Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling
Abstract
:1. Introduction
2. Methods
2.1. Vehicle Emission Measurements in the Shing Mun Tunnel
2.2. Emission Apportionment by Linear Regressions
2.3. Vehicle Source Apportionment by PMF
2.4. Vehicle Emission Estimates by EMFAC-HK
3. Results and Discussion
3.1. Pollutant Apportionment by Linear Regression
3.2. Comparison of Emission Factors Using Linear Regression, PMF, and EMFAC-HK
3.3. Source Profiles and Source Contributions Derived by PMF
4. Conclusions
- Increasing the time resolution of the pollutant concentration and fleet composition data significantly reduces EF uncertainties by linear regressions. By increasing the time resolution from 2 h to 15 min, the relative uncertainties of the NOx EFs reduced from 79% to 33% for NDV and from 32% to 14% for DV. The increased time resolution not only increases the number of data points in the regression, but also enhances the differentiation of emissions among different vehicle types. The time resolution is determined by the data intervals of gas and particle sampling as well as that of traffic categorization. It is also influenced by traffic volume as too high time resolution will likely increase traffic-counting statistical errors. The optimum time resolution needs to be determined from sensitivity tests at several time resolutions for each study.
- While SLR is the simplest among the four apportionment methods, caution should be taken when using SLR with very narrow traffic composition ranges, as the uncertainties of EFs by extrapolating the regression to fDV of 0% and 100% can be excessively large. Efforts should be made to increase the fleet composition’s variability, such as measuring in tunnels with separated LD and HD traffic or by measuring different periods with a variety of fleet mixes.
- With respect to the four EF calculation methods, MLR has the highest relative uncertainties, with many values exceeding ±100%, causing LPG and NDV EFs for many pollutants not statistically different from zero. Compared to SLR, MLR may resolve EFs for more than two vehicle categories, but EFs uncertainties by MLR were typically over twice those by SLR. EMFAC-HK has the lowest (<2%) relative uncertainties, due to its assignment of a single average EF value for each category under specific environmental and operating conditions. The relative uncertainties of SLR and PMF are comparable for many EFs by DV and NDV.
- Among the apportionment methods compared in this study, PMF is likely the most reliable and useful, as it simultaneously seeks the source signatures and source contributions by minimizing the deviation between modeled and measured concentrations. In addition to contributions from different vehicle categories, it also identifies contributions from other sources. In SMT, diesel, gasoline, and LPG vehicle emissions account for 52%, 10%, and 5% of PM2.5 concentrations, while ammonium sulfate (~20%), ammonium nitrate (6%), and road dust (7%) are also large contributors. Additionally, PMF produces source profiles indicating key signature chemical composition for each source.
- PMF and EMFAC-HK agree reasonably well for the relative contributions of LPG, gasoline, and diesel vehicles to gases and PM2.5 emissions by the vehicle fleet in the SMT. DV makes the largest contribution to CO2, NOx, and PM2.5, while GV makes the largest contribution to CO. Comparing source- and receptor-oriented models is recommended in source apportionment studies to reveal and resolve potential errors in the models and to reduce modeling uncertainties.
- The LPG gas source profile shows abundant isobutane, n-butane, and propane, indicating unburned LPG fuel; the LPG PM2.5 source profile has a higher abundance of organic molecules but nearly zero EC. The GV gas profile contains the highest levels of aromatics, including toluene, m/p-xylene, and ethylbenzene; the GV PM2.5 source profile shows higher abundances of heavier PAHs such as retene, benzo(ghi)fluoranthene, and methylfluoranthene. The DV gas profile has the highest CO2 and NOx abundances, and the DV PM2.5 source profile shows the highest EC abundance. Due to continuous changes in fuels, combustion technologies, and emission controls, the vehicle source profiles vary with location and time and need to be continuously evaluated and updated.
