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Abstract: This study investigated the impact of the assimilation of satellite radiance observations in
a three-dimensional variational data assimilation system (3DVAR) that could improve the tracking
and intensity forecasts of the Tropical Storm Dianmu in 2021, which occurred over parts of south-
east mainland Asia. The weather research and forecasting (WRF) model was used to conduct the
assimilation experiments of the storm. Four sets of numerical experiments were performed using
the WRF. In the first, the control experiment, only conventional data in Binary Universal Form for
the Representation of Meteorological Data (PREPBUFR) observations from the National Centers for
Environmental Prediction (NCEP) were assimilated. The second experiment (RDA1) was performed
with PREPBUFR observations and satellite radiance data from the Advanced Microwave Unit-A
(AMSU-A), and the Advanced Technology Microwave Sounder (ATMS). PREPBUFR observations
and the High-resolution Infrared Radiation Sounder (HIRS-4) were used in the third experiment
(RDA2). The fourth experiment (ALL-OBS) used the assimilation of PREPBUFR observations and
all satellite radiance data (AMSU-A, ATMS, and HIRS-4). The community radiative transfer model
was used on the forward operator for the satellite radiance assimilation, along with quality control
and bias correction procedures, before assimilating the radiance data. To evaluate the impact of the
assimilation experiments, a forecast starting on 00 UTC 23 September 2021, was produced for 72 h.
The results showed that the ALL-OBS experiment improved the short-term forecast up to ~24 h lead
time, as compared to the assimilation considering only PREPBUFR observations. When all obser-
vations were assimilated into the model, the storm’s landfall position, intensity, and structure were
accurately predicted. In the deterministic forecast, the tracking errors of the ALL-OBS experiment
was consistently less than 40 km within 24 h. The case study of Tropical Storm Dianmu exhibited the
significant positive impact of all observations in the numerical model, which could improve updates
for initial conditions and storm forecasting.

Keywords: variational data assimilation; satellite radiance data; tropical storm; weather research and
forecasting (WRF) model

1. Introduction

Tropical cyclones (TCs) are known to cause damage and lead to great losses in terms
of property and economy, which is a major concern that drives the challenge to improve cy-
clone forecasting [1,2]. Tropical storms form over warm oceanic regions when atmospheric
and oceanic conditions are favorable [3], such as tropical ocean regions with latitudes
greater than 5◦, sea surface temperatures (SSTs) greater than 26.5 ◦C, and limited vertical
wind shear to facilitate thunderstorm development [4]. Tropical storms develop more
frequently in the South China Sea than in the Indian Ocean. The highest rates of cyclonic
disturbance start in September and move from the east to the northeast of Thailand, which

Atmosphere 2022, 13, 956. https://doi.org/10.3390/atmos13060956 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13060956
https://doi.org/10.3390/atmos13060956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-0298-9476
https://orcid.org/0000-0003-2795-806X
https://orcid.org/0000-0002-0927-4097
https://doi.org/10.3390/atmos13060956
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13060956?type=check_update&version=2


Atmosphere 2022, 13, 956 2 of 15

is known to be highly vulnerable to damage by tropical storms on its vast agricultural and
developmental activities.

