Trends in Summer-Time Tropospheric Ozone during COVID-19 Lockdown in Indian Cities Might Forecast a Higher Future Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Indian Cities and Study Periods
2.2. Collection of Tropospheric O3, NO2, Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Concentration and Meteorological Variables
2.3. Cartographical Analyses
2.4. Statistical Analyses
3. Results
3.1. Spatial and Temporal Concentration of Tropospheric O3
3.2. Clustering of Indian Cities Based on Changes in O3 Concentrations during Second Phase/Lockdown of 2020
3.3. Correlation between O3 and Precursor Molecules
3.4. Correlation between O3 and Meteorological Variables
3.5. Temporal and Spatial Variation of Wind Speed and Directions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; Pandey, D.; Rakwal, R.; Agrawal, G.K.; Sarkar, A. Impact of tropospheric ozone pollution on wheat production in Southeast Asia: An update. In Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–266. [Google Scholar] [CrossRef]
- Cho, K.; Tiwari, S.; Agrawal, S.B.; Torres, N.L.; Agrawal, M.; Sarkar, A.; Shibato, J.; Agrawal, G.K.; Kubo, A.; Rakwal, R. Tropospheric ozone and plants: Absorption, responses, and consequences. Rev. Environ. Contam. Toxicol. 2011, 212, 61–111. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Giles, J. Hikes in surface ozone could suffocate crops. Nature 2005, 435, 7–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations, Department of Economic and Social Affairs: World Population Prospects 2019 Highlights. Available online: https://population.un.org/wpp/Publications/Files/wpp2019_10KeyFindings.pdf (accessed on 10 November 2021).
- Garg, A.; Shukla, P.R.; Bhattacharya, S.; Dadhwal, V.K. Sub-region (district) and sector level SO2 and NOx emissions for India: Assessment of inventories and mitigation flexibility. Atmos. Environ. 2001, 35, 703–713. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, D.; Singh, B.P.; Singh, M.; Anandam, K.; Kumar, K.; Jain, V.K. Spatial and temporal variability of surface ozone and nitrogen oxides in urban and rural ambient air of Delhi-NCR, India. Air Qual. Atmos. Health 2015, 8, 391–399. [Google Scholar] [CrossRef]
- Kunchala, R.K.; Attada, R.; Vellore, R.K.; Soni, V.K.; Mohan, M.; Chilukoti, N. On the understanding of surface ozone variability, its precursors and their associations with atmospheric conditions over the Delhi region. Atmos. Res. 2021, 258, 105653. [Google Scholar] [CrossRef]
- Sarkar, A.; Agrawal, G.K.; Shibato, J.; Cho, K.; Rakwal, R. Impacts of Ozone (O3) and Carbon Dioxide (CO2) Environmental Pollutants on Crops: A Transcriptomics Update; INTECH Open Access Publisher: London, UK, 2012; pp. 49–60. [Google Scholar]
- Sarkar, A.; Rakwal, R.; Shibato, J.; Agrawal, G.K. Toward Sustainable Agriculture through Integrated ‘OMICS’Technologies: A Quest for Future Global Food Security. J-STAGE 2012, 7, 103–110. [Google Scholar] [CrossRef]
- Sarkar, A.; Agrawal, S.B. Elevated ozone and two modern wheat cultivars: An assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ. Exp. Bot. 2010, 69, 328–337. [Google Scholar] [CrossRef]
- Yadav, R.; Sahu, L.K.; Jaaffrey, S.N.A.; Beig, G. Distributions of ozone and related trace gases at an urban site in western India. J. Atmos. Chem. 2014, 71, 125–144. [Google Scholar] [CrossRef]
- Pancholi, P.; Kumar, A.; Bikundia, D.S.; Chourasiya, S. An observation of seasonal and diurnal behavior of O3–NOx relationships and local/regional oxidant (OX= O3 + NO2) levels at a semi-arid urban site of western India. Sustain. Environ. Res. 2018, 28, 79–89. [Google Scholar] [CrossRef]
- Mohan, S.; Saranya, P. Assessment of tropospheric ozone at an industrial site of Chennai megacity. J. Air. Waste Manag. Assoc. 2019, 69, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, S.K.; Mandal, T.K. Ozone sensitivity factor: NOX or NMHCs? A case study over an urban site in Delhi, India. Urban Clim. 2021, 39, 100980. [Google Scholar] [CrossRef]
- Reddy, R.R.; Gopal, K.R.; Reddy, L.; Narasimhulu, K.; Kumar, K.R.; Ahammed, Y.N.; Reddy, C.V. Measurements of surface oz one at semi-arid site Anantapur (14.62 N, 77.65 E, 331 m asl) in India. J. Atmos. Chem. 2018, 59, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Beig, G.; Archer-Nicholls, S.; Drysdale, W.; Acton, W.; Lowe, D.; Nelson, B.S.; Lee, J.D.; Ran, L.; Wang, Y.; et al. Avoiding high ozone pollution in Delhi, India. Faraday Discuss. 2021, 226, 502–514. [Google Scholar] [CrossRef]
- Chen, Y.; Wild, O.; Ryan, E.; Sahu, S.K.; Lowe, D.; Archer-Nicholls, S.; Wang, Y.; McFiggans, G.; Ansari, T.; Singh, V.; et al. Mitigation of PM 2.5 and ozone pollution in Delhi: A sensitivity study during the pre-monsoon period. Atmos. Chem. Phys. 2020, 20, 499–514. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.S.; Stewart, G.J.; Drysdale, W.S.; Newland, M.J.; Vaughan, A.R.; Dunmore, R.E.; Edwards, P.M.; Lewis, A.C.; Hamilton, J.F.; Acton, W.J.; et al. In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmos. Chem. Phys. 2021, 21, 13609–13630. [Google Scholar] [CrossRef]
