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Abstract: Climate change has a strong impact on inland water bodies such as lakes. This means
that the increase in lake temperature recorded in recent decades-in Europe as well-can change the
evaporation regime of the lakes. This, together with the variation of the water cycle, in particular
precipitation, implies that the water mass balance of lakes may vary due to climate change. Water
mass balance modeling is therefore of paramount importance to monitor lakes in the context of global
warming. Although many studies have focused on such a modeling, there is no shared approach
that can be used for any lake across the globe, irrespective of the size. This becomes even more
problematic for shallow and small lakes, for which few studies exist. For this reason, in this paper the
use of reanalysis data, in particular ERA5-Land provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF), is proposed for the mass balance modeling. In fact, ERA5-Land has a
global coverage and it is the only data source comprising a specific model for lakes, the Fresh-water
Lake model (FLake). The chosen case study is the Trasimeno lake, a small and shallow lake located
in Central Italy. The use of the reanalysis was preceded by data validation by considering both
ground-based and satellite observations. The results show that there is a good agreement between the
observed monthly variation of the lake level, ∆H, and the corresponding values of the water storage,
δ, computed by means of the ERA5-Land data (Pearson coefficient larger than 70%). Discrepancies
between observations and the ERA5-Land data happen in periods characterized in Europe by an
extreme climate anomaly. This promising result encourages the use of ERA5-Land for other lakes.

Keywords: ERA5-land; lake water mass balance; climate extremes; satellite data; FLake

1. Introduction

Climate change has a significant impact on lake water bodies worldwide [1]. At the
same time, according to their size, lakes may behave as sentinels or regulators of climate
change [2,3]. The impact of climate change has been recognized globally for many aspects
concerning lakes. The temperature has been increasing [4–6] and ice phenology has been
changing, with ice cover loss [7] due to earlier ice breakup, later ice freeze-up, and shorter
ice duration, at least in the northern hemisphere [8]. Evaporation of lakes has been changing
pattern, due to surface warming [9], shortening of the ice cover periods, and decreasing
the ratio of sensible to latent heat flux [10]. Specifically in Europe, between 1966–2015, the
average lake surface temperature has been increasing by about 0.58 °C/decade [11]. Such
a feature can change the lake mixing regime-both globally [12] and regionally [13] and
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accelerate the evaporation process. Together with intense precipitation, evaporation affects
the lake’s water storage and then its level. Shifts in precipitation due to evaporation cause
changes in the water budget and residence time of lakes, as well as in their depth and areal
extent [10,14–16]. However, the sensitivity of the water level to climate change and the
extent of future variations remains quite uncertain in quantitative terms [1].

To improve the understanding of lakes’ response to climate change-in particular, the
behaviour in time of their level-in situ measurements should be coupled to numerical
modeling of the physical processes. In the literature [17–19], the shared approach for
evaluating the water level change, ∆H, in a given time interval, ∆t, is based on the water
mass balance equation:

H(t)− H(t− ∆t) = ∆H = P(t)− E(t) + R(t) (1)

where P = precipitation over the lake, E= evaporation from the lake, and the term R
comprises the surface water inflow that is not absorbed by the soil in the neighbouring
area and then it passes into the lake; the groundwater flow, and-where there is any-water
from tributaries of the lake, such as rivers or other connected lakes. According to the
literature [18,20], in this paper, the water mass balance in Equation (1) has been evaluated
on a monthly time scale (∆t = one month), that is appropriate from the lake monitoring
point of view.

Different approaches can be followed for evaluating quantities in Equation (1). Precip-
itation over the lake is usually measured at the ground base [17] even if recently satellite
observations are used as gridded data instead of local scattered measurements [19,21–23].
Unlike precipitation, evaporation and runoff are not usually measured at the ground base,
but parametric formulas are often utilised instead. These are based on ground-based
measurements of temperature, relative humidity, and wind.

For the evaporation, the most popular relationships are the Penman-Monteith [17,24–26]
and Thornthwaite [27] ones. Possible alternatives for evaluating the evaporation are the
use of the output of the numerical weather prediction (NWP) models, run over the lake
basin area [19,28], as well as the remotely sensed observations [22,23].

For the runoff, the simplest method is to calibrate the runoff coefficient, that depends
on precipitation [17,19,25,27], or to use satellite observations [29]. More complex param-
eterizations are those characterizing “ad hoc” models as the Soil Water Assessment Tool
(SWAT) [20], and the Variable Infiltration Capacity (VIC) [30,31] ones.

In a different approach, the water mass balance is given by a general model, instead of
combining parametric formulas for the evaporation and runoff. As examples, a Bayesian
framework model and a harmonic regression model are utilised in [18,32], respectively; in
both these models, satellite data are considered for estimating the quantities.

The mentioned approaches have proven to be good candidates for modeling the lake
water mass balance. However, for two main reasons, it is not certain that a methodology,
refined for a given lake, will provide good results when applied to other lakes around
the globe. The first reason is that most of these recent studies are carried out on large
lakes, for which a large amount of data is available, with good spatial coverage—as, for
example, Great Lakes [18] and Victoria lake [19] which allows representing adequately all
the fluxes involved in the water mass balance. The second reason is that they use data
and models that might not be readily available-as the model ICON used for evaluating
evaporation in [19] or open, as in the case of the harmonic regression model [32]. Moreover,
with regard to observations, the mentioned techniques usually consider satellite data
that are not available for all the globe, or local ground-based observations that are not
provided by any regional meteorological or hydrographic services. In conclusion, there is
no comprehensive approach that can be straightforwardly applicable to basins of different
geographic/physical characteristics.

For the above reasons, a different approach is proposed here, based on the use of ERA5
Land-hereafter referred to as ERA5L [33] the land component of the third generation ERA5
reanalysis [34], provided by the European Centre for Medium-Range Weather Forecast
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(ECMWF), which is one of the most well-established global atmospheric datasets. With
respect to other available reanalyses, ERA5L has been adopted not only because it covers
the entire globe and provides climate data that can reproduce physical processes, but
also because it is the only reanalysis including lake representation, by means of the Fresh-
water Lake model-hereafter referred to as FLake [35]. FLake predicts vertical temperature
structure and mixing in lakes for time scales from a few hours to years. In ERA5, lake
temperatures are then used for evaluating the interaction between the land and atmosphere,
thus making the fluxes over and from the lakes’ surface more predictable [36].

