A Three-Year Climatology of the Wind Field Structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR Observations and High-Resolution Regional Climate Model Simulations during YOPP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Near-Surface Measurements and General Meteorological Conditions
2.2. SODAR Measurements
2.3. Numerical Model Data
3. Verification of the CCLM for Near-Surface Variables
3.1. Statistics for the Comparison with Tower Data
3.2. Wind Distributions
4. Verification of the CCLM Using SODAR Data
4.1. Case Studies of Channeling Events
4.1.1. July 2018
4.1.2. April 2019
4.2. Statistics for the Comparison with SODAR Data
5. Wind Climatology
5.1. Climatology of Channeling Events
5.2. Climatology of LLJs
5.3. Mean Wind Field and Extremes
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, K. Year of Polar Prediction—Enhance observations to provide improved forecasts in polar regions. Polarforschung 2021, 89, 81–84. [Google Scholar] [CrossRef]
- Shupe, M.D.; Rex, M.; Blomquist, B.; Persson, P.O.G.; Schmale, J.; Uttal, T.; Althausen, D.; Angot, H.; Archer, S.; Bariteau, L.; et al. Overview of the MOSAiC expedition—Atmosphere. Elem. Sci. Anthr. 2022, 10, 00060. [Google Scholar] [CrossRef]
- Hori, M.; Inoue, J. Upper Atmospheric Soundings in Ice Base Cape Baranova during the YOPP Special Observing Period. Polar Data J. 2020, 4, 55–60. [Google Scholar] [CrossRef]
- De Boer, G.; Dexheimer, D.; Mei, F.; Hubbe, J.; Longbottom, C.; Carroll, P.J.; Apple, M.; Goldberger, L.; Oaks, D.; Lapierre, J.; et al. Atmospheric observations made at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. Earth Syst. Sci. Data 2019, 11, 1349–1362. [Google Scholar] [CrossRef]
- Batrak, Y.; Müller, M. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nat. Commun. 2019, 10, 4170. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, G.; Willmes, S.; Schefczyk, L.; Makshtas, A.; Kustov, V.; Makhotina, I. Observations and Simulations of Meteorological Conditions over Arctic Thick Sea Ice in Late Winter during the Transarktika 2019 Expedition. Atmosphere 2021, 12, 174. [Google Scholar] [CrossRef]
- Inoue, J.; Sato, K.; Rinke, A.; Cassano, J.J.; Fettweis, X.; Heinemann, G.; Matthes, H.; Orr, A.; Phillips, T.; Seefeldt, M.; et al. Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic Ocean. J. Geophys. Res. 2020. [Google Scholar] [CrossRef]
- Sedlar, J.; Tjernström, M.; Rinke, A.; Orr, A.; Cassano, J.; Fettweis, X.; Heinemann, G.; Seefeldt, M.; Solomon, A.; Matthes, H.; et al. Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. J. Geophys. Res. 2020, 126, e2020JD033904. [Google Scholar] [CrossRef]
- Preußer, A.; Heinemann, G.; Willmes, S.; Paul, S. Circumpolar polynya regions and ice production in the Arctic: Results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere 2016, 10, 3021–3042. [Google Scholar] [CrossRef]
- Heinemann, G.; Drüe, C.; Schwarz, P.; Makshtas, A. Observations of Wintertime Low-Level Jets in the Coastal Region of the Laptev Sea in the Siberian Arctic Using SODAR/RASS. Remote Sens. 2021, 13, 1421. [Google Scholar] [CrossRef]
- Tuononen, M.; Sinclair, V.A.; Vihma, T. A climatology of low-level jets in the mid-latitudes and polar regions of the Northern Hemisphere. Atmos. Sci. Lett. 2015, 16, 492–499. [Google Scholar] [CrossRef]
- Heinemann, G. An Aircraft-Based Study of Strong Gap Flows in Nares Strait, Greenland. Mon. Wea. Rev. 2018, 146, 3589–3604. [Google Scholar] [CrossRef]
- Samelson, R.M.; Barbour, P.L. Low-Level Jets, Orographic Effects, and Extreme Events in Nares Strait: A Model-Based Mesoscale Climatology. Mon. Wea. Rev. 2008, 136, 4746–4759. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Våge, K. Impact of model resolution on the representation of the air–sea interaction associated with the North Water Polynya. Q. J. R. Meteorol. Soc. 2018, 144, 1474–1489. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G. A model-based comparison of extreme winds in the Arctic and around Greenland. Int. J. Climatol. 2018, 38, 5272–5292. [Google Scholar] [CrossRef]
- Kohnemann, S.H.; Heinemann, G. A climatology of wintertime low-level jets in Nares Strait. Polar Res. 2021, 40, 3622. [Google Scholar] [CrossRef]
- Janout, M.A.; Hölemann, J.; Timokhov, L.; Gutjahr, O.; Heinemann, G. Circulation in the northwest Laptev Sea in the eastern Arctic Ocean: Crossroads between Siberian River water, Atlantic water and polynya-formed dense water. J. Geophys. Res. Ocean. 2017, 122, 6630–6647. [Google Scholar] [CrossRef]
- Platonov, V.; Varentsov, M. Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation. Atmosphere 2021, 12, 350. [Google Scholar] [CrossRef]
- Anderson, P.S.; Ladkin, R.S.; Renfrew, I.A. An Autonomous Doppler Sodar Wind Profiling System. J. Atmos. Ocean. Technol. 2005, 22, 1309–1325. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. 2008, 113, C02S03. [Google Scholar] [CrossRef]
- Zhang, J.; Rothrock, D.A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Mon. Wea. Rev. 2003, 131, 845–861. [Google Scholar] [CrossRef]
- Schröder, D.; Heinemann, G.; Willmes, S. The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar Res. 2011, 30, 6334. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G.; Preußer, A.; Willmes, S.; Drüe, C. Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model. Cryosphere 2016, 10, 2999–3019. [Google Scholar] [CrossRef]
- Heinemann, G. Assessment of Regional Climate Model Simulations of the Katabatic Boundary Layer Structure over Greenland. Atmosphere 2020, 11, 571. [Google Scholar] [CrossRef]
- Hastings, D.A.; Dunbar, P.K. Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Documentation. Key Geophys. Rec. Doc. (KGRD) 1999, 34, 102–107. [Google Scholar]
- Zentek, R. COSMO Documentation (Archived Version from 2019, Uploaded with Permission of the DWD). 2019. Available online: https://zenodo.org/record/3339384 (accessed on 8 June 2020).
- Zentek, R.; Heinemann, G. Verification of the regional atmospheric model CCLM v5.0 with conventional data and lidar measurements in Antarctica. Geosci. Model Dev. 2020, 13, 1809–1825. [Google Scholar] [CrossRef]
- Heinemann, G.; Zentek, R. A Model-Based Climatology of Low-Level Jets in the Weddell Sea Region of the Antarctic. Atmosphere 2021, 12, 1635. [Google Scholar] [CrossRef]
- Kohnemann, S.H.E.; Heinemann, G.; Bromwich, D.H.; Gutjahr, O. Extreme Warming in the Kara Sea and Barents Sea during the Winter Period 2000–16. J. Clim. 2017, 30, 8913–8927. [Google Scholar] [CrossRef]
- Platonov, V.; Kislov, A. High-Resolution COSMO-CLM Modeling and an Assessment of Mesoscale Features Caused by Coastal Parameters at Near-Shore Arctic Zones (Kara Sea). Atmosphere 2020, 11, 1062. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Repina, I.A. Overview of strong winds on the coasts of the Russian Arctic seas. Ecol. Montenegrina 2019, 25, 14–25. [Google Scholar] [CrossRef]