An accurate forecast of the movement, intensity, and location of land-falling tropical
storms is essential for warning and planning for disaster mitigation. The numerical weather
prediction (NWP) model has been improved so that it can be used for predicting tropical
cyclones. This improvement includes the data assimilation of increased satellite observa-
tions for short-term weather forecasts, which have been recognized to precisely define the
initial conditions in the NWP model [5,6]. Both tropical cyclone tracking and intensity
forecasting have been improved by previous data assimilation studies. For instance, Katta-
manchi et al. [7] predicted six TCs (Vardah, Gaja, Phethai, Mora, Fani, and Amphan) using
a 3DVAR method for assimilation. They concluded that the assimilation of surface winds
with the WRF model was effective for both tracking and intensity predictions. They also
reported that the assimilation of Scatterometer SATellite-1 (SCATSAT-1) data surface winds
improved cyclone tracking and intensity predictions. Xu et al. [8] used weather research
and forecasting data assimilation (WRFDA) to assess the impact of the assimilation of
infrared atmospheric sounding interferometer (IASI) radiance measurements on Hurricane
Maira (2011) and Typhoon Megi (2010) forecasts. A cloud-detection scheme implemented
in WRFDA was used to identify cloud contamination in radiance measurements from
high-spectral-resolution infrared sounders. The IASI radiance assimilation was found to
improve the depiction of dynamic and thermodynamic vortex formations in the storm. The
assimilation of microwave humidity sounder (MHS) radiance data from the FY-3B satellite
was studied in a recent study by Xu et al. [9] in the assessment and prediction of binary
typhoons Linfa and Chan-hom in the Pacific during 2015. The study emphasized the robust-
ness of the results using FY-3B satellite humidity sounder (MHS) radiance data assimilation
and the regional WRF model and its data assimilation systems, using a hybrid 3DVAR on
the binary interaction of the typhoons and the reliability of the results. Moradi et al. [10]
described and illustrated an enhanced Bayesian Monte Carlo integration (BMCI) retrieval
method in a data assimilation system. Using data from an advanced technology microwave
sounder (ATMS) and a Global Precipitation Measurement (GPM) microwave imager, this
study found that the assimilation of BMCI retrievals could affect a cyclone of dynamical
properties, such as a stronger warm core, a symmetric eye, and vertical wind.

Furthermore, studies have shown that microwave radiance data and infrared sounders
have more information in vertical profile of sounding observations and the inner structure
of the storm. A study by Deb et al. [11] demonstrated that assimilating the INSAT-3D
atmospheric wind vectors into the WRF model improved cyclonic storm-tracking forecast
errors. Singh et al. [12] revealed that the assimilation of both NCEP PREPBUFR and
radiance data could capture the structure of the storm and reduce tracking errors for
different lead-time forecasts, which caused the improvement of the initial conditions for
the storm. Lindskog et al. [13] used a large number of observations from traditional
observations, radars, scatterometer data, and satellite radiances to produce initial states
using 3DVAR and found that the assimilation of microwave humidity sounder 2 (MWHS2)
and the Advanced Microwave Sounding (AMSU-A) radiances was beneficial in reducing
systematic observation errors and excluding gross errors. The impacts of the assimilation
of FY-3D MWHS2 radiance data under clear skies for Tropical Storm Ampil were studied
by Xu et al. [14]. The study used data from an experiment assimilating both the Global
Telecommunications System (GTS) and FY-3D MWHS2 radiance data, and a comparison
experiment using only GTS data was also conducted. Thodsan et al. [15] evaluated the
impact of the assimilation of multiplatform observations on forecasts of heavy rainfall
events in Thailand using a 3DVAR assimilation method. According to their study, they
reported that the assimilation experiments performed using multiplatform observations
had better results than those using only local observations. These studies have reported
improvements in forecast tracking errors and the position of rainfall prediction in short-
term forecasts. Additional assimilations of satellite data and multiplatform observations in
numerical weather prediction can be found in [5,7,16–22], among others.
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During the 2021 monsoon season, Tropical Storm Dianmu’s landfall affected parts of
mainland Southeast Asia, which included Vietnam, Laos, and Thailand. It was reported
as the most damaging storm of the 2021 monsoon season. This particular tropical storm
was of interest in this study. The objective of the present study is to evaluate the impact
of the assimilation of radiance data from various satellite instruments on the forecasts
of Tropical Storm Dianmu using a 3DVAR assimilation method. Vertical information is
abundant due to the coarser horizontal resolution of the Global Forecasting System (GFS)
analysis data. Therefore, we expected that the assimilation of available satellite radiance
data can improve forecasts of the initial conditions, as well as of the storm. The remaining
parts of this paper are arranged as follows: A brief description of Tropical Storm Dianmu is
presented in Section 2. The methodology of the forecast model, the experimental setup, the
data used, and the 3DVAR assimilation method are presented in Section 3. The results of
the numerical experiments and the discussion are given in Section 4. Finally, a conclusion
is provided in Section 5.