In this paper, ERA5L data have been used for evaluating the lake level evolution by
means of Equation (1). The analysis is focused on the Trasimeno lake, a relatively small and
shallow lake, in the Umbria region, Central Italy, for which the water level measurements
are available since 1991. Moreover, this paper aims at the performance evaluation of the
reanalyses as a needed action prior to their extensive use.

This paper is structured as follows. A brief description of the Trasimeno lake char-
acteristics and previous studies is given in Section 2. The three different sources of data
used in this work (reanalysis, ground-based and satellite) are described in Section 3. The
methodology adopted for data validation and lake level modeling is described in Section 4.
Results about data validation, model calibration and verification are presented in Section 5.
The obtained results are discussed in Section 6. Finally, the Conclusions are offered with
regard also to the use of the proposed model for other lakes in the world.

2. Site Description and Previous Studies

The Trasimeno lake is located in the Umbria region, Central Italy (Figure 1). The origin
of the lake basin is linked to the tectonic phenomena concomitant to the final phases of the
Apennine orogeny. It is a relatively small and shallow lake, with an average surface and
depth of 122 km2 and 4.2 m (Figure 1), respectively; accordingly, it is characterized by a
large surface to volume ratio [37]. Thus, Trasimeno lake is smaller than those addressed
in the literature, with an extent of the order of 103 km2 [17,23,31] or 104 km2 [18]. For the
reasons discussed above, about the possible use of models calibrated for larger lakes, this
makes the Trasimeno lake case study of particular interest for evaluating the performance
of the proposed approach.

The Trasimeno lake plays a very important role from the economic point of view, i.e.
for tourism and agriculture, since it is the major water resource in the surrounding region.
Due to its role in terms of water supply, its level is influenced also by human management,
such as the irrigation withdrawals by means of the artificial outlet, built in the XIX century.
However, the major influence on the lake level is represented by climatic factors, such as
basin precipitation and evaporation [38,39]. On the contrary, due to the region’s climate,
the ice plays no role.

The catchment area of the Trasimeno lake is approximately equal to the hydro-
geological basin [27] and it has no natural emissaries. By looking at the CORINE (Co-
ordination of Information on the Environment) Land Cover database-provided by the
European Copernicus project land monitoring services-the area around the lake consists
mainly of some forests and arable areas with a few small regions covered with vineyards
and olive groves. It is known that water from the lake is extracted both for on-site culti-
vation as well as cultivation in the areas surrounding the lake outside the catchment area.
This is assumed to be particularly true in the summer months, even though there are no
data available to confirm this hypothesis.

For all the above reasons, particularly the small depth, the level of the Trasimeno
lake is highly variable and then particularly sensitive to climate change. Precisely, it is
especially vulnerable to changes in the precipitation to evaporation ratio. Accordingly, it
represents a very challenging water body for modeling water mass balance and could be
a representative case study for many other lakes of similar size around the globe. These
are many more in number than the large ones and much less studied, but they may have a
significant impact on the global climate and human activities [40].
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Figure 1. Map of the Trasimeno lake area and bathymetry with: ERA5L grid and points (P1-Lake,
P2-Tuoro, and P3-S. Savino, indicated by white circles); the Umbria region weather stations measuring
temperature and precipitation (Polvese, and Passignano sul Trasimeno, indicated by black circles),
and the lake level measurement station (S. Savino, indicated by a red circle).

Throughout the years, some parametric models have been proposed for evaluating
the Trasimeno lake water mass balance: the LAGO [27], the SimbaT [41], and the HLM [42].
These models are very similar since they all consider the same physical processes for the
lake water mass balance and similar parameterizations. LAGO simulates the mass balance
by considering the inflow-outflow processes in the lake and its catchment area. The lake
basin is divided into two reservoirs representing the lake and the catchment area and
aquifer, put in communication, respectively. On the contrary, SimBaT and HLM consider a
unique reservoir and are based on a single water mass balance (flows-outflows) equation.
In these models, the precipitation over the lake area is divided between the one falling over
the lake and the one over the catchment (LAGO) or by multiplying the total precipitation to
their respective areas (SimBaT and HLM). They also take into account the values observed
by the local ground-based weather stations. Evaporation instead is estimated by the
Thornthwaite formula [43], based on the measured ground-based temperature. The runoff-
evaluated simply by multiplying the precipitation over the catchment area by a calibrated
runoff coefficient (SimBaT and HLM) or by the parametric formula of Vandewiele [44]
(LAGO)-is shown to be negligible compared to evaporation and precipitation on a yearly
average [38]. However, this may not hold in the case of extreme precipitation events,
in which surface runoff and higher-than-normal groundwater levels due to floods may
contribute significantly to the lake water mass balance.

The above-mentioned models, based on parametric formulas and with no specific
data validation procedure, require long periods of time for calibrating the coefficients. For
example, LAGO was calibrated from 2006 until 1984 (i.e., for more than twenty years)
and then used to simulate the lake level backwards to 1966 whereas the SimBaT model
was calibrated from 1963 to 1999 (i.e., for more than thirty years) and validated from 1999
to 2010. However, these simulations fail to represent the water balance in climatically
anomalous periods; for SimBaT, as an example, the drought period around 2003 [41].

The approach proposed in this paper, based on data from reanalysis (ERA5L), aims at
providing an alternative to the use of the parametric models.
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3. Data Sources: Reanalysis and Observations

In this paper, three different sources of data have been used for modeling the lake water
mass balance: the ERA5 Land (ERA5L) reanalysis data of lake temperature, precipitation
and evaporation; the ground-based observations of lake level, precipitation and wind; the
satellite-based observations of lake surface water temperature. Each source is detailed in the
following subsections. For the analysis, all data have been grouped monthly, by averaging
for temperature, wind and lake level and accumulating for precipitation and evaporation.

