Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Climatological Mean of Dust Storm Occurrence Frequency over China
3.2. The Comparison of MODIS AOD and TOMS/OMI AAI with DSF
3.3. Variation in Spring AOD and AAI over the East Asian Dust Source Regions
3.4. The Relationship between AOD or AAI and Surface Wind Speed
3.5. The Relationship between AOD or AAI and Surface Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penner, J.E.; Andreae, M.; Annegarn, H.; Barrie, L.; Feichter, J.; Hegg, D.; Jayaraman, A.; Leaitch, R.; Murphy, D.; Nganga, J.; et al. Aerosols, their Direct and Indirect Effects. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J.V.D., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; pp. 289–348. [Google Scholar]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gong, S.-L.; Zhao, T.-L.; Arimoto, R. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30, 2272. [Google Scholar] [CrossRef] [Green Version]
- Mikami, M.; Shi, G.Y.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T.Y.; Kurosaki, Y.; Masuda, K.; et al. Aeolian dust experiment on climate impact: An overview of Japan-China joint project ADEC. Glob. Planet. Chang. 2006, 52, 142–172. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, T.; Che, H.; Liu, Y.; Han, Y.; Liu, C.; Xiong, J.; Liu, J.; Zhou, Y. A 20-year simulated climatology of global dust aerosol deposition. Sci. Total Environ. 2016, 557, 861–868. [Google Scholar] [CrossRef]
- An, L.; Che, H.; Xue, M.; Zhang, T.; Wang, H.; Wang, Y.; Zhou, C.; Zhao, H.; Gui, K.; Zheng, Y.; et al. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Sci. Total Environ. 2018, 633, 452–462. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Y.; Wang, H.; Tan, Q.; Chin, M.; Levy, R.C.; Remer, L.A.; Smith, S.J.; Yuan, T.; Shi, Y. Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmos. Chem. Phys. 2020, 20, 139–161. [Google Scholar] [CrossRef] [Green Version]
- Matsuki, A.; Iwasaka, Y.; Osada, K.; Matsunaga, K.; Kido, M.; Inomata, Y.; Trochkine, D.; Nishita, C.; Nezuka, T.; Sakai, T. Seasonal dependence of the long-range transport and vertical distribution of free tropospheric aerosols over east Asia: On the basis of aircraft and lidar measurements and isentropic trajectory analysis. J. Geophys. Res. 2003, 108, 8663–8676. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Winker, D.M.; Bergametti, G.; Gillette, D.A.; Carmichael, G.; Kaufman, Y.J.; Gomes, L.; Schuetz, L.; Penner, J.E. Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res. 2001, 106, 18015–18027. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.Y.; Gong, S.-L.; Chen, Y.; Shi, G.; Li, W. Radiative feedback of dust aerosols on the East Asian dust storms. J. Geophys. Res. 2010, 115, D23214. [Google Scholar] [CrossRef]
- Levin, Z.; Ganor, E.; Gladstein, V. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteorol. 1996, 35, 1511–1523. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Chen, L. The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys. 2007, 7, 3497–3505. [Google Scholar] [CrossRef] [Green Version]
- Matsuki, A.; Schwarzenboeck, A.; Venzac, H.; Laj, P.; Crumeyrolle, S.; Gomes, L. Cloud processing of mineral dust: Direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006. Atmos. Chem. Phys. 2010, 10, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, Z. Modeling Study of the Impact of Heterogeneous Reactions on Dust Surfaces on Aerosol Optical Depth and Direct Radiative Forcing over East Asia in Springtime. Atmos. Ocean. Sci. Lett. 2011, 4, 309–315. [Google Scholar]
- Li, J.; Wang, Z.; Zhuang, G.; Luo, G.; Sun, Y.; Wang, Q. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010. Atmos. Chem. Phys. 2012, 12, 7591–7607. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, Z.; Goudarzi, G.; Sorooshian, A.; Marzouni, M.B.; Maleki, H. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmos. Environ. 2016, 138, 135–143. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, D.; Shi, Y.; Li, B.; Yang, J.; Yu, X.; Chen, N.; Kakikawa, M. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. J. Environ. Sci. 2017, 55, 33–40. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Arimoto, R.; An, Z.S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. 1997, 102, 28,041–28,047. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Chang. 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Yumimoto, K.; Takemura, T. Long-term inverse modeling of Asian dust: Interannual variations of its emission, transport, deposition, and radiative forcing. J. Geophys. Res. Atmos. 2015, 120, 1582–1607. [Google Scholar] [CrossRef]