2. Brief Description of Tropical Storm Dianmu, 2021

Tropical Storm Dianmu was a tropical cyclone that originated in the South China
Sea in September 2021. The storm gradually intensified into a tropical storm at 00 UTC
on 22 September 2021 and translated from a west to a north-west direction, gradually
intensifying into a tropical storm at 06 UTC on 23 September 2021, with a maximum speed
of 18 m/s and a minimum pressure of 1000 hPa, the storm reached its peak intensity. The
storm crossed central Vietnam and southern Laos at 12 UTC the same day and weakened to
a low-pressure area three hours later. It dissipated over Northeastern Thailand at 12 UTC
on 24 September.

The best tracking data of the Japan Meteorological Agency (JMA) for Tropical Storm
Dianmu is presented in Figure 1. The storm has caused widespread rainfall with heavy to
very heavy rainfall over the central district of Vietnam, several provinces in Southern Laos,
and Northeastern Thailand. There were eight reported deaths as a consequence of Tropical
Storm Dianmu and resulting floods in Thailand and Vietnam, with another loss of 5 people
and huge crop losses attributed as well [23]. The storm affected over 73,000 households,
and the heavy rainfall caused floods in these countries. The significant feature of the
system was that it extended its movement for 12 h close to the coast, resulting in unusually
heavy rainfall.
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3. Methodology and Data
3.1. Forecast Model

The WRF variational Data Assimilation (version 3.9.1) forecast model was used in
this study due to its higher-order mass conservation characteristics and advanced physics.
Three-dimensional winds, potential temperatures, geopotential, surface pressure, turbulent
kinetic energy, and scalar were among the prognostic variables in the model, which was
made up of fully compressible nonhydrostatic equations. Figure 2 shows the model config-
uration. The outer domain (d01) covered 226 × 196 grid points with a 27 km horizontal
resolution, and the inner domain (d02) has 430 × 340 grid points with a 9 km horizontal
resolution and with 31 vertical levels. The physics options included Eta microphysics [24],
the Yonsei University (YSU) boundary layer scheme [25], the rapid radiative transfer model
(RRTM) long-wave radiation scheme [26], the Dudhia scheme for short-wave radiation [27],
the Noah land surface model, and the Betts–Miller–Janjic (BMJ) cumulus parameterization
scheme [28].
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3.2. Experimental Setup

Four experiments were carried out with data assimilation for the Dianmu storm
in late September 2021. The first experiment was the control experiment (CNTL), with
the assimilation of NCEP PREPBUFR observations (such as data from land and upper-
air radiosondes, oceanic surface winds, and atmospheric wind), whose datasets were
assimilated for the control (CNTL) experiment. The second experiment, hereafter referred
to RDA1, used AMSU-A and ATMS radiance data and the available NCEP PREPBUFR
observations. The third experiment, RDA2, used the High-resolution Infrared Radiation
Sounder (HIRS-4) radiance data and the available NCEP PREPBUFR observations, as
shown in Table 1. Finally, in the fourth experiment, ALL-OBS, the TC was initialized by
assimilating the AMSU-A, ATMS, and HIRS-4 radiance data and all the available NCEP
PREPBUFR observations. Descriptions of the data type, the platform, and the parameters
used to assimilate into the WRF model are summarized in Table 1 and the experiment
designs for the study are summarized in Table 2. Note that all the assimilation experiments,
the model was initialized at 00 UTC 23 September 2021.
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Table 1. Datasets assimilated for the CNTL experiment.

Observation Platform Assimilation Parameters

Upper air PILOT, SOUND u, v, t, q
Land surface SYNOP, METAR u, v, t, p, q

Marine surface SHIP u, v, t, p, q
Satellite GEOAMV, QuikSCAT u, v

Table 2. Design of the experimental setup.

Name of the Experimental Setup Data Used in the Assimilation

CNTL Mentioned in Table 1
RDA1 CNTL + AMSU-A+ATMS
RDA2 CNTL + HIRS-4

ALL-OBS CNTL + AMSU-A+ATMS+HIRS-4

3.3. Data Used

The initial conditions for the numerical experiments were derived from the NCEP GFS
analysis at 0.5◦ × 0.5◦ horizontal resolutions. The model integration of time-varying lateral
boundary conditions was derived using GFS forecasts provided every 3 h. The model
topography was provided from the U.S. Geological Survey with resolutions of 10′ and 5′

for outer and inner domains, respectively. The best tracking data from the JMA was used
to validate the model forecasts. The rainfall forecast was validated with 0.05◦ daily data of
the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) product.