3.1. Era5l Reanalysis and the Flake Model
3.1.1. Ifs and Era5l

The Integrated Forecast System (IFS) is a General Circulation Model (GCM) provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF). The latest version
of IFS (CY45R1) includes several components which interact together: the atmospheric
model, the land-surface model, the ocean model, the ocean wave model, and the data
assimilation of the initial conditions for the IFS system. Such a complex procedure, called 4D
Var (4 Dimensional Variational assimilation), is run continuously at a horizontal resolution
of 0.25° ('31 km) to provide data consistency from 1950 to nowadays. In IFS, the water cycle
is consistent with observations and physical fluxes, given the consistency and interaction
between all the above-cited model components. In particular, the atmospheric model
interacts with the land-surface model H-TESSEL through surface fluxes and all the meteoric
species [45]. This complex system produces the ERA5 reanalysis [34].

The land-surface component of the ERA5 reanalysis is ERA5L [33]. It is produced
hourly using H-TESSEL, run at a higher horizontal resolution (=0.1°' 11 km), driven by
the downscaled meteorological forcing, via a linear interpolation from ERA5, including an
elevation correction for the thermodynamic near-surface state.

Within each grid point of the IFS model, H-TESSEL consists of several tiles/fractions,
each representing a different ground interface: one bare soil fraction, two vegetated frac-
tions (high and low vegetation without snow), three snow/ice fractions (snow on bare
ground/low vegetation, high vegetation with snow beneath, and lake-ice), and two water
fractions (including interception reservoir and ocean). Since 2015, the specific Freshwater
Lake model (FLake)-described in the next subsection-has been added to H-TESSEL to
represent lakes and their interface with the atmosphere [35].

The effectiveness of using ERA5L data derives from taking under consideration time
series of points which, unlike observations, are not local data, but are spatially consistent,
since they are the result of a large-scale climate model. Specifically for the Trasimeno lake
area, the considered ERA5L points are homogeneous in the type of terrain.

3.1.2. Flake Model and Era5l Fluxes

FLake is a one-dimensional model which represents fresh-water lakes [46–48], by
parameterizing them as basins of fixed depth divided into a surface mixed layer, which
is directly in contact with the atmosphere, and a deep layer, at the bottom. By means of
the heat balance, it computes the behaviour over time of the temperature of the two layers:
the surface mixed layer temperature, TML, and the bottom layer temperature, TBL. In
such a context, the short wave radiation reaching the surface-including both the absorbed
and reflected one –, the latent heat, the sensible heat, and the long-wave radiation flux
from the lake surface are taken into account. FLake provides the seasonal evolution of the
lake temperature to IFS to improve the calculation of the fluxes to and out of the surface,
including evaporation and precipitation [36,49,50].

The decision to use ERA5L is based on the fact that FLake, integrated with H-TESSEL,
provides evaporation data from the lake, since it models the lake layer temperatures. Such
data are not available for the other reanalyses. Furthermore, ERA5L provides precipitation
data which are calculated in interaction with the presence of the lake in the underlying
surface. For a more detailed explanation of FLake, the reader can refer to the IFS documen-
tation [51] and the theory in [35,52].



Atmosphere 2022, 13, 949 6 of 22

FLake takes into account all inland water bodies occupying at least 1% surface area
of each model grid box. For the ERA5L grid points in the Trasimeno lake area, the lake
cover fraction is around 0.1. The lake depth-specified according to the bathymetry [53] is
assumed as equal to 4 m.

As mentioned above, FLake provides the lake temperature-specifically TML-to the
land surface model for evaluating the mean skin temperature of the lake tile, Tsk, and then
the evaporation from the lake. Surface heat, momentum and water fluxes are calculated by
H-TESSEL for each tile based on their resistance, humidity and temperature properties. For
what concerns the evaporation, in IFS a bulk aerodynamic formula is applied to calculate
the turbulent flux of water vapour, E. Specifically, for each water tile, i, and grid point, j,
it is:

Ei,j = ρa|UL,j|CH,i,j[qL,j − qsat,j(Tsk,i,j)] (2)

with ρa (kgm−3) = air density; UL (ms−1) and qL (g/kg) being the wind speed and humidity
of the nearest to the surface atmospheric model level, respectively; qsat (g/kg) = saturation
specific humidity; and CH,i = turbulent exchange coefficient. Such a coefficient, which
represents the surface resistance, is computed considering different roughness lengths
for heat and momentum by the Monin–Obukhov formulation (see [51] for a detailed
description). For each water tile, qsat is calculated using the mean skin temperature of the
tile, Tsk,i (◦C).

The atmospheric component of IFS provides the precipitation, that interacts with the
land surface model, as the result of multiple processes in the atmosphere. Accordingly,
it comprises both the convective and the large-scale rainfall. The former is generated by
convection (when atmospheric air at low levels is warmer and less dense than the air above,
so it rises), whereas the latter by large-scale weather patterns (i.e., fronts). Large-scale and
convective precipitation are calculated in the cloud and convective schemes, parts of IFS,
parameterizing rain and snow water content, cloud liquid, cloud ice, and fractional cloud
cover with prognostic equations. The convective and cloud schemes represent the sources
and sinks of cloud and precipitation due to the major generation and destruction processes.
These include condensation, deposition, evaporation, collection, melting, freezing, cloud
formation by detrainment from cumulus convection [54,55], conversion from cloud water
into rain, detrainment from mass updraft, and evaporation from precipitation [56,57]. All
these processes are integrated over the atmosphere column at each grid point, j, to get the
precipitation over the lake, P, as:

Pj =
∫ ptop

p0

(Gj − Dj)
dp
g

(3)

where p = column pressure (hPa) with the subscripts 0 and top indicating the surface and
top of the atmosphere, respectively, g = acceleration of gravity (=9.8 m/s2), and Gj and Dj
represent all the precipitation sources and sinks, respectively.

3.1.3. Selected Era5l Data

Accordingly to ERA5L horizontal resolution, in the area surrounding the lake, three
grid points have been considered (indicated by white circles in Figure 1): the two closest
to the Trasimeno lake (i.e., P2-Tuoro and P3-S. Savino), and the one located in the lake
(P1-Lake). P1-Lake has the largest lake cover fraction (=0.1), followed by P2-Tuoro (=0.08),
and P3-S. Savino (=0.05).

3.2. Ground-Based Data

The region around the lake is monitored by three weather stations managed by the
Umbria regional hydrographic service (indicated by black circles in Figure 1): Polvese,
Passignano sul Trasimeno, and S. Savino. Polvese and Passignano sul Trasimeno weather
stations have been measuring temperature, precipitation and wind since 2002 and 1992,
respectively. The S. Savino station measured precipitation from 1996 to 2019 and the lake
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level since 1991, with only two data missing periods (i.e., between 2012 and 2013) due to
maintenance failure of the weather station hydrometer. The lake level is measured hourly by
the ultrasonic hydrometer CAE ULM20. However, only the daily mean values are provided
by the Umbria regional hydrographic service. The instrument resolution, sensitivity and
accuracy are 1 cm, 0.1 cm, and ±1 cm (over the whole measurement range), respectively.

The time series of the daily mean level are shown in Figure 2 where the values are
referred to the hydrometric zero value (=257.1 m a.s.l.) that has been reached only in the
early nineties and exceeded only from 2014 to 2017.

Figure 2. Values of the daily mean level, H, of the Trasimeno lake, measured at the S. Savino weather
station, with in blue the hydrometric zero.

Before using lake level data, they have been checked for internal consistency on the
basis of the precipitation measured at the same weather station [58,59]. Precisely, the lake
level data have been considered invalid (thus creating a masked value) if on the same day
it rained and the lake level remained unchanged and vice-versa.

This level check was dictated by the fact that precipitation is the flux that contributes
the most to the variation of the lake level. The threshold of minimum precipitation to
change the lake level was set to 1.5 mm, taken as the difference between mean precipitation
and evaporation over the period. Since no ground-based evaporation measurements are
available, to choose the threshold value, the climatological values from 1950 to 2019, given
by the Italian Institute for Environmental Protection and Research (ISPRA) [60], have been
considered. ISPRA reported that in Umbria, the daily mean rainfall value during the period
1996–2019 is 2.5 mm/day and the daily mean value for the evaporation is 1 mm/day, thus
giving a threshold value of 1.5 mm/day.

On the basis of data from the closest weather stations to the S. Savino hydrometer
(i.e., Polvese and Passignano sul Trasimeno), the daily mean wind speed on the Trasimeno
lake is 2.9 m/s and the predominant wind direction is from the south (Figure 3). The wind
set-up, evaluated by considering such average wind speed and direction in the formula
proposed in [61], amounts to approximately 1.9 cm. Such a value is comparable to the
instrument resolution and accuracy and therefore its effect has been neglected. In the future,
for a further and more detailed analysis, a second hydrometer should be located on the
opposite side of the lake.

The validation check has been specifically applied to periods where the lake level is
erroneously fluctuating between two values but it was not raining, as for example, around
March 2002 (Figure 4). However, quite long periods of persistence of the lake level are
probably due to the fact that indeed some weak rainfalls do not change the lake level
significantly. This control, although elementary, provides a way of eliminating invalid
data, which have been then disregarded in the following analysis. The final result, i.e.,
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the validated data series of the lake level, is shown in Figure 4b for the period January
2002–January 2003, as an example.

Figure 3. Ten meters wind rose at the two different weather stations in the lake area (black circles
in Figure 1): (a) Passignano sul Trasimeno; (b) Polvese. Radial distance and shading indicate the
percentage of days with wind direction in the sector and wind speed intervals, respectively.
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Figure 4. Cross-check between precipitation and level of the Trasimeno lake at S. Savino for the
period January 2002–January 2003. (a,b) In Figure 3a, the unchecked lake level is reported together
with precipitation, whereas in Figure 3b the validated level is shown.

3.3. Satellite Data

Due to the lack of ground-based evaporation observations, the ERA5L lake surface
mixed layer temperature, TML, that is modeled prognostically by FLake, has been com-
pared to the satellite observed Lake Surface Water Temperature (LSWT, ◦C) provided by
the Natural Environment Research Council (NERC) project Global Observatory of Lake
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Responses to Environmental Change (GloboLakes) [62]. This because TML is the FLake
parameter related to the atmosphere in the evaluation of the evaporation from the lake and
it is assumed to correspond to the lake surface temperature observations.

The LSWT values are obtained by combining orbit data from different sources of
multipurposes imaging radiometers. These are the AVHRR (Advanced Very High Reso-
lution Radiometer) in MetOpA, AATSR (Advanced Along Track Scanning Radiometer)
in Envisat, and ATSR-2 (Along Track Scanning Radiometer) in ERS-2 (European Remote
Sensing Satellite). From 1995 to 2016, for all the lakes of the globe, these data are distributed
on a grid with a horizontal resolution of 0.05° (' 5 km).

The GloboLakes dataset (v4.0) consists of the LSWT daily observations, with their un-
certainty and quality levels. The uncertainty comprises an evaluation of the total uncertainty
in the LSWT retrieval process. The quality level, an index ranging from 2 (suspect/marginal
quality) to 5 (best quality), is a measure of the quality with which the retrieval process
is executed. In this paper, only LSWT values with high quality level (i.e., 4 or 5) have
been considered.

4. Methods
4.1. Era5l Data Validation

Before using for modeling the water mass balance, ERA5L data have been validated
against observations for what it concerns precipitation and evaporation, the most influential
fluxes in the water mass balance.

The comparison between reanalysis TML and satellite LSWT has been carried out for
the period 1995–2016 for each of the three ERA5L grid points and their weighted average
(by lake cover fraction).

The monthly ERA5L precipitation data for each of the selected ERA5L grid points
have been compared to the precipitation provided by the ground-based weather network
stations (Figure 1). The nearest to the ERA5L point weather stations have been chosen.
Precisely, the ERA5L P1-Lake precipitation has been compared to the Polvese one since
2002; the ERA5L P2-Tuoro to the Passignano sul Trasimeno one since 1996; and the ERA5L
P3-S. Savino to the S. Savino one since 1996.

The correspondence between reanalysis and observations has been measured by the
Pearson correlation coefficient, r2, and the Root Mean Square Error, RMSE, defined as:

RMSE =

√√√√ 1
N

N

∑
i
(mi − oi)2 (4)

where mi are the modeled values from reanalysis, oi are the observations, and N is the
number of the values sample.

4.2. Modeling the Lake Level: The Conceptual Model

As mentioned, for the Trasimeno lake it has been shown [38,39] that, monthly, the
groundwater and surface runoff can be neglected given that, on average, the catchment
area is approximately equal to the hydro-geological basin. Accordingly in Equation (1), it is
assumed R(t) = 0 and then it can be rewritten as:

∆H ' P(t)− E(t) = δ(t) (5)

where ∆H = monthly variation of the lake level, and δ = P−E is the water storage. In other
words, in this model, the basic assumption is that the precipitation and evaporation are the
fluxes that mostly influence the water balance of a closed lake, like the Trasimeno one. This
assumption has been verified by checking that the monthly mean runoff flux (surface and
subsurface runoff), provided by the reanalysis, was of an order of magnitude smaller than
the precipitation and evaporation fluxes (not shown). However, as already pointed out,
this assumption might not hold either for other shallow lakes or under extreme hydrologic
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conditions during a period of heavy rainfall, when also inflow from groundwater does
occur. Indeed, on one hand, the groundwater inflow from the aquifer is often negligible on
an annual and monthly basis, as shown for other shallow lakes in the literature [63], but it
may be important in wet years, during extreme precipitation events, when it recharges the
lake [63]. On the other hand, some shallow lakes are highly influenced by surface runoff
from rivers, which significantly influences the lake’s water balance [20,63], becoming more
important under conditions of extreme precipitation [64]. However, surface runoff input in
shallow lakes, as in the case of Trasimeno lake, is an order of magnitude smaller than the
actual runoff from rivers or tributaries [17].

The monthly time series of δ have been computed for each of the three ERA5L grid
points and for their weighted average, by considering their respective lake cover fraction.
Successively, such time-series of δ have been compared to the observed ∆H one to check
for the model validity.

The performance of the proposed model has been evaluated on the basis of the RMSE,
as defined by Equation (4), and the Kling–Gupta efficiency, KGES, defined as [65]:

KGES = 1−
√
(rS − 1)2 + (

σm

σo
− 1)2 + (

σm

σo
− 1)2 (6)

where rS is the linear correlation between observations and simulations; σm
σo

and σm
σo

are
a measure of the error and bias, respectively, with σm and σo being the standard devia-
tion in simulation and observations, respectively, and µm and µo are the simulation and
observation mean, respectively. Values of KGES equal to 1 indicate a perfect agreement be-
tween simulations and observations, whereas negative KGES values imply a disagreement
between them.

5. Results
5.1. Lake Temperature and Precipitation Validated Data

An example of the comparison made between LSWT data from satellite and TML from
reanalysis is reported in Figure 5 for the period from 2008 to 2011. From such a comparison
it emerges that on the whole the LSWT trend is in good agreement with the one of the
temperature given in ERA5L.

Figure 5. Comparison for the period 2008-2011 between the lake surface water temperature, LSWT
(◦C) from satellite (reported in black), and the mixed layer temperature, TML(◦C), as modeled by
ERA5L (in blue), for each ERA5L point and their weighted average.

The best correspondence concerns the ERA5L P1-Lake data, i.e., at the grid point
located in the lake, which falls within the LSWT associated uncertainty. This is underlined
in Table 1 by the values of the Pearson correlation, r2

T , and Root Mean Square Error, RMSET ,
where the subscript T indicates the temperature.
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Table 1. Pearson correlation coefficient, r2
T , and RMSET for the lake temperature in the period

1995–2016.

P1-Lake P2-Tuoro P3-S. Savino 3 Points Mean

r2
T 0.99 0.99 0.99 0.99

RMSET (°C) 1.1 2.6 2.6 2.0

While the correlation is close to unity, the RMSET values indicate that the ERA5L
temperatures are on average 2.6 °C different from those observed in the P2-Tuoro and P3-S.
Savino grid points. The closest series of TML from ERA5L to the observed one is that from
P1-Lake, which deviates by 1.1 °C. This is possibly due to the fact that point P1-Lake is
located at the lake and then it has a lake fractional cover larger than the other two points.

The comparison between monthly ERA5L precipitation data and raingauge obser-
vations is shown in Figure 6, where only the period from 2008 to 2011 is reported as
an example.

Figure 6. Comparison for the period 2008–2011 between the precipitation over the lake, P (m/month),
observed at ground base by weather stations (reported in red), and the one, provided by ERA5L (in
black), at: (a) P1-Lake vs. Polvese, (b) P2-Tuoro vs. Passignano sul Trasimeno, and (c) P3-S. Savino vs.
S. Savino.

From such a comparison it can be noted that on the whole the precipitation trends of
ERA5L and the observed one are in good agreement. In fact, even if discrepancies occur
in some months, the monthly precipitation pattern is captured reasonably well by ERA5L.
Indeed, for all grid points the correlation is above 0.70 (Table 2), with the largest value
reached at P2-Tuoro (r2

P = 0.80, where the subscript P indicates precipitation).

Table 2. Pearson correlation coefficient, r2
P, and RMSEP for the precipitation over the lake in the

period 1995–2016.

P1-Lake P2-Tuoro P3-S. Savino

r2
P 0.70 0.80 0.75

RMSEP (m/month) 0.04 0.03 0.04
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When the RMSEP values are considered, the difference in precipitation is quite small
in the three grid points. In fact, it is about 0.04 m/month for P1-Lake and P3-S. Savino,
while it decreases slightly for P2-Tuoro (0.03 m/month). This analysis suggests that the
precipitation range of ERA5L is in good agreement with the values measured on the ground.

Since the ERA5L validation process has given satisfactory results, given the value of
the Pearson correlation (r2

P ≥ 70% and r2
T ≥ 70% as in [66,67]), this lays the basis for a

reliable use of evaporation and precipitation fluxes from ERA5L.

5.2. Modeling the Lake Level: Correlation Analysis

The validity of the model proposed in Equation (5) has been checked by comparing
the time series of the modeled δ with the observed ∆H, as described in Section 4.2. From
the comparison shown in Figure 7, it can be seen that for the considered period there is a
good correspondence in the trend. However, at the higher values, the scattering increases,
thus implying a worse correspondence between δ and ∆H. This is probably because the
runoff has been neglected. Indeed, these higher levels correspond to periods in which the
lake level has risen due to intense rainfall. This feature probably contributed to the increase
of surface runoff and groundwater level and, consequently, of the groundwater inflow into
the lake.

To assess whether the linear relationship between ∆H and δ is valid, the Pearson
correlation coefficient, r2

δ , has been evaluated, by assuming both δ and ∆H normally
distributed (Figure 7 and Table 3). The correlation analysis reveals that r2

δ is always larger
than 70 % and it reaches its maximum value (=81%) at the grid point P1-Lake (Figure 7a).

Figure 7. Correlation analysis between the monthly variations of the lake level, ∆H, and water
storage, δ, for the three ERA5L points closest to the lake: (a) P1-Lake, (b) P2-Tuoro, (c) P3-S. Savino,
and (d) their weighted average.

Table 3. Pearson correlation coefficient, r2
δ , between ∆H and δ in the period 1996–2019.

P1-Lake P2-Tuoro P3-S. Savino 3 Points Mean

r2
δ 0.81 0.79 0.70 0.79



Atmosphere 2022, 13, 949 13 of 22

Although the δ series are very similar to each other-as expected since the considered
grid points are located in a limited area-as for temperature and precipitation, the strongest
correlation is definitely for the grid point P1-Lake, located in the Trasimeno lake (Figure 1).
The slightly better performance of the point P1-Lake can be ascribed to the larger values of
evaporation from the lake accounted by ERA5L (not shown). In fact, in the case of P1-Lake,
the evaporation from the lake accounts for the 60% of the total evaporation, while in the
other points this percentage is smaller (45% for P2-Tuoro and 20% for P3-S. Savino). Thus,
this might have positively impacted on the correlation between the P1-Lake time-serie, δ,
and the observed, ∆H, especially in the summer season when the evaporation is prominent
in modifying the lake level. Accordingly, in the successive phase of the model calibration,
it has been decided to focus the attention only on the ERA5L P1-Lake grid point.

As a result of the above correlation analysis, the simplified model of Equation (5) has
been deemed valid for simulating the variations of the lake level, ∆H.

5.3. Model Calibration and Verification

According to Figure 7, a linear relationship between δ, given by ERA5L P1-Lake, and
the observed ∆H has been assumed:

∆H(t) = αδ(t) + β (7)

where the value of the coefficients α (=1.33) and β (=−0.04) has been calibrated (with
r2

δ = 0.85) by considering only the values of ∆H in the initial five years (i.e., from 1996 to
2000, included) at the S. Savino station. The successive period 2001–2019 has then been
used for model validation.

In Figure 8, the values of the monthly lake level, given by Equation (7), are compared
to the observed ones. The simulated values are in good agreement with the observed ones
and allow capturing the annual trend of the observed lake level.

Figure 8. Monthly lake level, H, simulated (in black) by Equation (7) vs. observed (in red) values at S.
Savino. In the model, the validation period is from 1996 to 2000, whereas the simulation one is from
2000 to 2019.

The values reported in Table 4 indicate that, apart from the validation period, where
the simulation overlaps the observation, the periods that are better simulated by the linear
model are those from 2006 to 2012 and 2017 to 2019 when small RMSES and the closest to
one KGES values occur (the subscript S indicates simulations).
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Table 4. Performance of the model simulating the monthly lake level, H: Root Mean Square Error,
RMSES, and Kling–Gupta efficiency, KGES, in different periods.

Period RMSES (m) KGES

1996–2019 0.31 0.56
2002–2005 0.30 0.55
2006–2012 0.17 0.79
2013–2016 0.57 −2.1
2017–2019 0.18 0.65

Indeed, in these two periods, RMSES is actually smaller (Table 4) than the value
computed for the total simulation period 1996–2019 and the KGES is larger, reaching
0.79 for 2006–2012. On the contrary, in the periods 2002–2005 and 2013–2016 there is a
disagreement between the simulated values and observations. Precisely, the former are
larger (smaller) than the observations in 2002–2005 (2013–2016). In the first case, RMSES
is 0.30 m while in the second case it reaches 0.57 m, values that reflect the discrepancy
between simulation and observation. Such a feature is also confirmed by the values of
KGES which, in the period 2002–2005, is smaller than in the other ones. The negative value
in 2013–2016, makes this period the worst simulated one by the model.

An aspect that might have had an impact on the discrepancy at higher water level
variation, for example in 2013–2016, is related to the assumed relationship between the
water balance and the lake level, which might not be linear. Indeed, the lake surface area
increases disproportionally at higher water levels (Figure 7), so the increase in water level
per increase in water storage diminishes, implying a parabolic relationship between the
lake level and the surface area, as reported in the literature [68,69]. However, this aspect
has been neglected since the quadratic interpolation of the data points gives almost equal
results in terms of the Pearson correlation (not shown).

As pointed out above, this misrepresentation, especially for the period 2013–2016,
could also be related to the fact that the runoff has been neglected. In fact, runoff, in
the form of groundwater inflow, could be quite influential in an extremely wet period.
Unlikely, the lack of a piezometric network in the lake area does not allow getting at a
certain determination about the role of the groundwater inflow.

6. Discussion

Figure 8 plots indicate that the proposed model is able to reproduce the trend of
the observed lake level, managing to simulate adequately the dynamics of the water
balance of the Trasimeno lake. However, as mentioned, the model (almost) consistently
underestimates the water level and there are few specific periods where the simulation
fails to capture the observed values. The first one is from 2002 to 2005, and the second one
is from 2013 to 2016. The first period was a drought period: at the end of 2003, the lake
level reached −1.9 m, i.e., the minimum value in 1996–2019. It is worth noting that 2003 is
the year when Europe experienced a particularly extreme climate anomaly with the July
temperatures anomaly reaching 6◦ [70,71]. In this period, the model returns values of δ that
are much higher than the observations (RMSES = 0.30 m in Table 4). The second period, late
2012-early 2013, with the poorest agreement (RMSES = 0.57 m in Table 4), is characterized
by intense precipitation over central Italy [72] and, then, also over the Trasimeno lake area.

To understand the reasons for these discrepancies, the monthly precipitation of ERA5L
has been compared with the ground-based observations. This because, although the ERA5L
precipitation data have been validated on the whole against observations, there may be
errors during periods of climate extremes. With this aim, the weather station of Polvese (in
operation since 2003) has been considered, as it is the closest to the ERA5L point P1-Lake
(Figure 1). The results of such an analysis are shown in Figures 9 and 10 for the period
2002–2005 and 2012–2013, respectively.
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Figure 9. Comparison between ERA5L and ground-based observed data for the drought period
2002–2006: (a) monthly lake level, H, from ERA5L P1-Lake (in black) and the observed one at S.
Savino station (in red); (b) precipitation over the lake (m/month), P, from ERA5L P1-Lake (in black)
and the observed one at Polvese station (in red).

Figure 10. Comparison between ERA5L and ground-based observed data for the intense precipitation
period 2012–2013: (a) monthly lake level, H, from ERA5L P1-Lake (in black) and the observed one
at S. Savino station (in red); (b) precipitation over the lake (m/month), P, from ERA5L P1-Lake (in
black) and the observed one at Polvese station (in red).

The drought period is not properly captured by reanalysis precipitation data (Figure 9).
Indeed, since April 2003, the comparison between the precipitation given by ERA5L
at P1-Lake and the one observed at Polvese, points out that the former is much larger
(0.10 m/month vs. 0.05 m/month). This feature persists throughout most of 2004 and
2005. At the beginning of 2003, precipitation data were not available for the Polvese station.
However, for the other stations of S. Savino and Passignano sul Trasimeno, both in the
lake area (Figure 1), an overestimation of the precipitation by ERA5L has been noticed (not
shown). Therefore, a similar overestimation can be assumed also for the Polvese station.
Such discrepancies between simulated and observed data in drought periods could also be
due to possible errors in the evaporation data, which cannot be directly checked as there
are no evaporation measurements. However, the check of LSWT vs. the temperature from
ERA5L indicates a RMSET of about 1 degree, which could have influenced a difference in
the evaporation. Moreover, another element of misrepresentation in this drought period
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might come from a non-negligible groundwater outflow from the lake, which supplies the
aquifer in drought periods, as documented for other shallow lakes [63].

For the intense precipitation period, the focus has been put on late 2012 and early
2013. In fact, in December 2012 (Figure 10), a monthly peak of precipitation equal to
0.30 m has been reached at the Polvese station, which exceeds also the climatological
average of precipitation in 1981–2010 (' 0.1 m), evaluated by means of data collected by
the hydrographic service. This peak in the ground-based precipitation observation is not
captured by the ERA5L precipitation series, with a bias of 0.20 m/month between the
observation and reanalysis. Failing to be captured by the reanalysis, this discrepancy has
affected the reproduction of the subsequent monthly lake level maintaining it lower also
in the following period, until 2016, when there is again a good match between reanalysis
and observations.

As a result of the above analysis, it can be affirmed that the precipitation biases are
responsible for the incorrect simulation of the lake level. However, as anticipated in the
results Section 5.2, also the omission of the groundwater inflow could have contributed to
the incorrect simulation of the peak between 2012 and 2013. Indeed, the runoff (surface and
subsurface) has been neglected, by comparing it with the evaporation and precipitation
fluxes on a monthly time scale. This inaccuracy might have affected the lake level modeling
in this period. Indeed, in the period between 2017 and 2019, there were some intense
precipitation events (for example, in May 2019 [73], with a monthly average of 0.18 m),
that, although not comparable to those of 2012, are quite well simulated by the proposed
model. Thus, the modeling has failed in an extreme context, which, differently than in other
cases, has probably caused an increase in the groundwater level and, as a consequence, a
non-negligible groundwater flux. Thus, the proposed model could be expanded with the
inclusion of a finer resolution groundwater fluxes modeling (e.g., by the SWAT model [20]).
This could be important, especially for future model development in its application to other
lakes around the globe, where the runoff might not be negligible.

For what it concerns the biases in precipitation, the results obtained here are in line with
what has been found in Central Italy where discrepancies between observations and ERA5
reanalysis precipitation have been noticed in general, and specifically in the Trasimeno lake
area, where yearly mean precipitation is overestimated by ERA5 reanalyses [74]. Moreover,
in the literature, precipitation biases of ERA5 have been noted in other parts of the world.
In particular, in [75] it is shown that even if the spatial and temporal patterns of ERA5 are
consistent with rain gauges, ERA5 tends to overestimate the light precipitation events and
underestimate moderate and heavy precipitation events in China. Similarly, in [76] it is
pointed out that in certain seasons the precipitation data provided by ERA5 and ERA5L can
be outperformed by satellite data. However, it must be noted that this type of limitations,
i.e. the simulation of extreme events (drought and intense precipitation) are shared by other
reanalyses, thus by the other General Circulation Models (GCM) worldwide like IFS [77,78].

Regarding drought periods, the underestimation of the extent and persistence of
dryness is confirmed by the results of the Coupled Model Intercomparison Project 5
(CMIP5) [79], which have shown a general underestimation of the persistence of drought
periods [78]. Furthermore, if the specific drought event that occurred in 2003 is considered,
it has been found that many hydrological models based on reanalysis or GCM input
underestimate the intensity of the event [80]. Indeed, the causes for the 2003 drought
period lie in a positive feedback between soil moisture and precipitation [81], inaccurately
represented by GCMs, that show contrasting behaviour with observations [82].

With regard to the intense precipitation events, it has been assessed that, in relation
to their low resolution, GCMs tend to under-simulate the magnitude of precipitation
extremes [77]. More specifically, for the December 2012 event, it must be noted that, while
there is no specific literature about it, there are some studies on events of similar nature,
occurring in the same period (October 2012), in some cases even passing over the lake
area [72]. In these studies, although the diurnal cycle of precipitation has been adequately
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represented, an underestimation of extreme precipitation has been noted, by using the
numerical weather prediction version of two different GCMs [83,84].