- Several knowledge gaps remain. The EMFAC-HK assumes zero tailpipe PM emissions from LPG vehicles, which may not be true as lubrication oil generates particles. To our best knowledge, there have not been direct tailpipe emission measurements from LPG vehicles; these measurements are needed to accurately determine EFs and source profiles of PM from LPG vehicles. The EMFAC-HK also assumes that LPG and DV do not have evaporative NMHC emissions, which does not agree with the abundant LPG fuel molecules observed in this study. In the interest of further reducing ozone and secondary organic aerosol pollutions, future studies should quantify the evaporative emission contributions for both LPG and DV and include these in emission models.
- As the true emissions by different fleet compositions are not known, the apportionment accuracy cannot be assessed by comparing with true values. A “weight of evidence” approach using additional available information (e.g., local emission inventories, source profiles, and modeling performance measures), running multiple receptor-modeling techniques, or reconciling receptor-oriented and source-oriented models can increase the degree of confidence.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smit, R.; Ntziachristos, L.; Boulter, P. Validation of road vehicle and traffic emission models—A review and meta-analysis. Atmos. Environ. 2010, 44, 2943–2953. [Google Scholar] [CrossRef]
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road vehicle emission factors development: A review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- HEI. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Special Report 17; Health Effects Institute Panel on the Health Effects of Traffic-Related Air Pollution: Boston, MA, USA, 2010; Available online: http://pubs.healtheffects.org/getfile.php?u=553 (accessed on 5 August 2014).
- El-Fadel, M.; Hashisho, Z. Vehicular Emissions in Roadway Tunnels: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2001, 31, 125–174. [Google Scholar] [CrossRef]
- Marinello, S.; Lolli, F.; Gamberini, R. Roadway tunnels: A critical review of air pollutant concentrations and vehicular emissions. Transp. Res. Part D Transp. Environ. 2020, 86, 102478. [Google Scholar] [CrossRef]
- Pierson, W.R.; Gertler, A.W.; Robinson, N.F.; Sagebiel, J.C.; Zielinska, B.; Bishop, G.A.; Stedman, D.H.; Zweidinger, R.B.; Ray, W.D. Real-world automotive emissions—Summary of studies in the Fort McHenry and Tuscarora mountain tunnels. Atmos. Environ. 1996, 30, 2233–2256. [Google Scholar] [CrossRef]
- Colberg, C.A.; Tona, B.; Catone, G.; Sangiorgio, C.; Stahel, W.A.; Sturm, P.; Staehelin, J. Statistical analysis of the vehicle pollutant emissions derived from several European road tunnel studies. Atmos. Environ. 2005, 39, 2499–2511. [Google Scholar] [CrossRef]
- Smit, R.; Kingston, P.; Wainwright, D.H.; Tooker, R. A tunnel study to validate motor vehicle emission prediction software in Australia. Atmos. Environ. 2017, 151, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ma, C.; Zhang, Y.; Wang, T.; Wu, L.; Wang, P.; Liu, Y.; Li, Q.; Zhang, J.; Dai, Q.; et al. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China. Sci. Total Environ. 2018, 637–638, 431–442. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Engling, G.; Chen, L.-W.A.; Wang, X.L. Source apportionment: Principles and methods. In Airborne Particulate Matter: Sources, Atmospheric Processes and Health; Harrison, R.M., Ed.; Royal Society of Chemistry: London, UK, 2016; pp. 72–125. [Google Scholar]
- Watson, J.G.; Cooper, J.A.; Huntzicker, J.J. The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos. Environ. 1984, 18, 1347–1355. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Harrison, R.M.; Shi, Z. A review of receptor modelling of industrially emitted particulate matter. Atmos. Environ. 2014, 97, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.P.; Fujita, E.M.; Wilson, W.E. Receptor modeling application framework for particle source apportionment. Chemosphere 2002, 49, 1093–1136. [Google Scholar] [CrossRef] [Green Version]
- HEI. The Future of Vehicle Fuels and Technologies: Anticipating Health Benefits and Challenges; HEI Communication 16; Health Effects Institute Special Committee on Emerging Technologies: Boston, MA, USA, 2011; Available online: http://pubs.healtheffects.org/getfile.php?u=635 (accessed on 5 August 2014).