The NCEP provided the PREPBUFR observations and satellite radiance datasets. Satel-
lite radiances from the AMSU-A onboard NOAA-15/16/18, the ATMS onboard NOAA-20,
and the HIRS-4 onboard NOAA-18 satellite radiances were used in this study. The AMSU-
A is a cross-track microwave radiometer with 30 fields of view (FOV) per scan line that
scans the Earth surface within ±1089 km at nadir. It operated in the microwave frequency
range of 23.8 to 89.0 GHz and was designed to capture temperature sounding information
under nearly all weather conditions. The ATMS is a new microwave radiometer that used
the Suomi-NPP (S-NPP) platform to provide humidity and temperature sounding. All
ATMS channels were sampled every 1.11◦ at 96 scan positions with a cross-track scanning
microwave radiometer with 22 channels, which is significantly wider than the typical
2100–2300 km for AMSU-A or MHS. As a result, ATMS data coverage shows no gaps
between swaths in the tropical area [29,30]. The temperature-sounding channels of the
ATMS differed significantly from those of AMUS-A in spatial sampling, FOV, and noise.
However, the HIRS-4 is an atmospheric sounding instrument with multispectral data from
one visible channel, as well as seven shortwave and twelve longwave infrared channels
obtained from a single telescope and a rotating filter wheel containing twenty individual
filters, providing the spatial resolution of approximately 10 km at nadir [31–33]. It is also a
cross-track sensor, scanning every 6.4 s. It has a swath width of 2248 km to the far edge of
the outer FOV centered on the subsatellite track. In this study, we used the assimilation
of radiance data from the AMSU-A, ATMS, and HIRS-4 instruments onboard NOAA and
Metop-B satellite platforms.

A quality control step was conducted before assimilating the satellite radiance observa-
tions to ensure that the observations assimilated into the model are reliable. Table 3 shows
the characteristics of the AMSU-A, ATMS, and HIRS-4 channels. Note that channels 1–4 and
15 of AMSU-A could be contaminated by the surface due to the background temperature
and emissivity being challenging to model with a high likelihood for error, the simulation
of window channel radiance could be highly erratic [34]. Therefore, AMSU-A channels
10–14 were not assimilated into the model since their peaks were above the top boundary
of the model. In summary, the AMSU-A channels 5–9, ATMS channels 7–14 and 19–22, and
HIRS-4 channels 3–5 and 11–12 were used for the assimilation.
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Table 3. AMSU-A, ATMS, and HIRS-4 channel characteristics.

Channel
Number

AMSU-A Frequency
(GHz)

ATMS Frequency
(GHz)

HIRS-4 Frequency
(GHz)

1 23.80 23.80 669
2 31.80 31.40 680
3 50.30 50.3 690
4 52.80 51.76 703
5 53.596 ± 0.115 52.8 716
6 54.40 53.596 ± 0.115 733
7 54.94 54.40 749
8 54.94 54.94 900
9 57.290 54.94 1030
10 57.290 57.290 802
11 57.290 ± 0.3222 ± 0.048 57.290 1365
12 57.290 ± 0.3222 ± 0.022 57.290 ± 0.3222 ± 0.048 1533
13 57.290 ± 0.3222 ± 0.010 57.290 ± 0.3222 ± 0.022 2188
14 57.290 ± 0.3222 ± 0.0045 57.290 ± 0.3222 ± 0.010 2210
15 89.0 57.290 ± 0.3222 ± 0.0045 2235
16 88.2
17 165.6
18 183.31 ± 7.0
19 183.31 ± 4.5
20 183.31 ± 3.0
21 183.31 ± 1.8
22 183.31 ± 1.0

Unfortunately, brightness observations may differ significantly from those predicted
by the WRF model. A variety of factors can contribute to biases. It was possible to calibrate
systematic errors for the satellite instruments. For example, temperature and water vapor
profiles used as input in the WRF model may not be as precise as they should be. In
addition, the radiative transfer model was flawed and had its own limitations. As a
result, before combining the satellite radiance data, any potential biases in the observations
had to be addressed. In the first-guess state, the difference between the observation (O)
and the first guess (B) should be free of bias. The biases in this study were addressed
using variational bias correction (VarBC), a method that performs bias correction as part
of the analysis by considering information from both conventional observations and the
background field. The VarBC used several parameters, including scan positions between
1000–300 hPa between the 200–50 hPa layer thicknesses, the surface temperature, and the
total column water vapor [35].

