Characterization of Imidazole Compounds in Aqueous Secondary Organic Aerosol Generated from Evaporation of Droplets Containing Pyruvaldehyde and Inorganic Ammonium
Abstract
:1. Introduction
2. Experiments
2.1. Material
2.2. Formation of aqSOA by the Evaporation of Droplets Containing Pyruvaldehyde with (NH4)2SO4
2.3. Characterization of Imidazole Products in aqSOA
2.4. Optical Characterization of aqSOA
3. Results
3.1. On-Line Characterization of Imidazole Products
3.2. Off-Line Characterization of Imidazole Products
3.3. Formation Mechanism of Imidazole Products
3.4. The Effect of Water-Soluble Anions on the MAC of aqSOA Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of atmospheric brown carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hems, R.F.; Schnitzler, E.G.; Liu-Kang, C.; Cappa, C.D.; Abbatt, J.P.D. Aging of atmospheric brown carbon aerosol. ACS Earth Space Chem. 2021, 5, 722–748. [Google Scholar] [CrossRef]
- Jo, D.S.; Park, R.J.; Lee, S.; Kim, S.W.; Zhang, X.A. Global simulation of brown carbon: Implications for photochemistry and direct radiative effect. Atmos. Chem. Phys. 2016, 16, 3413–3432. [Google Scholar] [CrossRef] [Green Version]
- Kasthuriarachchi, N.Y.; Rivellini, L.H.; Adam, M.G.; Lee, A.K.Y. Light absorbing properties of primary and secondary brown carbon in a tropical urban environment. Environ. Sci. Technol. 2020, 54, 10808–10819. [Google Scholar] [CrossRef] [PubMed]
- Evjen, S.; Høgmoen Åstrand, O.A.; Gaarder, M.; Paulsen, R.E.; Fiksdahl, A.; Knuutila, H.K. Degradative behavior and toxicity of alkylated imidazoles. Ind. Eng. Chem. Res. 2020, 59, 587–595. [Google Scholar] [CrossRef]
- Ackendorf, J.M.; Ippolito, M.G.; Galloway, M.M. pH Dependence of the imidazole-2-carboxaldehyde hydration equilibrium: Implications for atmospheric light absorbance. Environ. Sci. Technol. Lett. 2017, 4, 551–555. [Google Scholar] [CrossRef]
- Zhang, R.F.; Gen, M.S.; Liang, Z.C.; Li, Y.J.; Chan, C.K. Photochemical reactions of glyoxal during particulate ammonium nitrate photolysis: Brown carbon formation, enhanced glyoxal decay, and organic phase formation. Environ. Sci. Technol. 2022, 56, 1605–1614. [Google Scholar] [CrossRef]
- Tinel, L.; Dumas, S.; George, C. A time-resolved study of the multiphase chemistry of excited carbonyls: Imidazole-2-carboxaldehyde and halides. Comptes Rendus Chimie 2014, 17, 801–807. [Google Scholar] [CrossRef]
- Felber, T.; Schaefer, T.; Herrmann, H. Five-membered heterocycles as potential photosensitizers in the tropospheric aqueous phase: Photophysical properties of imidazole-2-carboxaldehyde, 2-furaldehyde, and 2-acetylfuran. J. Phys. Chem. A 2020, 124, 10029–10039. [Google Scholar] [CrossRef]
- González Palacios, L.; Corral Arroyo, P.; Aregahegn, K.Z.; Steimer, S.S.; Bartels-Rausch, T.; Nozieère, B.; George, C.; Ammann, M.; Volkamer, R. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth. Atmos. Chem. Phys. 2016, 16, 11823–11836. [Google Scholar] [CrossRef] [Green Version]
- Corral Arroyo, P.; Aellig, R.; Alpert, P.A.; Volkamer, R.; Ammann, M. Halogen activation and radical cycling initiated by imidazole-2-carboxaldehyde photochemistry. Atmos. Chem. Phys. 2019, 19, 10817–10828. [Google Scholar] [CrossRef] [Green Version]
- Tsui, W.G.; Rao, Y.; Dai, H.L.; McNeill, V.F. Modeling photosensitized secondary organic aerosol formation in laboratory and ambient aerosols. Environ. Sci. Technol. 2017, 51, 7496–7501. [Google Scholar] [CrossRef] [PubMed]
- Martins-Costa, M.T.C.; Anglada, J.M.; Francisco, J.S.; Ruiz-López, M.F. Photosensitization mechanisms at the air–water interface of aqueous aerosols. Chem. Sci. 2022, 13, 2624–2631. [Google Scholar] [CrossRef] [PubMed]
- Zarzana, K.J.; Min, K.E.; Washenfelder, R.A.; Kaiser, J.; Krawiec-Thayer, M.; Peischl, J.; Neuman, J.A.; Nowak, J.B.; Wagner, N.L.; Dubè, W.P.; et al. Emissions of glyoxal and other carbonyl compounds from agricultural biomass burning plumes sampled by aircraft. Environ. Sci. Technol. 2017, 51, 11761–11770. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Li, J.Y.; Kota, S.H. Significant contributions of isoprene to summertime secondary organic aerosol in eastern United States. Environ. Sci. Technol. 2015, 49, 7834–7842. [Google Scholar] [CrossRef]
- Volkamer, R.; Platt, U.; Wirtz, K. Primary and secondary glyoxal formation from aromatics: Experimental evidence for the bicycloalkyl−radical pathway from benzene, toluene, and p-xylene. J. Phys. Chem. A 2001, 105, 7865–7874. [Google Scholar] [CrossRef]
- Qiu, X.H.; Wang, S.X.; Ying, Q.; Duan, L.; Xing, J.; Cao, J.Y.; Wu, D.; Li, X.X.; Xing, C.Z.; Yan, X.; et al. Importance of wintertime anthropogenic glyoxal and methylglyoxal emissions in Beijing and implications for secondary organic aerosol formation in megacities. Environ. Sci. Technol. 2020, 54, 11809–11817. [Google Scholar] [CrossRef]
- Mitsuishi, K.; Iwasaki, M.; Takeuchi, M.; Okochi, H.; Kato, S.; Ohira, S.I.; Toda, K. Diurnal variations in partitioning of atmospheric glyoxal and methylglyoxal between gas and particles at the ground level and in the free troposphere. ACS Earth Space Chem. 2018, 2, 915–924. [Google Scholar] [CrossRef]
- Fu, T.M.; Jacob, D.J.; Wittrocl, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Herckes, P.; Valsaraj, T.; Collett, J.L., Jr. A review of observations of organic matter in fogs and clouds: Origin, processing and fate. Atmos. Res. 2013, 132, 434–449. [Google Scholar] [CrossRef]
- Nozière, B.; Dziedzic, P.; Córdova, A. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4+). J. Phys. Chem. A 2009, 113, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Kampf, C.J.; Jakob, R.; Hoffmann, T. Identification and characterization of aging products in the glyoxal/ammonium sulfate system-implications for light-absorbing material in atmospheric aerosols. Atmos. Chem. Phys. 2012, 12, 6323–6333. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.K.Y.; Zhao, R.; Li, R.; Liggio, J.; Li, S.M.; Abbatt, P.D. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate. Environ. Sci. Technol. 2013, 47, 12819–12826. [Google Scholar] [CrossRef] [PubMed]
- Maxut, A.; Nozière, B.; Fenet, B.; Mechakra, H. Formation mechanism and yield of small imidazoles from reactions of glyoxal with NH4+ in water at neutral pH. Phys. Chem. Chem. Phys. 2015, 17, 20416–20424. [Google Scholar] [CrossRef] [PubMed]
- Teich, M.; Pinxteren, D.; Kecorius, S.; Wang, Z.; Herrmann, H. First quantifification of imidazoles in ambient aerosol particles: Potential photosensitizers, brown carbon constituents, and hazardous components. Environ. Sci. Technol. 2016, 50, 1166–1173. [Google Scholar] [CrossRef]
- Teich, M.; Schmidtpott, M.; Pinxteren, D.; Chen, J.M.; Herrmann, H. Separation and quantification of imidazoles in atmospheric particles using LC–Orbitrap–MS. J. Sep. Sci. 2020, 43, 577–589. [Google Scholar] [CrossRef]
- Lian, X.F.; Zhang, G.H.; Yang, Y.X.; Lin, Q.H.; Fu, Y.Z.; Jiang, F.; Peng, L.; Hu, X.D.; Chen, D.H.; Wang, X.M.; et al. Evidence for the formation of imidazole from carbonyls and reduced nitrogen species at the individual particle level in the ambient atmosphere. Environ. Sci. Technol. Lett. 2021, 8, 9–15. [Google Scholar] [CrossRef]
- Powelson, M.H.; Espelien, B.M.; Hawkins, L.N.; Galloway, M.M.; De Haan, D.O. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate. Environ. Sci. Technol. 2014, 48, 985–993. [Google Scholar] [CrossRef]
- Tang, M.J.; Alexander, J.M.; Kwon, D.; Estillore, A.D.; Laskina, O.; Young, M.A.; Kleiber, P.D.; Grassian, V.H. Optical and physicochemical properties of brown carbon aerosol: Light scattering, FTIR extinction spectroscopy, and hygroscopic growth. J. Phys. Chem. A 2016, 120, 4155–4166. [Google Scholar] [CrossRef]
- Harrison, A.W.; Waterson, A.M.; De Bruyn, W.J. Spectroscopic and photochemical properties of secondary brown carbon from aqueous reactions of methylglyoxal. ACS Earth Space Chem. 2020, 4, 762–773. [Google Scholar] [CrossRef]
- Tutsak, E.; Koçak, M. High time-resolved measurements of water-soluble sulfate, nitrate and ammonium in PM2.5 and their precursor gases over the Eastern Mediterranean. Sci. Total Environ. 2019, 672, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Huy, D.H.; Thanh, L.T.; Hien, T.T.; Takenaka, N. Comparative study on water-soluble inorganic ions in PM2.5 from two distinct climate regions and air quality. J. Environ. Sci. 2020, 88, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Acharja, P.; Ali, K.; Trivedi, D.K.; Safai, P.D.; Ghude, S.; Prabhakaran, T.; Rajeevan, M. Characterization of atmospheric trace gases and water soluble inorganic chemical ions of PM1 and PM2.5 at Indira Gandhi International Airport, New Delhi during 2017–18 winter. Sci. Total Environ. 2020, 729, 138800. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.L.; Duan, F.K.; He, K.B.; Du, J.J.; Zhu, L.D. Sulfate–nitrate–ammonium as double salts in PM2.5: Direct observations and implications for haze events. Sci. Total. Environ. 2019, 647, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, L.G.; Bie, S.J.; Zhao, T.; Huang, Q.; Li, J.S.; Wang, P.C.; Wang, Y.M.; Wang, W.X. Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2.5 in the coastal area. Atmos. Res. 2021, 250, 105323. [Google Scholar] [CrossRef]
- Zeebe, R.E.; Tyrrell, T. History of carbonate ion concentration over the last 100 million years II: Revised calculations and new data. Geochim. Cosmochim. Acta 2019, 257, 373–392. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.K.Y.; Zhao, R.; Gao, S.S.; Abbatt, J.P.D. Aqueous phase OH oxidation of glyoxal: Application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. J. Phys. Chem. A 2011, 115, 10517–10526. [Google Scholar] [CrossRef]
- Aiona, P.K.; Lee, H.J.; Leslie, R.; Lin, P.; Laskin, A.; Laskin, J.; Nizkorodov, S.A. Photochemistry of products of the aqueous reaction of methylglyoxal with ammonium sulfate. ACS Earth Space Chem. 2017, 1, 522–532. [Google Scholar] [CrossRef]
- Huang, M.Q.; Hao, L.Q.; Guo, X.Y.; Hu, C.J.; Gu, X.J.; Zhao, W.X.; Wang, Z.Y.; Fang, L.; Zhang, W.J. Characterization of secondary organic aerosol particles using aerosol laser time-of-flight mass spectrometer coupled with FCM clustering algorithm. Atmos. Environ. 2013, 64, 85–94. [Google Scholar] [CrossRef]
- Huang, M.Q.; Xu, J.; Cai, S.Y.; Liu, X.Q.; Hu, C.J.; Gu, X.J.; Zhao, W.X.; Fang, L.; Zhang, W.J. Chemical analysis of particulate products of aged 1,3,5-trimethylbenzene secondary organic aerosol in the presence of ammonia. Atmos. Pollut. Res. 2018, 9, 146–155. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Huang, M.Q.; Cai, S.Y.; Xu, X.Z.; Yang, Z.L.; Zhao, W.X.; Hu, C.J.; Gu, X.J.; Zhang, W.J. Characterization of single scattering albedo and chemical components of aged toluene secondary organic aerosol. Atmos. Pollut. Res. 2019, 10, 1736–1744. [Google Scholar] [CrossRef]
- Lu, T.T.; Huang, M.Q.; Zhao, W.X.; Hu, C.J.; Gu, X.J.; Zhang, W.J. Influence of ammonium sulfate seed particle on optics and compositions of toluene derived organic aerosol in photochemistry. Atmosphere 2020, 11, 961. [Google Scholar] [CrossRef]
- Updyke, K.M.; Nguyen, T.B.; Nizkorodov, S.A. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ. 2012, 63, 22–31. [Google Scholar] [CrossRef]
- Panetta, R.J.; Ibrahim, M.; Yves Gélinas, Y. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance δ13C-dissolved organic carbon in marine and freshwater samples. Anal. Chem. 2008, 80, 5232–5239. [Google Scholar] [CrossRef] [PubMed]