- Fraser, M.P.; Buzcu, B.; Yue, Z.W.; McGaughey, G.R.; Desai, N.R.; Allen, D.T.; Seila, R.L.; Lonneman, W.A.; Harley, R.A. Separation of Fine Particulate Matter Emitted from Gasoline and Diesel Vehicles Using Chemical Mass Balancing Techniques. Environ. Sci. Technol. 2003, 37, 3904–3909. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Model. Energy Fuels 2002, 16, 222–260. [Google Scholar] [CrossRef]
- Fujita, E.M.; Campbell, D.E.; Arnott, W.P.; Chow, J.C.; Zielinska, B. Evaluations of the Chemical Mass Balance Method for Determining Contributions of Gasoline and Diesel Exhaust to Ambient Carbonaceous Aerosols. J. Air Waste Manag. Assoc. 2007, 57, 721–740. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, S.; Lohmann, R.; Yu, N.; Zhang, C.; Gao, Y.; Zhao, J.; Ma, L. Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmos. Environ. 2015, 107, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, S.; Sokhi, R.; Ravindra, K.; Mao, H.; Prain, H.D.; Bull, I.D. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 2013, 77, 548–557. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Watson, J.G.; Chow, J.C.; DuBois, D.W.; Herschberger, L. PM2.5 Source Apportionment: Reconciling Receptor Models for U.S. Nonurban and Urban Long-Term Networks. J. Air Waste Manag. Assoc. 2011, 61, 1204–1217. [Google Scholar] [CrossRef] [PubMed]
- NRC. Modeling Mobile-Source Emissions; Transportation Research Board, National Research Council, The National Academies Press: Washington, DC, USA, 2000; 258p. [Google Scholar]
- Fujita, E.M.; Campbell, D.E.; Zielinska, B.; Chow, J.C.; Lindhjem, C.E.; DenBleyker, A.; Bishop, G.A.; Schuchmann, B.G.; Stedman, D.H.; Lawson, D.R. Comparison of the MOVES2010a, MOBILE6.2 and EMFAC2007 mobile source emissions models with on-road traffic tunnel and remote sensing measurements. J. Air Waste Manag. Assoc. 2012, 62, 1134–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.L.; Chen, L.-W.A.; Ho, K.-F.; Chan, C.S.; Zhang, Z.; Lee, S.-C.; Chow, J.C.; Watson, J.G. Comparison of Vehicle Emissions by EMFAC-HK Model and Tunnel Measurement in Hong Kong. Atmos. Environ. 2021, 256, 118452. [Google Scholar] [CrossRef]
- Wang, X.L.; Ho, K.-F.; Chow, J.C.; Kohl, S.D.; Chan, C.S.; Cui, L.; Lee, S.-c.F.; Chen, L.-W.A.; Ho, S.S.H.; Cheng, Y.; et al. Hong Kong vehicle emission changes from 2003 to 2015 in the Shing Mun Tunnel. Aerosol Sci. Technol. 2018, 52, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Khlystov, A.; Ho, K.F.; Campbell, D.; Chow, J.C.; Kohl, S.D.; Watson, J.G.; Lee, S.C.; Chen, L.-W.A.; Lu, M.; et al. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States; Health Effects Institute: Boston, MA, USA, 2019. Available online: https://www.healtheffects.org/system/files/WangRR199.pdf (accessed on 10 December 2021).
- Cui, L.; Wang, X.L.; Ho, K.F.; Gao, Y.; Liu, C.; Ho, S.S.; Li, H.; Lee, S.C.; Wang, X.; Jiang, B.; et al. Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study. Atmos. Environ. 2018, 177, 64–74. [Google Scholar] [CrossRef]
- U.S. EPA. Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1999.