Given the existence of these errors shared by the GCMs that produce the reanalyses,
it should however be noted that ERA5 and ERA5L reanalyses perform better than other
reanalyses when referring to precipitation in Europe [85] and in other regions of the
world [86].

Another simulation bias could be attributed to the ERA5L evaporation field. As
already mentioned, it coincides with the evaporation from inland water bodies and it
strongly depends on the lake cover fraction at the grid point. Such a quantity, even
in the case of P1-Lake, is never equal to 1, giving on average an evaporation from the
lake that is the 60% of the total evaporation from the grid point. Thus, this might have
resulted in an evaporation deficiency, which could have had an impact on the simulation
of the water balance, especially in the drought periods, when the evaporation could have
been underestimated.

Finally, the water mass balance does not take into account withdrawals. These are
human forcings that, in a closed and shallow basin such as the Trasimeno lake, can be influ-
ential. Indeed, the water extractions from the lake are not evenly distributed throughout the
year but are supposed to occur mainly in the summer season. In this dry period there could
have been withdrawals from the lake to guarantee water for irrigating the crops in the
surrounding area. Even if the lake withdrawals are probably an order of magnitude smaller
than the contribution of precipitation and evaporation, their inclusion could have a positive
impact on the lake level simulation. Unfortunately, withdrawals, as the groundwater level,
are not monitored by local authorities.

7. Conclusions

In this paper, a model based on data from global atmospheric datasets (reanalysis) and
water level measurements is proposed for evaluating the water budget for small, shallow
lakes. Precisely, data from ERA5 Land (ERA5L), provided by the European Centre of
Medium-Range Weather Forecast (ECMWF), are used for the case study of the Trasimeno
lake in the Umbria region, Central Italy, where level measurements are available since 1991.
Reanalysis data have been validated by considering both ground-based and satellite obser-
vations. Compared to other possible approaches, what makes the proposed one relevant is
the fact that it uses a single source of climate data (i.e., ERA5L), which has the advantage of
being spatially consistent. In addition, ERA5L is the only global reanalysis including a lake
model (i.e., Fresh-water Lake model, FLake), that provides the lake heat balance and, then
it guarantees the reliability of both the evaporation and precipitation fluxes.

The main results of the executed analysis are synthesized below:

• lake surface temperature provided by FLake is in good agreement with the satellite
product GloboLakes (i.e., the lake surface water temperature, LSWT) with a Root
Mean Square Error RMSET of about 1 °C;

• precipitation provided by ERA5L is in good agreement with the ground-based obser-
vations, with a Root Mean Square Error RMSEP of about 0.04 m;

• there is a strong link between the observed variation of the lake level, ∆H, and the
values of the water storage, δ, evaluated as the difference between precipitation and
evaporation, with a Pearson coefficient larger than 70% and a maximum value of 81%
when the grid point located over the lake (P1-lake) is considered;

• the series of the observed ∆H vs. δ, from ERA5L, indicate that a linear link can be
assumed with an RMSES equal to 0.31 m;

• discrepancies in the linear behavior happen in two periods characterized in Europe
by an extreme climate anomaly: the drought 2003–2005 and intense precipitation
period 2013–2016, when reanalysis overestimates and underestimates precipitation,
respectively, and the groundwater inflow (not considered in the model).
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This last aspect is related to the bias of the GCMs, like IFS, that produce the reanalysis.
Although ERA5L represents one of the best performing reanalyses, the water mass balance
modeling needs to be improved to take into account both the higher resolution fluxes and
the reproduction of groundwater and surface runoff, which may have influenced the poor
simulation of the above-mentioned extreme events.

Even with the mentioned shortcomings, the proposed model allows capturing the
monthly variability of the level of the Trasimeno lake, a lake where groundwater in- and
outflow are in general negligible. As far as we know, this paper is among the first (see
also [87]) to use reanalysis for modeling the water mass balance of a lake. The relevance of
this approach lies in the fact that it can be used for other shallow lakes over the globe, where
similar conditions to the Trasimeno lake are met. Indeed, before applying this method to
other shallow lakes, the potential impact of factors other than precipitation and evaporation
needs to be evaluated: inflow and outflow, specifically considering groundwater, lake
ice cover, the relation between the level and the surface area and the catchment use. In
fact, Trasimeno lake has a very small basin, compared to its watershed, and therefore
the groundwater flow is negligible. This is not true for other shallow lakes, such as
Hulun lake [20] and Tana lake [28], with a catchment much larger than the basin. In these
cases, groundwater flow cannot be considered negligible, nor runoff [20]. Moreover, some
shallow lakes have tributaries, e.g., rivers, and therefore their influence must be taken
into account [28,88]. Furthermore, many shallow and small lakes are in subpolar regions
where the presence of ice cover is not negligible [89] and this could change the evaporation
regime [10] (although in FLake such an effect is taken into account). The influence of
the morphometry of the lake, which is neglected in FLake, could be relevant for other
lakes [17,69].

The overall performance of the model could improve by including lake withdrawals,
recharges, and specifically groundwater inflow. Both the proposed model and the regional
services would benefit from constant monitoring of lake withdrawals, groundwater inflow
(by a piezometric network) and level observations. Regarding this last aspect, at least one
more station should be added on the opposite side of the lake, as in the literature [90]. This
would allow increasing the reliability of the lake level observations and considering the
effect of the wind on the level measurement. Moreover, the consideration in FLake of the
water mass balance and a finer resolution of ERA5-which both could be achieved in the
next few years by ECMWF-will certainly contribute to a better prediction of evaporation,
precipitation and other feedback at the surface, needed for the type of modeling reported in
this work. Indeed, the work presented here will be extended in the future by considering-
where possible-all the aspects mentioned above.

Beyond the above discussed shortcomings, the model proposed in this paper, based on
ERA5L data and lake level measurements, can simulate the behavior over time of the level
of the Trasimeno lake. Such a result confirms that, as for the simulation of the water table
of shallow unconfined aquifers in the Umbria region [91,92], reanalyses are an alternative
to other methods for modeling the water mass balance of inland water bodies.
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