SST factors such as Main Development Region (MDR) SST anomalies,
Niño 1_2 SST, Oceanic Niño Index (ONI), and Western Hemisphere Warm Pool (WHWP)
SST play important roles in the forecasts of this study (Figure 3).

It should be noted that in terms of dynamical forecasting, useful dynamical informa-
tion provided by general circulation models (GCM) can contribute to seasonal forecasts.
However, due to the deficiencies of GCM in model frameworks and numerical computation,
large errors might still be induced, probably resulting in a phenomena of climate drifting.
In reviewing the forecast precision of this study, it appears that the statistical method of
machine learning using antecedent predictors can serve as an effective method for summer
precipitation forecasts.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13060929/s1. Figure S1: Spatial distributions of MAPE of
SVM forecasts, where the six rows are for models using the factors of December, January, February,
March, April and May (from top to bottom), with four columns for the forecasted precipitations
of June, July, August and summer (from left to right), respectively. Figure S2: Spatial distribution
of identical signs of SVM forecast precipitation anomalies, where six rows and four columns are
the same as those in Figure 7 for various months of factors and months/season of precipitation
forecast, respectively, and the grids with identical signs of forecast and observed anomalies are
marked with crosses (i.e., “+”), through which the AR is calculated. Figure S3: As Figure S1,
but for GABP MAPE in the training period. Figure S4: As Figure S3, but for observed mean
precipitations in the training (upper) and validation (lower) periods (units: mm). Figure S5: As
Figure S4, but for BPNN precipitations using March factors in the training (upper) and validation
periods. Figure S6: As Figure S5, but for GABP precipitations. Figure S7: As Figure S5, but for
SVM precipitations. Figure S8: As Figure S5, but for MLR precipitations. Table S1: The GABP
basin-averaged MAPE values in the training period.
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Appendix A. Predictors/Indices Used for Precipitation Forecast with Available
Resources Listed

SOI Southern Oscillation Index; NOAA Climate Prediction Center (CPC)
PNA Pacific North America Index; NOAA Climate Prediction Center (CPC)
NAO North Atlantic Oscillation Index; NOAA Climate Prediction Center (CPC)
ONI Ocean Nino Index; NOAA Climate Prediction Center (CPC)
NTA Tropical North Atlantic Sea Temperature Index; ERSST V3b data set
CAR Caribbean Sea Temperature Index; NOAA ERSST V3b data set
ENSO precipitation
index

ENSO precipitation index; http://precip.gsfc.nasa.gov/ESPItable.html,
accessed on 6 June 2021

BEST Bivariate ENSO time series; NOAA OI V2 SST data set
Nino3 Tropical East Pacific Sea Temperature; NOAA ERSST V5 data set
Nino4 Tropical Central Pacific Sea Temperature; NOAA ERSST V5 data set
Nino1+2 Extreme eastern tropical Pacific sea temperature; NOAA ERSST V5 data set

Nino3+4
The sea temperature of the tropical central and eastern Pacific Ocean;
NOAA ERSST V5

TNA Tropical North Atlantic Index; HadISST and NOAA OI 1◦ × 1◦ data set

TSA
Tropical South Atlantic Index, from HadISST and NOAA OI 1◦ × 1◦

data set
Atlantic Tripole
SST EOF

The first EOF mode of the tropical Atlantic SST

WP Western Pacific Index; NOAA Climate Prediction Center (CPC)

QBO
Quasi-Biennial oscillation; zonal average of the equatorial 30mb zonal
wind calculated by NCEP/NCAR reanalysis

https://www.mdpi.com/article/10.3390/atmos13060929/s1
https://www.mdpi.com/article/10.3390/atmos13060929/s1
http://precip.gsfc.nasa.gov/ESPItable.html
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WHWP
Monthly anomaly of the western hemisphere warm pool area above
28.5 degrees; HadISST and NOAA OI datasets

PDO Pacific Interdecadal Oscillation; NOAA Climate Prediction Center (CPC)
NOI Arctic Oscillation Index; NOAA Climate Prediction Center (CPC)
NP North Pacific Oscillation; NOAA Climate Prediction Center (CPC)
EP East Pacific Oscillation; NOAA Climate Prediction Center (CPC)
AAO Antarctic Oscillation; NOAA Climate Prediction Center (CPC)
Pacific Warmpool
SST EOF

first mode of Pacific Warmpool; NOAA OI 1◦ × 1◦ data set

Tropical Pacific SST
EOF

Tropical Pacific SST EOF first mode; NOAA OI 1◦ × 1◦ data set

TNI
El-Niño Evolution Index; http://psl.noaa.gov/Pressure/Timeseries/TNI/,
accessed on 6 June 2021

AMO
Atlantic Multidecadal Oscillation long version; Kalplan sea surface
temperature

AMM Atlantic meridian model; NOAA Climate Prediction Center (CPC)

Indian
Rainfall Index in Central India; http://www.tropmet.res.in/, accessed on
6 June 2021

Sahel
Sahel regional precipitation index;
http://jisao.washington.edu/data_sets/sahel/Mitchell, accessed on
6 June 2021

NAO
North Atlantic Oscillation; University of East Anglia Climatic Research
Unit (CRU)

MEI Multivariate ENSO Index; NOAA PSL data
AO Arctic Oscillation; NOAA Climate Prediction Center (CPC)

Brazil
Precipitation anomalies in northeastern Brazil;
http://jisao.washington.edu/data_sets/brazil/, accessed on 6 June 2021

Solar Flux
from ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/, accessed
on 6 June 2021

Hurricane activity Monthly Atlantic hurricanes and tropical storms; Colorado State University
Global Mean
Land/Ocean
Temperature

NASA Goddard Institute for Space Studies (GISS)

SW Monsoon
Region rainfall

Average rainfall in Arizona and New Mexico; the climate department
of NCDC

MDRSST
MDR minus tropical sea temperature observation anomalies, PSL
from NOAA

AEEP
Accumulated Energy Eastern Pacific; NOAA Climate Prediction
Center (CPC)

AEAO
Accumulated Energy Atlantic Ocean; NOAA Climate Prediction
Center (CPC)

Atlantic Tripole
EOF

The first EOF mode of tropical Pacific SST; NOAA Climate Prediction
Center (CPC)
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