- Watson, J.G.; Tropp, R.J.; Kohl, S.D.; Wang, X.L.; Chow, J.C. Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Sci. Eng. 2017, 1, 193–205. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Frazier, C.A. X-ray fluorescence analysis of ambient air samples. In Elemental Analysis of Airborne Particles; Landsberger, S., Creatchman, M., Eds.; Gordon and Breach Science: Amsterdam, The Netherlands, 1999; Volume 1, pp. 67–96. [Google Scholar]
- Chow, J.C.; Watson, J.G. Enhanced ion chromatographic speciation of water-soluble PM2.5 to improve aerosol source apportionment. Aerosol Sci. Eng. 2017, 1, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 2007, 57, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.H.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 1521–1541. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.S.H.; Yu, J.Z.; Chow, J.C.; Zielinska, B.; Watson, J.G.; Sit, E.H.L.; Schauer, J.J. Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J. Chromatogr. A 2008, 1200, 217–227. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Yu, J.Z. In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. J. Chromatogr. A 2004, 1059, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Rice, J.; Frank, N.H. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmos. Chem. Phys. 2010, 10, 5223–5239. [Google Scholar] [CrossRef] [Green Version]
- Gertler, A.W.; Gillies, J.A.; Pierson, W.R.; Rogers, C.F.; Sagebiel, J.C.; Abu-Allaban, M.; Coulombe, W.; Tarnay, L.; Cahill, T.A. Real-World Particulate Matter and Gaseous Emissions from Motor Vehicles in a Highway Tunnel-HEI Research Report Number 107; Health Effects Institute: Boston, MA, USA, 2002; Available online: http://pubs.healtheffects.org/getfile.php?u=171 (accessed on 10 October 2014).
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-W.A.; Lowenthal, D.H.; Watson, J.G.; Koracin, D.; Kumar, N.; Knipping, E.M.; Wheeler, N.; Craig, K.; Reid, S. Toward Effective Source Apportionment Using Positive Matrix Factorization: Experiments with Simulated PM2.5 Data. J. Air Waste Manag. Assoc. 2010, 60, 43–54. [Google Scholar] [CrossRef]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Lee, S.C.; Ho, K.F.; Louie, P.K.K. On-road particulate matter (PM2.5) and gaseous emissions in the Shing Mun Tunnel, Hong Kong. Atmos. Environ. 2006, 40, 4235–4245. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Lu, Z.; Fujita, E.M.; Lowenthal, D.H.; Lawson, D.R. Chemical mass balance source apportionment of PM10 during the Southern California Air Quality Study. Aerosol Sci. Technol. 1994, 21, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-W.A.; Watson, J.G.; Chow, J.C.; Green, M.C.; Inouye, D.; Dick, K. Wintertime particulate pollution episodes in an urban valley of the western U.S.: A case study. Atmos. Chem. Phys. 2012, 12, 10051–10064. [Google Scholar]
- Chen, L.-W.A.; Cao, J. PM2.5 Source Apportionment Using a Hybrid Environmental Receptor Model. Environ. Sci. Technol. 2018, 52, 6357–6369. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Chow, J.C.; Wang, X.; Cao, J.; Mao, J.; Watson, J.G. Brownness of Organic Aerosol over the United States: Evidence for Seasonal Biomass Burning and Photobleaching Effects. Environ. Sci. Technol. 2021, 55, 8561–8572. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Q.; Han, Y.; Ye, J.; Wang, P.; Pongpiachan, S.; Ni, H.; Zhou, Y.; Wang, M.; Zhao, Y.; et al. Contributions of aerosol composition and sources to particulate optical properties in a southern coastal city of China. Atmos. Res. 2020, 235, 104744. [Google Scholar] [CrossRef]
- Stout, S.A.; Liu, B.; Millner, G.C.; Hamlin, D.; Healey, E. Use of chemical fingerprinting to establish the presence of spilled crude oil in a residential area following hurricane Katrina, St. Bernard parish, Louisiana. Environ. Sci. Technol. 2007, 41, 7242–7251. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.F.; Lee, S.C.; Ho, W.K.; Blake, D.R.; Cheng, Y.; Li, Y.S.; Ho, S.S.H.; Fung, K.; Louie, P.K.K.; Park, D. Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. Atmos. Chem. Phys. 2009, 9, 7491–7504. [Google Scholar] [CrossRef] [Green Version]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Sys. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Tsai, W.Y.; Chan, L.Y.; Blake, D.R.; Chu, K.W. Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai. Atmos. Chem. Phys. 2006, 6, 3281–3288. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zou, S.C.; Tsai, W.Y.; Chan, L.Y.; Blake, D.R. Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong. Atmos. Environ. 2011, 45, 2711–2721. [Google Scholar] [CrossRef] [Green Version]
- Whitacre, S.D.; Tsai, H.-C.; Orban, J. Lubricant Basestock and Additive Effects on Diesel Engine Emissions; U.S. Departament of Energy: Washington, DC, USA, 2002. Available online: http://www.afdc.energy.gov/pdfs/32842,pdf (accessed on 27 December 2016).