- Vukovich, F.M.; Sherwell, J. An examination of the relationship between certain meteorological parameters and surface ozone variations in the Baltimore–Washington corridor. Atmos. Environ. 2003, 37, 971–981. [Google Scholar] [CrossRef]
- Alvim-Ferraz, M.C.M.; Sousa, S.I.V.; Pereira, M.C.; Martins, F.G. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century. Environ. Pollut. 2006, 140, 516–524. [Google Scholar] [CrossRef]
- Pudasainee, D.; Sapkota, B.; Shrestha, M.L.; Kaga, A.; Kondo, A.; Inoue, Y. Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmos. Environ. 2006, 40, 8081–8087. [Google Scholar] [CrossRef]
- Khoder, M.I. Diurnal, seasonal and weekdays–weekends variations of ground level ozone concentrations in an urban area in greater Cairo. Environ. Monit. Assess. 2009, 149, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Resmi, C.T.; Ye, F.; Satheesh, S.; Nishanth, T.; Mk, S.K.; Balachandramohan, M.; Manivannan, D.; Jianlin, H.; Valsaraj, K.T. Variation of trace gases in Kannur Town, a coastal South Indian city. Environ. Chall. 2021, 5, 100336. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Chen, L.; Lian, L.; Li, Y.; Zhao, L.; Zhou, S.; Mao, X.; Huang, T.; Gao, H.; et al. WRF-Chem simulations of ozone pollution and control strategy in petrochemical industrialized and heavily polluted Lanzhou City, Northwestern China. Sci. Total Environ. 2020, 737, 139835. [Google Scholar] [CrossRef]
- Tiwari, S.; Rai, R.; Agrawal, M. Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int. J. Remote Sens. 2008, 29, 4499–4514. [Google Scholar] [CrossRef]
- Peshin, S.K.; Sharma, A.; Sharma, S.K.; Naja, M.; Mandal, T.K. Spatio-temporal variation of air pollutants and the impact of anthropogenic effects on the photochemical buildup of ozone across Delhi-NCR. Sustain. Cities Soc. 2017, 35, 740–751. [Google Scholar] [CrossRef]
- Census of India. Ministry of Home Affairs, Government of India. 2011. Available online: https://censusindia.gov.in/2011census/PCA/A4.html (accessed on 12 January 2022).
- Central Pollution Control Board (CPCB). Available online: https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing (accessed on 4 November 2021).
- Saadat, M.N.; Das, S.; Nandy, S.; Pandey, D.; Chakraborty, M.; Mina, U.; Sarkar, A. Can the nation-wide COVID-19 lockdown help India identify region-specific strategies for air pollution? Spat. Inf. Res. 2021, 30, 233–247. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Pakkattil, A.; Muhsin, M.; Varma, M.R. COVID-19 lockdown: Effects on selected volatile organic compound (VOC) emissions over the major Indian metro cities. Urban Clim. 2020, 37, 100838. [Google Scholar] [CrossRef]
- Rahaman, S.; Jahangir, S.; Chen, R.; Kumar, P.; Thakur, S. COVID-19’s lockdown effect on air quality in Indian cities using air quality zonal modeling. Urban Clim. 2021, 36, 100802. [Google Scholar] [CrossRef]
- Saxena, A.; Raj, S. Impact of lockdown during COVID-19 pandemic on the air quality of North Indian cities. Urban Clim. 2021, 35, 100754. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Toshniwal, D. Impact of lockdown measures during COVID-19 on air quality–A case study of India. Int. J. Environ. Health Res. 2020, 32, 503–510. [Google Scholar] [CrossRef]
- Aher, S.B.; Nandi, S.; Ramesh, G.; Raj, D.; Patel, L.; Tiwari, R. Effects of COVID-19 lockdown on ambient air pollution in Madhya Pradesh, India. Int. J. Environ. Stud. 2021, 79, 401–416. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Barik, R.N.; Pradhan, B.; Patel, R.K. A study of dust pollution around open cast coal mines of ib valley area, brajarajnagar. J. Ind. Pollut. 2005, 21, 305–308. [Google Scholar]
- Lal, D.M.; Ghude, S.D.; Patil, S.D.; Kulkarni, S.H.; Jena, C.; Tiwari, S.; Srivastava, M.K. Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos. Res. 2012, 116, 82–92. [Google Scholar] [CrossRef]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef]
- Kumari, S.; Lakhani, A.; Kumari, K.M. Transport of aerosols and trace gases during dust and crop-residue burning events in Indo-Gangetic Plain: Influence on surface ozone levels over downwind region. Atmos. Environ. 2020, 241, 117829. [Google Scholar] [CrossRef]
- Wang, H.; Huang, C.; Tao, W.; Gao, Y.; Wang, S.; Jing, S.; Wang, W.; Yan, R.; Wang, Q.; An, J.; et al. Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China. NPJ Clim. Atmos. Sci. 2022, 5, 24. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Sarkar, A.; Mina, U.; Nandy, S.; Saadat, M.N.; Agrawal, G.K.; Rakwal, R. Trends in Summer-Time Tropospheric Ozone during COVID-19 Lockdown in Indian Cities Might Forecast a Higher Future Risk. Atmosphere 2022, 13, 1115. https://doi.org/10.3390/atmos13071115
Das S, Sarkar A, Mina U, Nandy S, Saadat MN, Agrawal GK, Rakwal R. Trends in Summer-Time Tropospheric Ozone during COVID-19 Lockdown in Indian Cities Might Forecast a Higher Future Risk. Atmosphere. 2022; 13(7):1115. https://doi.org/10.3390/atmos13071115
Chicago/Turabian StyleDas, Sujit, Abhijit Sarkar, