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Abstract: In the context of global warming, the increasing frequency of drought events has caused
negative impacts on agricultural productivity and societal activities. However, the drought occur-
rences have not been well predicted by any single model, and precipitation may show nonstationary
behavior. In this study, 60 years of monthly precipitation data from 1960 to 2019 for the Ningxia
Hui Autonomous Region were analyzed. The standard precipitation index (SPI) was used to classify
drought events. This study combined the strengths of autoregressive integrated moving average
(ARIMA) and complementary ensemble empirical mode decomposition (CEEMD) to predict drought.
First, based on the precipitation dataset, the SPI at timescales of 1, 3, 6, 9, 12, and 24 months was
calculated. Then, each of these SPI time series was predicted using the ARIMA model and the
CEEMD–ARIMA combined model. Finally, the models′ performance was compared using statis-
tical metrics, namely, root-mean-square error (RMSE), mean absolute error (MAE), Kling–Gupta
efficiency (KGE), Willmott index (WI), and Nash–Sutcliffe efficiency (NSE). The results show that
the following: (1) Compared with the ARIMA forecast value, the prediction results of the CEEMD–
ARIMA model were in good agreement with the SPI values, indicating that the combined model
outperformed the single model. (2) Two different models obtained the lowest accuracy for the
SPI1 prediction and the highest accuracy for the SPI24 prediction. (3) The CEEMD–ARIMA model
achieved higher prediction accuracy than the ARIMA model at each time scale. The most precise
model during the test phase was the CEEMD–ARIMA model at SPI24 at Xiji Station, with error
measures of MAE = 0.076, RMSE = 0.100, NSE = 0.994, KGE = 0.993, and WI = 0.999. Such findings
will be essential for government to make decisions.

Keywords: CEEMD–ARIMA combined model; ARIMA model; drought prediction; SPI

1. Introduction

Drought, which frequently occurs around the world, causes tremendous losses to
agricultural production and economic operation [1]. For instance, the 2014 California
drought was a record-breaking event that cost the United States USD 2.2 billion [2]. Drought
is one of the costliest disasters that humankind faces all over the world [3]. With climate
changes and temperature increases, droughts are becoming more and more frequent.
Quantitative studies on drought will help countries to avoid damage caused by climate
disasters in the future. Improved drought-monitoring ability has obvious significance in
city development, which could help in the creation of drought management agencies.

Droughts are generally categorized into four types: meteorological droughts, agricul-
tural droughts, hydrological droughts, and socioeconomic droughts [4]. Meteorological
drought initiates when precipitation presents with volumes below normal in a particular
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place. Such anomalies go on to affect agriculture and hydrology (agricultural and hydro-
logical droughts, respectively) [5]. This study focuses on meteorological drought. An
effective method of meteorological drought detection is to use drought indices [6]. Drought
indices can be used to quantitatively evaluate the influence range of a drought. In recent
years, a variety of indices have been used to study drought, such as the Palmer drought
severity index (PDSI) [7], standardized precipitation index (SPI) [8], reconnaissance drought
index (RDI) [9], and temperature vegetation drought index (TVDI) [10]. Among them,
the SPI is widely used in drought research at home and abroad due to its variable time
scale, and only precipitation data are used for calculation [6,11,12]. Based on these two
major advantages of the SPI—and particularly its ability to describe drought on multiple
time scales—Oliveira-Júnior et al. [13] evaluated the drought severity in northern and
northwestern Rio de Janeiro State (SRJ) regions from 1967 to 2013. Wu et al. [14] and
Xu et al. [15] used the SPI to investigate the characteristics of meteorological drought in
China. Łabędzki [16] adopted the SPI to estimate meteorological drought frequency in
the central part of Poland from 1861 to 2005. Therefore, the SPI was used in this study
due to its wide acceptability and advantages in drought research. Drought prediction
provides an early warning to decision makers in disaster management. However, it is often
notably challenging to obtain proper forecasts, because of the complexity of measuring
the precision of a time series [17,18]. In recent years, numerous models have been used
in drought forecasting, such as the autoregressive integrated moving average (ARIMA),
artificial neural network (ANN), and support-vector regression (SVR) [18–22]. Among
them, ARIMA is widely used in drought prediction because of its flexibility and richer
information on time-related changes [23]. Nevertheless, the forecasting accuracy of a single
model cannot meet the needs of drought prediction. Moreover, the precipitation data have
nonlinear and nonstationary characteristics. Therefore, hybrid models are used in drought
research to improve the prediction accuracy. Empirical mode decomposition (EMD) has ap-
parent advantages in the processing of nonlinear and nonstationary signal time–frequency
sequences. Özger et al. [24] used EMD for decomposing self-calibrated Palmer drought
severity index (sc-PDSI) time series into their sub-bands on drought prediction, but this
decomposition method has the problem of mode aliasing. As a further improvement of
EMD, ensemble empirical mode decomposition (EEMD) effectively reduces the occurrence
of mode aliasing. Libanda et al. [25] used it to understand consecutive dry days, but in
this decomposition method, Gaussian white noise was added to the original signal, and
its influence on the results could not be ignored. Therefore, since CEEMD has achieved
great results in many fields based on advantages in processing signals [26–28], and it
can effectively reduce the residual white noise and process nonlinear and nonstationary
signals, a new drought prediction method was proposed, combining the ARIMA model
and complementary ensemble empirical mode decomposition (CEEMD).

As mentioned above, with the nonlinear and nonstationary characteristics of precip-
itation data, it is important to accurately predict the occurrence of drought. The main
objectives of the present study are as follows: to (1) quantify the precipitation situation by
multi-timescale SPI, (2) develop the ARIMA model and then propose the hybrid model
by combining the strengths of ARIMA with CEEMD, and (3) evaluate the efficiency of the
ARIMA model and the CEEMD–ARIMA model according to the evaluated indices.

2. Study Area

The Ningxia Hui Autonomous Region extends from 104◦17′ E to 107◦39′ E and from
35◦14′ N to 39◦23′ N, with altitudes mostly above 1000 m (Figure 1). Helan Mountain
is located in the northwest of the province. As a natural barrier, this mountain reduces
intrusion from Tengger Desert quicksand and cold northwest winds into the Ningxia Hui
Autonomous Region. The southern part of the province is the Liupan mountainous area.
As the wettest region in Ningxia Hui Autonomous Region, it has a humid climate and
dense jungles. The area from the Helan Mountains to the Weining Plain has an arid climate,
and the area from the Weining Plain to the Liupan mountainous area has a semiarid climate.
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The Liupan mountainous area consists of jungle, wet, and pleasantly cool areas. The climate
characteristics of Ningxia vary widely from north to south on spatial and temporal scales.
The annual average temperature decreases from the north to the south in Ningxia, while
the annual precipitation shows the opposite tendency. The mean annual temperature is
between 5.3 and 9.9 ◦C, with the southern part below 7 ◦C, the central part above 7 ◦C,
and the northern part above 8 ◦C. The mean annual precipitation is between 150 mm and
600 mm, and the average annual water surface evaporation in Ningxia is 1250 mm.
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3. Materials and Methods
3.1. Data Sources

Monthly precipitation datasets from 10 meteorological stations were used in this
study. The datasets from January 1960 to December 2019 were obtained from the Ningxia
Hui Autonomous Region weather station in the National Meteorological Data Center
(http://data.cma.cn/ accessed on 13 March 2020). The elevation data were obtained from
the Geospatial Data Cloud (http://www.gscloud.cn/search accessed on 28 June 2021). Due
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to the terrain inclines from the southwest to the northeast in the Ningxia Hui Autonomous
Region, there is a large spatial difference in climate characteristics from the south to the
north. Since this paper focuses on the applicability of the combined model in drought
prediction, three meteorological stations were selected as representative stations of the
southern, northern, and central Ningxia Hui Autonomous Region. Table 1 shows the
information of three representative stations. The observed and predicted values of 10 sites
are visualized by the empirical Bayesian kriging interpolation method of ArcGIS.

Table 1. Information about meteorological stations in the sample.

Station Number Station Name Longitude/◦E Latitude/◦N Altitude/m

53519 Huinong 106.46 39.13 1092.5
53810 Tongxin 105.54 36.58 1339.3
53903 Xiji 105.43 35.58 1916.5

3.2. Research Methods
3.2.1. SPI

The SPI was developed by McKee et al. [29] to quantify precipitation on different time
scales. It can be calculated based solely on precipitation. The time scale of the SPI is variable.
Short-timescale SPI could reflect the water supply of crops. On a 1-month time scale, the
SPI can be used to reflect short-term precipitation conditions. The SPI on a 3-month time
scale can be used to analyze seasonal changes in precipitation. The calculated SPI data
for February, May, August, and November reflect winter, spring, summer, and autumn
drought conditions, respectively. The 6-month time scale SPI can be used to reflect mid-
term precipitation conditions. On a 9-month time scale, the SPI can be used to characterize
groundwater level changes over a longer period of time. The 12-month time scale SPI and
24-month time scale SPI are good indicators of long-term drought conditions [30]. The
SPIs of the 1-, 3-, 6-, 9-, 12-, and 24-month time scales are denoted as SPI1, SPI3, SPI6, SPI9,
SPI12, and SPI24, respectively. The computation procedure of SPI followed the method of
Lloyd-Hughes and Saunders [31]:

SPI = B
(

t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
(1)

where B is the positive and negative coefficient of probability density; for B = −1,

t =
√

ln 1
G(x)2 , and for B = 1, t =

√
ln 1

(1−G(x))2 , where G(x) is a cumulative probability [32].

The constants c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308.

The classification of drought based on SPI values is shown in Table 2 [31].

Table 2. Drought classification based on SPI.

SPI Value Category

SPI > −0.5 No drought
−1.0 < SPI ≤ −0.5 Mild drought
−1.5 < SPI ≤ −1.0 Moderate drought
−2.0 < SPI ≤ −1.5 Severe drought

SPI ≤ −2.0 Extreme drought

3.2.2. ARIMA Model

The ARIMA model developed by Box and Jenkins [33] includes three basic types:
autoregressive (AR) models, moving average (MA) models, and the combined AR and
MA (ARMA) models. AR, MA, and ARMA can be used when the data are stationary [19].
Nonstationary and nonwhite noise sequences can be predicted by the ARIMA model. First,
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a stationary time series is obtained from a nonstationary series through d-order difference.
Then, the ARMA model is used for prediction. The formula of the ARIMA (p, d, q) model is
written as follows:

Xt = ω1Xt−1 + ω2Xt−2 + · · ·+ ωpXt−p + ht − θ1ht−1 − θ2ht−2 − · · · − θqht−q (2)

where Xt is a time-series value, and ωi(i = 1, 2, · · · , p) and θj(j = 1, 2, · · · , q) are the au-
toregressive coefficient and moving average coefficient, respectively. ht is a white noise
sequence, ht ∼ N

(
0, σ2).

The modeling process of the ARIMA model is as follows:
First, each time series should go through stationary testing. In this paper, the aug-

mented Dickey–Fuller test (ADF) is used for judgment. If it is a nonstationary time series,
the d-order difference of the series is determined. Then, the value range of the model order
should be determined. The value range of P and Q is determined according to the autocor-
relation function (ACF) and partial autocorrelation function (PACF) of the data. After that,
the Akaike information criterion (AIC) and Bayesian information criterion (BIC) are used
to determine the order of the model. The formulae of the AIC and BIC are as follows:

AIC(p, q) = Nlnσ2(p, q) + 2(p + q + 1) (3)

BIC(p, q) = Nlnσ2(p, q) + (p + q + 1)lnN (4)

where N is the number of parameters. In different combinations of p and q, the combination
corresponding to the minimum value of AIC and BIC is selected to obtain the optimal
ARIMA model. The datasets were divided by grid search and cross-validation; 80% of
the data were selected as the training set for model prediction, and 20% of the data were
selected as the test set.

3.2.3. CEEMD

As proposed by Yeh et al. [34], CEEMD has apparent advantages in the processing of
nonlinear and nonstationary signal time–frequency sequences. It can adaptively decompose
the original sequence into several intrinsic mode function (IMF) components, with different
scales that are mutually independent and a residual trend quantity. The steps are as follows:

A group of white noise includes positive noise and negative noise. P(t) is the original
sequence, with n groups of auxiliary white noise added to the positive noise sequence Y1
and negative noise sequence Y2. Now, the total number of sequences obtained is 2n,[

Y1
Y2

]
=

[
1 1
1 −1

][
P
N

]
(5)

where N is an auxiliary sequence. The obtained sequences are decomposed by EMD to
obtain m IMF components, and each group of components is denoted as C+

ij (t) and C−ij (t)
(i = 1, . . . , n, j = 1, . . . , m). C+

ij (t) and C−ij (t) of the IMF components in each group are
averaged to obtain the IMFj value.

IMFj =
1

2n

n

∑
i=1

(
C+

ij (t) + C−ij (t)
)

(6)

Take the decomposed IMF components as the final result. The original sequence is
decomposed into:

P(t) =
m

∑
j=1

IMFj(t) + R(t) (7)

where R(t) is a residual trend quantity.
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3.2.4. CEEMD–ARIMA Combined Model

The original sequences with strong volatility are decomposed by CEEMD to obtain a
set of IMF components with low volatility, improving the predictability of the sequences
predicted by the ARIMA model. The CEEMD and ARIMA models are combined using
Python to form the CEEMD–ARIMA model. The steps are as follows:

Step 1: The SPI sequence is imported into the CEEMD for decomposition to obtain
IMF1, IMF2 . . . , IMFn, and residual trends from high frequency to low frequency.

Step 2: The sequences decomposed by CEEMD are imported into the ARIMA model.
The stationarity of each component is tested through the ARIMA model. After the order
and prediction are determined, the prediction result is obtained. The predicted results are
denoted as P1, P2, and Pn + 1.

Step 3: Finally, sum P1, P2, and . . . , Pn + 1 as the combined model’s predicted results.

P =
n+1

∑
i=1

Pi (8)

The modeling process of the CEEMD–ARIMA model is as shown in Figure 2.
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3.2.5. Evaluation Index

To evaluate the performance of the ARIMA model and the CEEMD–ARIMA model,
statistical criteria such as root-mean-square error (RMSE), mean absolute error (MAE),
Kling–Gupta efficiency (KGE), Willmott index (WI), and Nash–Sutcliffe efficiency (NSE)
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were used. A model with the lowest RMSE and MAE and the highest KGE, WI, and NSE
was selected and proposed as an appropriate model. The formulae are as follows [35–38]:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (10)

KGE = 1−
√
(CC− 1)2 + (α− 1)2 + (β− 1)2 (11)

WI =

∣∣∣∣∣1−
[

∑N
i=1(yi − ŷi)

2

∑N
i=1(|yi − y|+ |ŷi − y|)2

]∣∣∣∣∣ (12)

NSE = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (13)

where yi is the observed value, y is the average value of yi, ŷi is the forecasted value, and N
is the total data size of yi. CC, α, and β in the KGE index illustrate the correlation coeffi-
cient, the standard deviation ratio, and the average ratio of the observed and forecasted
data, respectively.

4. Results

The calculation of the SPI and the fitting of the ARIMA model were both accomplished
on the Python 3.7 platform.

4.1. SPI Values at Different Time Scales

The research applicability of the CEEMD–ARIMA model in drought is mainly through
the prediction of the SPI on the time scales of 1, 3, 6, 9, 12, and 24 months. Monthly
precipitation data from 10 meteorological stations in the Ningxia Hui Autonomous Region
during 1960–2019 were used to calculate the SPI. The calculated SPI results characterize
drought conditions, as shown in Table 2. Huinong, Tongxin, and Xiji were taken as examples
to demonstrate multiple-timescale SPIs, and the calculated SPIs of the sample stations are
shown in Figure 3. Through the Mann–Kendall trend test, the SPI12 and SPI24 sequences of
Tongxin Station and the SPI9, SPI12, and SPI24 sequences of Xiji Station have a decreasing
trend. The other sequences have no trend.

4.2. The ARIMA Modeling and Prediction

The first 80% of the calculated SPI data were used as observation training data, and
the last 20% of the data were used as prediction comparison data. That is, the data from
1960 to 2007 were used as the training set, and the data from 2008 to 2019 were used as
the test set. The stability of the 80% training data should be judged before prediction. If
the data are a stable series, then d = 0 in the ARIMA model can be used for prediction; if
not, then d 6= 0. Through the ADF test, the p-values of all SPI sequences of the sample sites
were less than 0.05 (Table 3). Therefore, all SPI sequences were stationary time series.
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Table 3. Unit root test of SPI original sequence.

Example
Stations

SPI Series ADF
Critical Value

p-Value
1% 5% 10%

Huinong

SPI1 −20.0550 −3.4418 −2.8666 −2.5694 0.0000
SPI3 −9.6732 −3.4419 −2.8666 −2.5695 1.2610 × 10−16

SPI6 −6.9028 −3.4420 −2.8667 −2.5695 1.2693 × 10−9

SPI9 −5.3241 −3.4423 −2.8668 −2.5696 4.8806 × 10−6

SPI12 −4.7455 −3.4423 −2.8668 −2.5696 6.9075 × 10−5

SPI24 −4.1882 −3.4423 −2.8668 −2.5696 0.0007

Tongxin

SPI1 −21.6155 −3.4418 −2.8666 −2.5694 0.0000
SPI3 −9.6077 −3.4419 −2.8666 −2.5695 1.8469 × 10−16

SPI6 −6.7922 −3.4420 −2.8667 −2.5695 2.3486 × 10−9

SPI9 −4.9104 −3.4423 −2.8668 −2.5696 3.3288 × 10−5

SPI12 −4.4071 −3.4423 −2.8668 −2.5696 0.0003
SPI24 −3.7087 −3.4423 −2.8668 −2.5696 0.0040

Xiji

SPI1 −22.0945 −3.4418 −2.8666 −2.5694 0.0000
SPI3 −10.7739 −3.4419 −2.8666 −2.5695 2.3469 × 10−19

SPI6 −7.3216 −3.4420 −2.8667 −2.5695 1.1900 × 10−10

SPI9 −4.1113 −3.4423 −2.8668 −2.5696 0.0009
SPI12 −3.4578 −3.4422 −2.8668 −2.5696 0.0091
SPI24 −3.3257 −3.4423 −2.8668 −2.5696 0.0138

Because the SPI series of the three sites were stationary time series, the ARMA model
was selected for the prediction. ACF and PACF were used to rank the ARMA model, and
p- and q-values corresponding to the minimum AIC and BIC values were selected. The
model ranking results of each sequence are shown in Table 4. The optimal model of the SPI
series at various time scales was applied to predict the SPI series of the three stations from
2008 to 2019.

Table 4. Model order based on SPI values of six time scales.

Example
Stations SPI Series Model Select AIC BIC Model Order

Estimation

Huinong

SPI1 ARMA 1826.071 1839.804 ARMA (1, 0)
SPI3 ARMA 1631.778 1650.079 ARMA (0, 2)
SPI6 ARMA 1398.692 1412.404 ARMA (1, 0)
SPI9 ARMA 1026.739 1045.006 ARMA (1, 0)
SPI12 ARMA 538.884 579.946 ARMA (5, 2)
SPI24 ARMA 64.999 87.725 ARMA (3, 0)

Tongxin

SPI1 ARMA 1937.225 1950.959 ARMA (1, 0)
SPI3 ARMA 1593.929 1612.230 ARMA (0, 2)
SPI6 ARMA 1302.638 1343.776 ARMA (5, 2)
SPI9 ARMA 957.282 970.982 ARMA (1, 0)
SPI12 ARMA 536.069 586.256 ARMA (7, 2)
SPI24 ARMA 43.954 62.136 ARMA (2, 0)

Xiji

SPI1 ARMA 2012.614 2026.347 ARMA (0, 1)
SPI3 ARMA 1628.778 1647.078 ARMA (0, 2)
SPI6 ARMA 1453.959 1472.242 ARMA (2, 0)
SPI9 ARMA 1061.371 1075.071 ARMA (1, 0)
SPI12 ARMA 575.482 616.544 ARMA (5, 2)
SPI24 ARMA 31.131 62.949 ARMA (3, 2)

4.3. The CEEMD–ARIMA Combined Model

Multiscale SPI was decomposed by CEEMD. After several parameters were modified
and compared, when the Gaussian white noise logarithm was 100, the total number of
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modes (not including the trend) was 7, and the standard deviation of the original time series
was multiplied by 0.2. CEEMD had the best decomposition effect. Seven IMF components
and one trend item were obtained by the CEEMD decomposition of the SPI3 sequence
of Xiji Station (Figure 4). The trend term represents the general trend of a sequence over
time. As shown in Figure 4, the fluctuation range of the IMF component obtained by
decomposition is smaller than that of the original sequence, and with the gradual progress
of decomposition, the fluctuation of the component tends to be smooth. Therefore, the
predictability of the subsequence obtained after decomposition is higher than that of the
original sequence.
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A stationary test was carried out for the components decomposed by CEEMD. IMF1~IMF6
were stationary time series; therefore, the ARMA model was selected for prediction. IMF7
and RES were nonstationary time series, and the ARIMA model was used for prediction
after the stationary series was obtained by data difference. AIC and BIC were used to
determine the order of the model, and the ranking results are shown in Table 5.

In this paper, the data from 1960 to 2007 were used as observation training data. There-
fore, only this part of the SPI sequence was decomposed by CEEMD and then predicted by
the ARIMA model, and the sum of the predicted results of each component was used as
the final prediction result of the SPI sequence. The prediction comparison plot includes the
actual calculated SPI values and the predicted SPI values of the CEEMD–ARIMA model
and the ARIMA model, as shown in Figures 5–7 for Huinong, Tongxin, and Xiji sample
stations, respectively.
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Table 5. Model order based on IMFs of the SPI3 sequence at Xiji Station.

SPI Series Decompose Results Model Select Model Order
Estimation

SPI3

IMF1 ARMA ARMA (1, 1)
IMF2 ARMA ARMA (2, 5)
IMF3 ARMA ARMA (4, 2)
IMF4 ARMA ARMA (4, 5)
IMF5 ARMA ARMA (4, 6)
IMF6 ARMA ARMA (2, 1)
IMF7 ARIMA ARIMA (4, 1, 1)
Res ARIMA ARIMA (3, 1, 1)

Figures 5a, 6a and 7a show that there is a big difference between the predicted value of
the ARIMA model and the actual value of SPI at the 1-month time scale, and the predicted
result of the CEEMD–ARIMA combination model at the SPI1 time scale is better than that
of the ARIMA model. The poor stationarity of the 1-month time series resulted in bad
prediction results of the ARIMA model. As the time scale increases and the data stationarity
improves, the ARIMA prediction results become closer and closer to the actual situation.
The prediction of the ARIMA model in the combined model relies on the stable basis
provided by the CEEMD. At the time scales of 1 month and 3 months, the predicted value
of the CEEMD–ARIMA model is different from the actual value. At the time scales of 6, 9,
12, and 24 months, the predicted values of the combined model are less different. According
to the comparison diagram of SPI3 and SPI6 in Figures 5–7, the prediction results of the
combined model in the extreme drought year (SPI ≤ −2) are closer to the actual situation,
indicating that the combined model is more suitable for the study of extreme drought than
the single model. With increasing time scale, the difference between the predicted value of
the model and the actual calculated value tends to decrease. The two models′ predicted
values of SPI12 and SPI24 were very close to the actual values, and the combined model
was closer than the single model.