- Zhou, Z.-J.; Zhang, G.-C. Typical severe dust storms in northern China during 1954–2002. Chin. Sci. Bull. 2003, 48, 2366–2370. [Google Scholar] [CrossRef]
- Wang, S.-G.; Wang, J.-Y.; Zhou, Z.-J.; Shang, K.-Z. Regional characteristics of three kinds of dust storm events in China. Atmos. Environ. 2005, 39, 509–520. [Google Scholar] [CrossRef]
- Qian, Z.-A.; Cai, Y.; Liu, J.-T.; Liu, C.-M.; Li, D.-L.; Song, M.-H. Some advances in dust storm research over China-Mongolia areas. Chin. J. Geophys. 2006, 49, 83–92. [Google Scholar] [CrossRef]
- Zhao, T.L.; Gong, S.L.; Zhang, X.Y.; Blanchet, J.-P.; McKendry, I.G.; Zhou, Z.J. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part I: Mean Climate and Validation. J. Clim. 2006, 19, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Tie, X.; Cao, J.; Ying, Z.; Han, S.; Xue, Y. Analysis of a Severe Dust Storm Event over China: Application of the WRF-Dust Model. Aerosol Air Qual. Res. 2011, 11, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, J.; Che, H.; Ji, F.; Liu, J. Spatial and temporal evolution of natural and anthropogenic dust events over northern China. Sci. Rep. 2018, 8, 2141. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Tan, S.-C.; Li, J.; Che, H.; Chen, B.; Wang, H. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010. Atmos. Environ. 2017, 148, 316–328. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, W.; Qu, J.J. Detection of Asian Dust Storm Using MODIS Measurements. Remote Sens. 2017, 9, 869. [Google Scholar] [CrossRef] [Green Version]
- Filonchyk, M.; Peterson, M. Development, progression, and impact on urban air quality of the dust storm in Asia in March 15–18, 2021. Urban Clim. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Filonchyk, M. Characteristics of the severe March 2021 Gobi Desert dust storm and its impact on air pollution in China. Chemosphere 2022, 287, 132219. [Google Scholar] [CrossRef] [PubMed]
- Voss, K.K.; Evan, A.T. A New Satellite-Based Global Climatology of Dust Aerosol Optical Depth. J. Appl. Meteorol. Climatol. 2020, 59, 83–102. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Z.; Yu, H.; Ginoux, P.; Shen, J. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: Regional and interannual variability. Atmos. Chem. Phys. 2021, 21, 13369–13395. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H.; Zhang, Z.; Yang, S.; Li, W.; Li, Y. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Sci. Rep. 2019, 9, 6174. [Google Scholar] [CrossRef]
- Han, Y.; Fang, X.; Kang, S.; Wang, H.; Kang, F. Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet. Atmos. Environ. 2008, 42, 2358–2368. [Google Scholar] [CrossRef]
- Li, D.-L.; Zhong, H.-L. The climatic formation cause and the future developing trend of sand-dust storm in China. China Environ. Sci. 2007, 27, 14–18. [Google Scholar]
- Yue, X.; Wang, H.; Liao, H.; Fan, K. Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. J. Geophys. Res. 2010, 115, D04201. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, B.; Qian, W. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett. 2008, 35, L18702. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Dong, C.H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Sawyer, V.; Shi, Y.; Colarco, P.R.; Lyapustin, A.I.; Wang, Y.; Remer, L.A. Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmos. Meas. Tech. 2018, 11, 4073–4092. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-C.; Tsai, F.; Lin, F.-J.; Chen, W.-N.; Shiah, F.-K.; Huang, J.-C.; Chan, C.-Y.; Chen, C.-C.; Liu, T.-H.; Chen, H.-Y.; et al. A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. J. Geophys. Res. Atmos. 2013, 118, 7169–7181. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. 2007, 112, D24S47. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Justice, C.; Leeuwen, W.V. MODIS Vegetation Index (MOD 13) Algorithm Theoretical Basis Document. 1999. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 2 June 2021).
- Didan, K. MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD13C2 (accessed on 2 June 2021).
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Iwasaka, Y.; Shibata, T.; Nagatani, T.; Shi, G.Y.; Kim, Y.S.; Matsuki, A.; Trochkine, D.; Zhang, D.; Yamada, M.; Nagatani, M.; et al. Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles. J. Geophys. Res. 2003, 108, 8652. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, M.; Liu, T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res. 2001, 106, 10325–10333. [Google Scholar] [CrossRef]
- Mankin, J.S.; Seager, R.; Smerdon, J.E.; Cook, B.I.; Williams, A.P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 2019, 12, 983–988. [Google Scholar] [CrossRef]
- Field, C.B.; Jackson, R.B.; Mooney, H.A. Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ. 1995, 18, 1214–1225. [Google Scholar] [CrossRef]
- Idso, S.B.; Brazel, A.J. Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature 1984, 312, 51–53. [Google Scholar] [CrossRef]
Source Regions | DSF (daysyear−1) | AOD | AAI | Wind (ms−1) | NDVI | SFMC (m3m−3) | Precipitation (mmday−1) | T2m (K) | TSoil1 (K) |
---|---|---|---|---|---|---|---|---|---|
A | 2.616 (1.123) | 0.573 (0.245) | 1.541 (0.485) | 5.366 (0.929) | 0.078 (0.064) | 0.100 (0.064) | 0.261 (0.269) | 281.179 (8.578) | 281.897 (7.745) |
B | 2.367 (1.285) | 0.346 (0.103) | 1.322 (0.255) | 6.264 (0.589) | 0.059 (0.021) | 0.092 (0.030) | 0.142 (0.081) | 279.410 (6.962) | 280.231 (6.383) |
C | 2.500 (1.358) | 0.279 (0.061) | 1.147 (0.144) | 6.928 (0.783) | 0.100 (0.045) | 0.111 (0.043) | 0.301 (0.192) | 280.682 (3.964) | 280.855 (3.666) |
D | 4.167 (3.193) | 0.229 (0.076) | 1.190 (0.086) | 7.987 (0.654) | 0.176 (0.069) | 0.146 (0.027) | 0.463 (0.161) | 278.546 (1.401) | 278.231 (1.263) |
MDSR | 1.695 (0.877) | 0.365 (0.205) | 1.264 (0.335) | 6.296 (1.165) | 0.127 (0.102) | 0.127 (0.060) | 0.402 (0.332) | 280.939 (5.934) | 281.228 (5.466) |
Year | Source Regions | DSF (daysyear−1) | AOD | AAI | Wind (ms−1) | NDVI | SFMC (m3m−3) | Precipitation (mmday−1) | T2m (K) | TSoil1 (K) |
---|---|---|---|---|---|---|---|---|---|---|
2000–2005 | A | −9.284% | −2.618% | −1.168% | 0.112% | 1.282% | 7.000% | 23.372% | −0.015% | −0.010% |
B | −23.616% | −7.803% | −0.681% | 0.176% | 1.695% | 4.348% | 18.310% | 0.044% | 0.048% | |
C | −31.320% | −13.262% | −0.959% | −0.361% | 2.000% | .604% | 8.638% | 0.022% | 0.020% | |
D | −20.998% | −14.847% | −1.849% | −0.238% | 1.136% | 2.055% | 1.728% | −0.043% | −0.046% | |
MDSR | −30.796% | −6.575% | −1.028% | −0.095% | 1.575% | 3.937% | 10.945% | 0.006% | 0.007% | |
2006–2017 | A | −4.188% | −0.584% | −0.056% | 1.282% | 1.000% | 4.598% | −0.007% | −0.005% | |
B | −3.757% | −0.076% | −0.287% | 0.678% | −0.326% | 0.141% | 0.011% | 0.014% | ||
C | −3.943% | −0.087% | −0.895% | 1.000% | 0.901% | 2.658% | 0.025% | 0.025% | ||
D | −6.987% | −0.168% | −0.351% | 1.136% | 1.370% | −0.648% | 0.046% | 0.037% | ||
MDSR | −4.110% | −0.396% | −0.524% | 1.575% | 0.787% | 1.244% | 0.014% | 0.014% | ||
2017–2021 | A | 2.792% | 1.298% (2017–2020) | −1.155% | 1.282% | −4.000% | −1.916% | −0.026% | −0.016% | |
B | 1.734% (2017–2020) | 0.076% (2017–2020) | −0.527% | −0.678% | 3.261% | 28.169% | −0.044% | −0.041% | ||
C | 8.961% | 1.744% | 1.111% | 1.000% | 0.901% | 6.645% | −0.057% | −0.051% | ||
D | 2.620% | −1.176% | 1.452% | 1.136% | 2.740% | 7.559% | −0.123% | −0.106% | ||
MDSR | 4.110% | 0.158% | 0.334% | 0.787% | 0.787% | 1.493% | −0.045% | −0.037% | ||
2000–2021 | A | −0.873% | −0.130% | −0.019% | 1.282% | 1.000% | 1.533% | 0.005% | 0.002% | |
B | −1.445% | −0.303% | −0.160% | 0.678% | 0.435% | 1.408% | 0.014% | 0.014% | ||
C | −2.151% | −0.174% | −0.332% | 1.000% | 0.901% | 1.661% | 0.020% | 0.018% | ||
D | −3.057% | 0.168% | −0.175% | 0.568% | 0.685% | 0.432% | 0.023% | 0.020% | ||
MDSR | −1.370% | −0.237% | −0.206% | 0.787% | 0.787% | 1.244% | 0.013% | 0.011% |
DSF, AOD, and AAI | Surface Wind Speed (ms−1) | NDVI | Surface Soil Moisture Content (m3m−3) | Precipitation (mmday−1) | 2-m Air Temperature (K) | Soil Temperature 0–10 cm Underground (K) |
---|---|---|---|---|---|---|
DSF 2000–2007 | 0.70 * | −0.78 * | −0.50 * | −0.16 | −0.02 | −0.02 |
TOMS AAI 2000–2005 | 0.26 | 0.20 | −0.06 | 0.21 | −0.30 | −0.25 |
OMI AAI 2005–2021 | 0.29 * | −0.11 | −0.29 * | −0.26 | −0.03 | −0.05 |
AOD 2000–2021 | 0.43 * | −0.43 * | −0.20 | −0.27 * | −0.29 * | −0.28 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.; Chen, B.; Wang, H.; Che, H.; Yu, H.; Shi, G. Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021. Atmosphere 2022, 13, 992. https://doi.org/10.3390/atmos13060992
Tan S, Chen B, Wang H, Che H, Yu H, Shi G. Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021. Atmosphere. 2022; 13(6):992. https://doi.org/10.3390/atmos13060992
Chicago/Turabian StyleTan, Saichun, Bin Chen, Hong Wang, Huizheng Che, Huaying Yu, and Guangyu Shi. 2022. "Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021" Atmosphere 13, no. 6: 992. https://doi.org/10.3390/atmos13060992
APA StyleTan, S., Chen, B., Wang, H., Che, H., Yu, H., & Shi, G. (2022). Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021. Atmosphere, 13(6), 992. https://doi.org/10.3390/atmos13060992