- Zawadowicz, M.A.; Abdelmonem, A.; Mohr, C.; Saathoff, H.; Froyd, K.D.; Murphy, D.M.; Leisner, T.; Cziczo, D.J. Single-particle time-of-flight mass spectrometry utilizing a femtosecond desorption and ionization laser. Anal. Chem. 2015, 87, 12221–12229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liggio, J.; Staebler, R.; Li, S.M. Reactive uptake of ammonia to secondary organic aerosols: Kinetics of organonitrogen formation. Atmos. Chem. Phys. 2015, 15, 13569–13584. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.J.; Prather, K.A. Interpretation of mass spectra from organic compounds in aerosol time-of-flight mass spectrometry. Analy. Chem. 2002, 72, 3553–3562. [Google Scholar] [CrossRef]
- Baeza-Romero, M.T.; Gaie-Levrel, F.; Mahjoub, A.; L’opez-Arza, V.; Garcia, G.A.; Nahon, L. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: Organic and inorganic-organic mixed aerosol analysis. Eur. Phys. J. D 2016, 70, 154–164. [Google Scholar] [CrossRef]
- Lemai, V.; Legaard, E.; Thrasher, C.; Jaffe, A.; Berden, G.; Martens, J.; Oomens, J.; O’Brien, R.E. UV/Vis and IRMPD spectroscopic analysis of the absorption properties of methylglyoxal brown carbon. ACS Earth Space Chem. 2021, 5, 910–919. [Google Scholar]
- Huang, M.Q.; Xu, J.; Cai, S.Y.; Liu, X.Q.; Zhao, W.X.; Hu, C.J.; Gu, X.J.; Fang, L.; Zhang, W.J. Characterization of brown carbon constituents of benzene secondary organic aerosol aged with ammonia. J. Atmos. Chem. 2018, 75, 205–218. [Google Scholar] [CrossRef]
- Alfarra, M.R.; Paulsen, D.; Gysel, M.; Garforth, A.A.; Dommen, J.; Prévôt, A.S.H.; Worsnop, D.R.; Baltensperger, U.; Coe, H. A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmos. Chem. Phys. 2006, 6, 5279–5293. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.; Bergstrom, R. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Sanger, M.J.; Danner, M. Aqueous ammonia or ammonium hydroxide? Identifying a base as strong or weak. J. Chem. Educ. 2010, 87, 1213–1216. [Google Scholar] [CrossRef]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. Atmos. 2005, 110, 1–10. [Google Scholar] [CrossRef]
- Ip, H.S.S.; Huang, X.H.H.; Yu, J.Z. Effective Henry’s law constants of glyoxal, glyoxylic acid, and glycolic acid. Geophys. Res. Lett. 2009, 36, L01802. [Google Scholar] [CrossRef] [Green Version]
No | Extraction Solution | Total Concentration of Organic Carbon (g/cm3) | Cmass (g/cm3) | 217 nm MAC (cm2/g) | 282 nm MAC (cm2/g) |
---|---|---|---|---|---|
2% methanol in water | 0.00593 | - | - | - | |
1 | C3H4O2 | 0.00714 | 0.00121 | - | - |
2 | C3H4O2 + NH4Cl | 0.00831 | 0.00238 | 2045 | 1092 |
3 | C3H4O2 + (NH4)2SO4 | 0.00835 | 0.00242 | 2142 | 1146 |
4 | C3H4O2 +NH4NO3 | 0.00856 | 0.00263 | 2251 | 1173 |
5 | C3H4O2 + (NH4)2CO3 | 0.00868 | 0.00275 | 4115 | 2185 |
6 | C3H4O2 + NH4F | 0.00875 | 0.00284 | 5340 | 2866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Huang, M.; Lu, T.; Zhao, W.; Hu, C.; Gu, X.; Zhang, W. Characterization of Imidazole Compounds in Aqueous Secondary Organic Aerosol Generated from Evaporation of Droplets Containing Pyruvaldehyde and Inorganic Ammonium. Atmosphere 2022, 13, 970. https://doi.org/10.3390/atmos13060970
Lin X, Huang M, Lu T, Zhao W, Hu C, Gu X, Zhang W. Characterization of Imidazole Compounds in Aqueous Secondary Organic Aerosol Generated from Evaporation of Droplets Containing Pyruvaldehyde and Inorganic Ammonium. Atmosphere. 2022; 13(6):970. https://doi.org/10.3390/atmos13060970
Chicago/Turabian StyleLin, Xin, Mingqiang Huang, Tingting Lu, Weixiong Zhao, Changjin Hu, Xuejun Gu, and Weijun Zhang. 2022. "Characterization of Imidazole Compounds in Aqueous Secondary Organic Aerosol Generated from Evaporation of Droplets Containing Pyruvaldehyde and Inorganic Ammonium" Atmosphere 13, no. 6: 970. https://doi.org/10.3390/atmos13060970
APA StyleLin, X., Huang, M., Lu, T., Zhao, W., Hu, C., Gu, X., & Zhang, W. (2022). Characterization of Imidazole Compounds in Aqueous Secondary Organic Aerosol Generated from Evaporation of Droplets Containing Pyruvaldehyde and Inorganic Ammonium. Atmosphere, 13(6), 970. https://doi.org/10.3390/atmos13060970