In 2009, due to high temperature and drier weather, a severe large-scale drought
occurred in Ningxia, which spread from the central region. From the predicted values of
the combined model shown in Figures 5–7, drought first appeared near Tongxin Station,
and then around Huinong Station and Xiji Station, which is consistent with the record in
the China Meteorological Network. The combined model predicts that there would be no
drought or mild drought at Huinong Station and Tongxin Station in 2016, but drought at
Xiji Station, which is also consistent with the record. In July 2017, large-scale precipitation
occurred in Ningxia, with heavy rain in some areas. In 2019, the precipitation in the
whole region was relatively high, with annual precipitation of 341.7 mm, and the southern
mountainous region was rainy for eight consecutive months. The prediction results of
the combined model for drought in these periods were nearly consistent with the actual
situation. This indicates that the prediction of the combined model has a high consistency
with the actual situation, illustrating that the combined model is suitable for studying
drought prediction.
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The prediction results of the two models were evaluated using MAE, RMSE, NSE,
KGE, and WI. With increasing time scale, the MAE and RMSE values of the two models
decreased, while the NSE, KGE, and WI generally increased (Table 6), indicating that the
prediction accuracy of the two models gradually improved with increasing time scale,
and reached the maximum at the 24-month time scale. For example, the ARIMA model
implemented at SPI1 had a WI = 0.150, and at SPI24 had a WI = 0.911, at Huinong Station.
The evaluation index values of the two models were compared. At all time scales, the MAE
and RMSE values of the CEEMD–ARIMA model were lower than those of the ARIMA
model, and the NSE, KGE, and WI values were higher than those of the ARIMA model,
illustrating the higher prediction accuracy of the combined model, which is more suitable
for the prediction of multiscale SPI. At the 1-month time scale, the prediction accuracy of
the combined model was much higher than that of the single model, and the prediction
accuracy of SPI9, SPI12, and SPI24 was slightly higher than that of the single model. The
most precise model during the test phase was the CEEMD–ARIMA model at SPI24 at Xiji
Station with MAE = 0.076 RMSE = 0.100, NSE = 0.994, KGE = 0.993, and WI = 0.999. With
increasing time scale, the fluctuation of the SPI series tended to be flat, and the fitting
degree of the ARIMA model to the calculated SPI value was gradually improved.

Table 6. The statistical criteria of the ARIMA and CEEMD–ARIMA models.