- Barstad, I.; Adakudlu, M. Observation and modelling of gap flow and wake formation on Svalbard. Q. J. R. Meteorol. Soc. 2011, 137, 1731–1738. [Google Scholar] [CrossRef]
- Sandvik, A.D.; Furevik, B.R. Case Study of a Coastal Jet at Spitsbergen—Comparison of SAR- and Model-Estimated Wind. Mon. Wea. Rev. 2002, 130, 1040–1051. [Google Scholar] [CrossRef]
- Doyle, J.D.; Shapiro, M.A. Flow response to large-scale topography:the Greenland tip jet. Tellus A 1999, 51, 728–748. [Google Scholar] [CrossRef]
- Gaberšek, S.; Durran, D.R. Gap Flows through Idealized Topography. Part I: Forcing by Large-Scale Winds in the Nonrotating Limit. J. Atmos. Sci. 2004, 61, 2846–2862. [Google Scholar] [CrossRef]
- Heinemann, G.; Drüe, C. SODAR Wind Profiles at Cape Baranov 2017–2020. PANGAEA 2022. [Google Scholar] [CrossRef]
Instrument | Variable | Height/Range | Frequency | Owner |
---|---|---|---|---|
SODAR MFAS (Scintec) | 3D wind profile, wind variances | 30 m–400 m | 20 min/1 h | University Trier |
windRASS extension (Scintec) | Temperature profile | 40 m–400 m | 20 min/1 h | University Trier |
Radiosonde | Wind, humidity and tem perature profile | 0–25 km | 12–24 h | Roshydromet |
Tower | Wind (speed and direction) | 10 m | 3 h | Roshydromet |
Temperature and humidity | 2, 8 m |
Forcing | Vertical/Horizontal Resolutions, Lowest Six Levels | Run Mode | Sea Ice Concentration (SIC) and Thickness |
---|---|---|---|
ERA5 | 60 levels, 5 km | Forecast mode (reinitialized at 18 UTC, 6 h spin-up) | AMSR2 |
5, 16, 31, 48, 70 and 96 m | PIOMAS |
Quantity | OBS | CCLM | Bias | RMSE | Corr. | Corrsd | Corrsm | AA (OBS) | Diff AA (CCLM-OBS) |
---|---|---|---|---|---|---|---|---|---|
Closest Grid Point | |||||||||
T in °C | −11.8 | −14.5 | −2.7 | 5.0 | 0.963 | 0.655 | 0.867 | 5.5 | 1.4 |
Wind in m/s | 6.1 | 4.1 | −2.0 | 3.2 | 0.839 | 0.749 | 0.835 | 7.5 | −2.4 |
p in hPa | 1011.6 | 1012.4 | 0.8 | 1.1 | 0.998 | 0.991 | 0.998 | ||
Closest Grid Point Ocean | |||||||||
T in °C | −11.8 | −13.3 | −1.5 | 3.6 | 0.962 | 0.634 | 0.859 | 5.5 | 0.3 |
Wind in m/s | 6.1 | 5.3 | −0.8 | 2.6 | 0.827 | 0.734 | 0.822 | 7.5 | −1.4 |
p in hPa | 1011.6 | 1012.4 | 0.8 | 1.1 | 0.998 | 0.991 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinemann, G.; Drüe, C.; Makshtas, A. A Three-Year Climatology of the Wind Field Structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR Observations and High-Resolution Regional Climate Model Simulations during YOPP. Atmosphere 2022, 13, 957. https://doi.org/10.3390/atmos13060957
Heinemann G, Drüe C, Makshtas A. A Three-Year Climatology of the Wind Field Structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR Observations and High-Resolution Regional Climate Model Simulations during YOPP. Atmosphere. 2022; 13(6):957. https://doi.org/10.3390/atmos13060957
Chicago/Turabian StyleHeinemann, Günther, Clemens Drüe, and Alexander Makshtas. 2022. "A Three-Year Climatology of the Wind Field Structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR Observations and High-Resolution Regional Climate Model Simulations during YOPP" Atmosphere 13, no. 6: 957. https://doi.org/10.3390/atmos13060957
APA StyleHeinemann, G., Drüe, C., & Makshtas, A. (2022). A Three-Year Climatology of the Wind Field Structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR Observations and High-Resolution Regional Climate Model Simulations during YOPP. Atmosphere, 13(6), 957. https://doi.org/10.3390/atmos13060957