- Denier van der Gon, H.A.C.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. J. Air Waste Manag. Assoc. 2013, 63, 136–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 5. C1-C32 Organic Compounds from Gasoline-Powered Motor Vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef]
- Ling, Z.H.; Guo, H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environ. Sci. Policy 2014, 38, 180–191. [Google Scholar] [CrossRef]
- Myung, C.-L.; Ko, A.; Lim, Y.; Kim, S.; Lee, J.; Choi, K.; Park, S. Mobile source air toxic emissions from direct injection spark ignition gasoline and LPG passenger car under various in-use vehicle driving modes in Korea. Fuel Process. Technol. 2014, 119, 19–31. [Google Scholar] [CrossRef]
- Fujita, E.M.; Zielinska, B.; Campbell, D.E.; Arnott, W.P.; Sagebiel, J.C.; Mazzoleni, L.; Chow, J.C.; Gabele, P.A.; Crews, W.; Snow, R. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California’s south coast air basin. J. Air Waste Manag. Assoc. 2007, 57, 705. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Zielinska, B.; Mazzoleni, L.R.; Magliano, K.L. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos. Chem. Phys. 2007, 7, 1741–1754. [Google Scholar] [CrossRef] [Green Version]
- Dec, J.E. Advanced compression-ignition engines—Understanding the in-cylinder processes. Proc. Combust. Inst. 2009, 32, 2727–2742. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Shing Mun Tunnel and Fort McHenry Tunnel. Available online: https://dataverse.harvard.edu/dataverse/tunnels2019 (accessed on 1 June 2022).
Vehicle Category | Method a | EFD (g/vehicle/km) | |||||||
---|---|---|---|---|---|---|---|---|---|
CO2 | CO | NMHCs | NO | NO2 | NOx (as NO2) | SO2 | PM2.5 | ||
Fleet | EMFAC-HK | 311.3 ± 1.9 | 1.29 ± 0.01 | 0.088 ± 0.001 | 0.743 ± 0.011 | 0.193 ± 0.003 | 1.333 ± 0.017 | NA | 0.024 ± 0.000 |
Average | Measurement | 301.8 ± 12.4 | 1.80 ± 0.25 | 0.059 ± 0.004 | 0.869 ± 0.152 | 0.245 ± 0.045 | 1.577 ± 0.276 | 0.047 ± 0.004 | 0.025 ± 0.005 |
LPG | MLR | 212.2 ± 109.9 | 1.81 ± 1.32 | NA b | 0.580 ± 1.110 | −0.190 ± 0.390 | −0.030 ± 1.570 | 0.010 ± 0.050 | −0.080 ± 0.060 |
PMF | 240.1 ± 45.3 | 1.68 ± 0.53 | 0.150 ± 0.054 | 0.490 ± 0.208 | 0.107 ± 0.051 | 0.868 ± 0.373 | 0.009 ± 0.004 | 0.011 ± 0.003 | |
EMFAC-HK | 222.2 ± 0.6 | 3.15 ± 0.03 | 0.123 ± 0.002 | 0.874 ± 0.006 | 0.019 ± 0.000 | 1.359 ± 0.009 | NA | 0.000 | |
Gasoline | MLR | 158.0 ± 31.2 | 1.26 ± 0.38 | NA | 0.400 ± 0.310 | 0.220 ± 0.110 | 0.850 ± 0.510 | 0.020 ± 0.010 | 0.010 ± 0.020 |
(GV) | PMF | 144.6 ± 23.8 | 0.90 ± 0.52 | 0.035 ± 0.021 | 0.148 ± 0.096 | 0.020 ± 0.014 | 0.251 ± 0.163 | 0.021 ± 0.015 | 0.007 ± 0.002 |
EMFAC-HK | 177.2 ± 0.4 | 1.39 ± 0.01 | 0.107 ± 0.002 | 0.064 ± 0.001 | 0.005 ± 0.000 | 0.103 ± 0.001 | NA | 0.002 ± 0.000 | |
Non-Diesel | SLR | 209.9 ± 14.0 | 2.14 ± 0.17 | 0.082 ± 0.037 c | 0.445 ± 0.139 | 0.053 ± 0.051 | 0.745 ± 0.245 | 0.022 ± 0.006 | 0.008 ± 0.008 |
(NDV) | MLR | 170.3 ± 49.1 | 1.38 ± 0.59 | NA | 0.44 ± 0.49 | 0.13 ± 0.17 | 0.65 ± 0.75 | 0.02 ± 0.02 | −0.01 ± 0.03 |
PMF | 167.3 ± 18.0 | 1.09 ± 0.49 | 0.062 ± 0.025 | 0.230 ± 0.107 | 0.041 ± 0.020 | 0.398 ± 0.186 | 0.018 ± 0.012 | 0.008 ± 0.002 | |
EMFAC-HK | 187.3 ± 0.4 | 1.78 ± 0.01 | 0.110 ± 0.002 | 0.248 ± 0.003 | 0.008 ± 0.000 | 0.388 ± 0.005 | NA | 0.002 ± 0.000 | |
Diesel | SLR | 418.5 ± 19.7 | 1.83 ± 0.23 | 0.008 ± 0.056 c | 1.343 ± 0.195 | 0.473 ± 0.071 | 2.507 ± 0.342 | 0.078 ± 0.009 | 0.056 ± 0.011 |
(DV) | MLR | 319.4 ± 36.9 | 0.20 ± 0.43 | NA | 1.390 ± 0.360 | 0.580 ± 0.130 | 2.560 ± 0.600 | 0.080 ± 0.020 | 0.050 ± 0.020 |
PMF | 499.2 ± 28.1 | 0.29 ± 0.08 | 0.035 ± 0.014 | 1.227 ± 0.441 | 0.367 ± 0.143 | 2.255 ± 0.819 | 0.044 ± 0.016 | 0.043 ± 0.006 | |
EMFAC-HK | 489.3 ± 1.8 | 0.61 ± 0.00 | 0.057 ± 0.000 | 1.446 ± 0.009 | 0.455 ± 0.003 | 2.672 ± 0.014 | NA | 0.057 ± 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, L.-W.A.; Lu, M.; Ho, K.-F.; Lee, S.-C.; Ho, S.S.H.; Chow, J.C.; Watson, J.G. Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling. Atmosphere 2022, 13, 1066. https://doi.org/10.3390/atmos13071066
Wang X, Chen L-WA, Lu M, Ho K-F, Lee S-C, Ho SSH, Chow JC, Watson JG. Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling. Atmosphere. 2022; 13(7):1066. https://doi.org/10.3390/atmos13071066
Chicago/Turabian StyleWang, Xiaoliang, L.-W. Antony Chen, Minggen Lu, Kin-Fai Ho, Shun-Cheng Lee, Steven Sai Hang Ho, Judith C. Chow, and John G. Watson. 2022. "Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling" Atmosphere 13, no. 7: 1066. https://doi.org/10.3390/atmos13071066
APA StyleWang, X., Chen, L. -W. A., Lu, M., Ho, K. -F., Lee, S. -C., Ho, S. S. H., Chow, J. C., & Watson, J. G. (2022). Apportionment of Vehicle Fleet Emissions by Linear Regression, Positive Matrix Factorization, and Emission Modeling. Atmosphere, 13(7), 1066. https://doi.org/10.3390/atmos13071066