Example
Stations

SPI
Series Model

Training Testing

MAE RMSE NSE KGE WI MAE RMSE NSE KGE WI

Huinong

SPI1
ARIMA 0.634 0.850 −31.759 −3.881 0.204 0.667 0.892 −48.453 −4.992 0.150

CEEMD–ARIMA 0.459 0.580 −0.020 0.440 0.830 0.465 0.596 −0.058 0.420 0.817

SPI3
ARIMA 0.535 0.708 −0.544 0.284 0.750 0.549 0.723 −0.663 −0.250 0.730

CEEMD–ARIMA 0.393 0.502 0.497 0.654 0.894 0.407 0.526 0.448 0.632 0.886

SPI6
ARIMA 0.429 0.609 0.363 0.643 0.867 0.440 0.618 −0.013 0.452 0.783

CEEMD–ARIMA 0.244 0.312 0.860 0.886 0.962 0.250 0.321 0.808 0.861 0.954

SPI9
ARIMA 0.304 0.434 0.711 0.816 0.934 0.315 0.460 0.384 0.671 0.850

CEEMD–ARIMA 0.143 0.188 0.927 0.893 0.981 0.150 0.199 0.906 0.876 0.977

SPI12
ARIMA 0.219 0.348 0.883 0.921 0.972 0.226 0.363 0.604 0.783 0.896

CEEMD–ARIMA 0.125 0.186 0.925 0.927 0.982 0.129 0.194 0.884 0.923 0.972

SPI24
ARIMA 0.149 0.233 0.939 0.953 0.985 0.157 0.248 0.670 0.831 0.911

CEEMD–ARIMA 0.067 0.087 0.957 0.978 0.990 0.069 0.090 0.954 0.972 0.989

Tongxin

SPI1
ARIMA 0.711 0.909 −87.660 −7.274 0.127 0.724 0.918 −100.523 −8.116 0.115

CEEMD–ARIMA 0.452 0.557 0.415 0.133 0.879 0.466 0.574 0.374 0.130 0.868

SPI3
ARIMA 0.578 0.729 −0.286 0.360 0.783 0.606 0.740 −0.395 0.133 0.758

CEEMD–ARIMA 0.343 0.416 0.787 0.377 0.952 0.349 0.424 0.750 0.369 0.944

SPI6
ARIMA 0.437 0.588 0.489 0.704 0.890 0.467 0.626 0.357 0.499 0.859

CEEMD–ARIMA 0.207 0.275 0.934 0.553 0.985 0.224 0.296 0.894 0.541 0.974

SPI9
ARIMA 0.323 0.472 0.731 0.791 0.938 0.325 0.482 0.632 0.783 0.915

CEEMD–ARIMA 0.138 0.181 0.960 0.804 0.991 0.142 0.187 0.952 0.797 0.988

SPI12
ARIMA 0.235 0.336 0.873 0.916 0.969 0.239 0.341 0.823 0.853 0.957

CEEMD–ARIMA 0.090 0.122 0.984 0.967 0.996 0.096 0.130 0.976 0.962 0.994

SPI24
ARIMA 0.159 0.247 0.937 0.956 0.985 0.172 0.253 0.921 0.944 0.980

CEEMD–ARIMA 0.062 0.079 0.996 0.975 0.999 0.065 0.083 0.992 0.972 0.998

Xiji

SPI1
ARIMA 0.782 0.961 −116.898 −10.640 0.237 0.825 1.036 −126.675 −36.326 0.224

CEEMD–ARIMA 0.570 0.706 0.269 0.205 0.846 0.584 0.739 0.256 0.182 0.831

SPI3
ARIMA 0.574 0.731 −0.313 0.370 0.774 0.649 0.820 −0.487 −0.528 0.752

CEEMD–ARIMA 0.391 0.481 0.717 0.794 0.939 0.407 0.508 0.689 0.776 0.930

SPI6
ARIMA 0.492 0.657 0.332 0.529 0.877 0.547 0.670 0.313 0.262 0.869

CEEMD–ARIMA 0.235 0.297 0.930 0.842 0.984 0.247 0.309 0.923 0.835 0.981

SPI9
ARIMA 0.346 0.490 0.711 0.768 0.936 0.412 0.576 0.696 0.482 0.933

CEEMD–ARIMA 0.211 0.279 0.948 0.934 0.988 0.221 0.291 0.940 0.923 0.985

SPI12
ARIMA 0.229 0.354 0.890 0.888 0.980 0.245 0.377 0.890 0.625 0.974

CEEMD–ARIMA 0.102 0.136 0.987 0.937 0.997 0.107 0.141 0.987 0.921 0.997

SPI24
ARIMA 0.158 0.233 0.950 0.753 0.989 0.188 0.285 0.949 0.514 0.988

CEEMD–ARIMA 0.069 0.087 0.995 0.994 0.999 0.076 0.100 0.994 0.993 0.999

The actual calculated SPI values, the ARIMA-predicted values, and the CEEMD–
ARIMA-predicted values of 10 sites in 2019 were visualized by the empirical Bayesian
kriging interpolation method in ArcGIS. The SPI at different time scales is suitable for
different analyses. In this paper, SPI3 was selected to show the drought situation of spring,
summer, autumn, and winter in the Ningxia Hui Autonomous Region, which can be used
to analyze the seasonal variation in drought. As shown in Figure 8, the prediction of the
CEEMD–ARIMA model was closer to the actual situation than that of the ARIMA model,
and the predicted results were consistent with the actual approximation. In the summer
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of 2019, the precipitation in southern Ningxia Hui Autonomous Region was abnormal
and excessive. The instability of precipitation data led to a big difference between the
ARIMA-predicted values and the observed SPI values. Based on the advantage of CEEMD
in nonstationary signal processing, the precision of the combined model is good, and is
consistent with actual states.
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5. Discussion

Recent studies have highlighted the superiority of EMD, EEMD, and CEEMD in
forecasting aspects [39–42]. Ali et al. [43] forecasted rainfall at a monthly time scale. They
resolved the non-stationarity challenges faced by rainfall forecasting models via CEEMD.
Their study, which used a hybrid model for forecasting rainfall, achieved a WI value of
0.966. Their findings indicated that the CEEMD effectively avoids the non-stationarity
in rainfall forecasting. Previous studies in drought prediction have used single models.
For example, using the ARIMA model, Shatanawi et al. [20] predicted 3 out of 4 actual
moderate droughts at Amman and Mafraq Stations. Similarly, Liu et al. [6] used the ARMA
model to predict SPI9; the results showed that the prediction results of ARMA model were
closer to the observed values in Longkou Station (the average relative error is 20.39%).
However, when considering the entire stations, the highest standard error was as much as
43.69%. This result showed that more emphasis should be given to studying larger areas,
which will be essential in regional drought management to make decisions. In this study,
data stability is considered, along with the applicability of the CEEMD–ARIMA model
over a large area.