For bias correction during radiance assimilation, an updated bias correction coefficient
was used, and this predictor was created in WRF-3DVAR. All the radiance data processing,
such as quality control, bias correction, and data thinning, was conducted within the WRF-
3DVAR system. The observations were assimilated into the model using a 3 h time window
as a cutoff [36,37]. In the data assimilation, domain-dependent regional background error
statistics were used as input.

3.4. Assimilation Methodology

The data assimilation system used in this study was the WRF model’s data assim-
ilation (WRFDA) system developed by the National Center for Atmospheric Research
(NCAR) [38,39]. It has the capability of processing different types of observations. The
WRFDA system is a unified model for spatial data assimilation. In this study, version 3.9.1
was used; the 3DVAR assimilation method obtained an accurate analysis of the real atmo-
spheric state for a given time by minimizing the cost function J(x) as follows:

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2
(y−H(x))TR−1(y−H(x)), (1)
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where x is the analysis field of the atmospheric and surface variables, xb is the background
field that is usually the forecast field, y is the observation field, and H is the observation
operator. B is the background error covariance matrix that was generated using the
National Meteorological Center (NMC) one-month method, R is the observational and
representative error covariance matrix, and B−1 and R−1 are inverse matrices of B and R,
respectively. The analysis field x is estimated through an iterative approach so that the
solution designates a minimum variance estimate of the atmospheric state. For the direct
radiance assimilation, the observation operator H(x) includes the radiative transfer model
(RTM), which calculates the radiances from the model variables of x.

In the data assimilation method, due to the large dimension of B, it was difficult
to conduct the minimum. Generally, the matrix B is decomposed into B = UUT, and
the following preprocessing stage can be formed by decomposing Uv = x − xb, where
v represents the control variable, and U represents the transformation operator. One
approximation is applied as:

y−H(x) ≈ y− H(xb)− H(x− xb), (2)

where H is the linearization of the nonlinear observation operator (H) in the form of a first-
order Taylor series expansion [40,41]. The final cost function of 3DVAR can be written as:

J =
1
2

VTV +
1
2
(d− HUv)T R−1(d− HUv), (3)

where d = y− H(xb) is the innovation.
In the experiments using radiance assimilation, a forward operator was used from

Equation (1); H was used as a fast RTM to calculate the brightness temperature from the
model variables in state vector x. The WRFDA has the capability to use two RTMs; these are
the radiative for the TOVS RRTOV model, developed by the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT) [42], and the community radiative
transfer model (CRTM), developed by the US Joint Center for Satellite Data Assimilation
(JCSDA) (data obtained online: ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM, accessed on
9 December 2021) [43,44]. They were also improved to support a greater number of
satellite instruments that covered a broader range of the electromagnetic spectrum. The
literature on the RTTOV and the CRTM discussed fast RT modeling including cloud cover.
Furthermore, Scheck et al. [45] presented progress on fast RT modeling in the visible
spectrum, and Eriksson et al. [46] and Geer et al. [47] published their recent microwave
research. Weng et al. [48] provided a comprehensive review of radiative transfer for satellite
data assimilation.

For this study, we used the CTRM as the forward operator. To simulate clear-sky
radiance, the CRTM calculated the inputs of temperature and water vapor profiles in the
atmosphere, surface temperature, surface wind speeds, and satellite geometry parameters.
The vertical profiles of hydrometer characteristics were necessary to simulate cloud-cover
radiance. The fast microwave emissivity model (FASTEM) is a two-scale emissivity model
that has been utilized across ocean bodies. A different land emissivity model has been used
over land in articles by Liu et al. [49] and Liu and Weng [50]. The error covariance matrix
was important in the data assimilation method as it could estimate a weight between the
background and observations. In the 3DVAR assimilation method, there were two different
kinds of background error covariance matrices. The NMC method is used to estimate
the background error covariance [51–53], known as the CV3 default option, used a global
model with T170 resolution from the peak winter months to better simulate the climatology
of the winter season. The control variables include the stream function ψ, the unbalanced
velocity potential xu , the unbalanced temperature Tu, the pseudo-relative humidity q, and
the unbalanced surface pressure Psu.

ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM
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4. Results and Discussions

In this section, we present the results of the Tropical Storm Dianmu forecasts from
four experiments (see Table 2). The model results were compared to the JMA tracking data
to assess the forecast performance. Note that the benchmark tracking data were obtained
from the Japan Meteorological Agency (JMA) in Tokyo, Japan.

The forecasted tracking data of Tropical Storm Dianmu, along with the JMA’s best
tracking data, are presented in Figure 3. Experiments using the CNTL, RDA1, RDA2, and
ALL-OBS assimilations showed a westward bias in tracking prediction compared to the
JMA data. This forecast was started at 00 UTC 23 September 2021 as a 72-h forecast. During
the forecasted period, the tropical storm also hit the central part of Vietnam. As shown
in Figure 3, the movement of the storm was more accurately predicted with the RDA1
and ALL-OBS experiments, but storm tracking with the ALL-OBS experiment was closer
to the benchmark observations at approximately 20–40 km, which was better than the
average of 100–200 km. As a result of superior data coverage of the storm, the assimilations
with AMSU-A, ATMS, and HIRS-4 radiance data had significant impacts on the tracking
predictions. The impacts of the assimilation of radiance data on tracking forecasts were
observed after 3-h, and even more so after 24-h forecast with the assimilation of the
AMSU-A and ATMS observations. Significant improvements in the tracking forecasts were
observed in the RDA2 experiment compared to the CNTL experiment.
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The tracking errors at every 6-h interval are presented in Figure 4, which shows that
the assimilated radiances were significant affected by the tracking forecasts. The results
signified that the forecast tracking errors were higher in the CNTL and RDA2 experiments,
as compared to the RDA1 and ALL-OBS experiments. When the deterministic forecasts
were preceded by a 6-h warm start analysis, a 20-km error existed at the initial time. As
shown in Figure 4, in the first 24 h, the tracking forecast in the ALL-OBS assimilation
gradually grew closer to the benchmark. The tracking errors in the ALL-OBS experiment
were below 40 km in the first 24 h but had a sharp increase in the last 24 h. In other words,
the assimilation of the AMSU-A, ATMS, and HIRS-4 channels reduced the forecast errors,
as compared to the CNTL experiment. The track of the storm was better-predicted in the
ALL-OBS experiment and more obvious in the short-range forecast (up to ~24-h lead time)
than the medium-range forecast, as compared to the CNTL experiment. In addition, the
tracking errors of the ALL-OBS experiment were typically smaller than those in the CNTL
experiment, with a maximal error of approximately 100 km.
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Figure 5 shows the time evolution of the forecasts in terms of the mean sea level
pressure (MSLP) observed intensity (Figure 5a), and maximum winds (Figure 5b). The ALL-
OBS experiment was found to be more accurate in forecasting the Tropical Storm Dianmu’s
intensification and dissipation patterns, although the JMA best tracking data were more
accurate in forecasting the peak intensity of the MSLP. The forecasted storm reached its
peak intensity at 18 UTC on September 23 with an MSLP of approximately 1003 hPa while
the observations reported an MSLP of approximately 1004 hPa at the same time. The
ALL-OBS experiment showed a similar pattern for storm intensification, although the
storm dissonated 6 h earlier than in the RDA2 experiment. The CNTL experiment failed to
capture the storm’s dissipation, and the RDA1 and RDA2 experiments underestimated the
storm’s peak intensity in terms of MSLP. In these forecasts, the MSLP was closer to the best
JMA tracking data in the first 24 h, as compared to the CNTL experiment; thereafter, it was
underestimated. When it came to the storm’s intensity, the CNTL experiment’s maximum
wind speed consistently underestimated the storm’s rate of expansion throughout the
entire forecast period. A peak wind speed of approximately 20 m/s was recorded in the
ALL-OBS experiment, while the best JMA tracking data recorded a peak wind speed of
approximately 18 m/s.

The wind speed (in m/s) distribution for 23 September 2021 at 00 UTC according to
the NCEP FNL analysis and the different assimilation experiments are shown in Figure 6.
The maximum surface winds were 20, 16, 15, and 8 m/s in the ALL-OBS, RDA1, RDA2,
and CNTL experiments, respectively, and 18 m/s from FNL analysis. Winds in the region
outside the storm were much weaker in the ALL-OBS experiment than in the CNTL
experiment. An increase in the cyclonic wind field to 850 hPa was noted in the ALL-OBS
experiment, and the wind speed increment was approximately 2–10 m/s in the region
of the storm and approximately 1–3 m/s. This indicated that the ALL-OBS experiment
indicated a stronger surface wind than the CNTL experiment.

Figure 7 presents the spatial distribution over 72-h of accumulated rainfall from 00
UTC on 23 September 2021 to 25 September 2021 given by the observations (CHIRPS) and
from different assimilation forecasts. According to the CHIRPS, Tropical Storm Dianmu
produced heavy rainfall in the north part of Vietnam, as well as two rainfalls in the
west and northeastern parts of Thailand. It was slightly better-predicted in the ALL-
OBS experiment than in the AMSU-A, ATMS, HIRS-4, and PREPBUFR datasets. The
location of the maximum rainfall and the pattern of rainfall in the ALL-OBS experiment
both agreed with the observations but were overestimated by approximately 100−150 mm
regarding the magnitude of the observed rainfall in the core region of the storm. Usually, the
accuracy of the forecast tracking influences the distribution of rainfall pattern. In the CNTL
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experiment, we found that the rainfall was focused in an eastward direction, including
higher levels of rainfall, as compared to the observed rainfall. The experiments using RDA1
and RDA2 showed that the locations of the two rainfalls in Thailand corresponded with
the observations. The rainfall forecast for north Vietnam was improved, but the west and
northeast Thailand rainfalls were mildly overestimated by approximately 80−120 mm.
However, it was concluded that the forecasted rainfall showed that the assimilation of all
the data sources (PREPBUFR, AMSU-A, ATMS, and HIRS-4) were similar to the CHIRPS
rainfall data and the assimilation of the AMSU-A and ATMS radiance data enhanced the
location of rainfall, as compared to the other experiments.
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5. Conclusions

This study focused on data assimilation using a 3DVAR assimilation method for
Tropical Storm Dianmu forecasts. The CNTL and radiance assimilation experiments were
conducted for 72-h forecasts starting at 00 UTC on 23 September 2021. In the CNTL ex-
periment, only the NCEP PREPBUFR datasets were assimilated. However, the AMSU-A,
ATMS, and HIRS-4 satellite radiance data were also assimilated in the radiance assimi-
lation experiments. The following conclusions were drawn according to the results of
our experiments.

The assimilation of AMSU-A, ATMS, and HIRS-4 data produced a forecast with im-
proved tracking and initial stages of the storm. The impact of the assimilation showed
that the AMSU-A and ATMS radiance data provided a better forecast of storm tracking,
intensity, and movements and was similar to the JMA tracking data. The trends of storm
intensification and dissipation were also observed to be consistent with the RDA1 experi-
ment. When the AMSU-A and ATMS radiance data were assimilated into the model, the
storm tracking showed slight improvements. Significant improvement was found in the
forecasted tracking and intensity of Tropical Storm Dianmu, providing better forecasting
in the ALL-OBS experiment compared to the CNTL, RDA1, and RDA2 experiments. In
addition, the 850-hPa wind fields were preferable for the maintenance of the storm. For
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the 72-h accumulated rainfall forecast, the positions of the rainfalls in the ALL-OBS experi-
ment had better agreement with the observations, whereas the rain belt in Thailand was
overestimated. Finally, the tracking errors in the ALL-OBS experiment were smaller, with a
maximal error of approximately 100 km, as compared to the CNTL experiment.

In the case study of Tropical Storm Dianmu, we found a positive influence from
tropical storm initialization and forecasting. This was a preliminary study with AMSU-A,
ATMS, and HIRS-4 satellite radiance data assimilated using a 3DVAR system. In future
research, additional tropical storm events should be included to verify the effectiveness of
radiance assimilation. Furthermore, more assimilation time periods should be considered
for continuous improvement of the initial conditions.
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