The non-stationarity of data affects the drought prediction results of the model. The
prediction result of the ARIMA model for SPI1 was significantly different from the actual
situation. The ARIMA model had lower prediction accuracy at short time scales and higher
prediction accuracy at long time scales, depending on the characteristics of the ARIMA
model. As an overall linear autoregressive model, the prediction of the ARIMA model tends
to become stable gradually with increasing test set time. In this study, the data volume of
the 1-month time scale was larger than that of the 3-, 6-, 9-, 12-, and 24-month timescales,
and the data series tended to be strictly stationary (i.e., the sequence distribution structure
does not change over time). Therefore, the lowest prediction accuracy of the ARIMA
model was obtained at the 1-month time scale. With increasing time scale, the amount of
time-series data decreased, and the data series tended to be weakly stationary (i.e., the
expectation, variance, and covariance of the stochastic process were constant; that is, the
future value was related to the past value). Therefore, the fitting accuracy of the ARIMA
model gradually improves as the time scale increases. At the same time, with increasing
time scale, the SPI sequence obtains more information from the original sequence, and the
fit of the predicted value with the actual calculated value becomes increasingly better.

Some studies have compared and analyzed the signal decomposition methods of
EMD, EEMD, and CEEMD, and the analysis results show that the effects of different
decomposition methods are very good, and that CEEMD can control residual noise at a
relatively low level [34,44,45]. The large residual auxiliary noise of the defective EEMD
cannot be avoided, and influences the experimental results. However, the influence from
CEEMD can be ignored. Therefore, to stabilize the SPI sequence, in this study, CEEMD
was used to extract the local features of the original sequence at different scales. Drought
prediction based on CEEMD decomposition provides a stable premise for the ARIMA
model. Therefore, the CEEMD–ARIMA model has a high prediction accuracy. If the
data stationarity is poor, the prediction accuracy of the CEEMD–ARIMA is be reduced, as
determined by the characteristics of the ARIMA model. In this case, although the prediction
accuracy of the CEEMD–ARIMA model has a significant improvement over the single
model, as shown in Figures 5a, 6a and 7a, its predictive effect is still poor. In August 2016,
local rainstorms and short-term heavy precipitation occurred in the central and northern
parts of Ningxia, precipitation in the southern mountainous area was rare, and the whole
region presented a rare flood in the north and drought in the south. However, the combined
model predicted conditions consistent with the record, indicating that CEEMD–ARIMA is
suitable for use in drought research.

One limitation of this study is the diversity of factors that contribute to drought. In
the arid zone of central Ningxia, the average annual precipitation is only 183.1 mm, and it
is concentrated between June and August. However, with low precipitation, transpiration
is high—close to 2000 mm in arid areas. Therefore, considering the influence of evapo-
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transpiration is of great significance for accurately judging the arid zones′ drought status.
In a subsequent study on the drought situation in Ningxia Hui Autonomous Region, it
was necessary not only to judge the drought situation based on precipitation, but also to
consider the influence of evapotranspiration. This can be achieved by dividing the study
area and then selecting different drought indices to analyze the drought in each area.

6. Conclusions

In this paper, the multiscale SPI was calculated based on precipitation data from 10
stations in the Ningxia Hui Autonomous Region. Combining CEEMD in the signal process-
ing field and the ARIMA model in the machine learning field to predict the SPI, through
comparative analysis of the prediction results, the following conclusions were obtained:

(1) As an effective nonlinear and nonstationary time-series decomposition method,
CEEMD can extract the change trend of the SPI series and describe the character-
istics of drought trends under climate change. Using CEEMD to decompose the
SPI sequence of the Ningxia Hui Autonomous Region, seven IMF components and
one trend item were obtained. The fluctuation of the component quantity became
smoother than that of the original sequence, providing a basis for model prediction.

(2) The ARIMA model had the lowest prediction accuracy on the 1-month time scale
and the highest on the 24-month time scale. At the same time scales, the prediction
accuracy of the CEEMD–ARIMA model was higher than that of the ARIMA model.
According to the visual display of the forecast results of the 3-month time scale, in the
seasons of spring, summer, autumn, and winter, the drought conditions predicted by
CEEMD–ARIMA were more consistent with the actual conditions.

(3) The drought prediction of CEEMD–ARIMA was approximately consistent with the
China Meteorological Network records, indicating that the combined model is suitable
for drought prediction. The original sequence was decomposed by CEEMD, and then
the decomposed sequence was predicted by the ARIMA model. Finally, the predicted
values of each component were added together to obtain the final prediction result.
The final prediction result had high precision. According to the prediction results, the
CEEMD–ARIMA model obtains higher prediction accuracy than the ARIMA model at
multiple time scales, meaning that the combined model can better fit the SPI sequence
at different time scales.
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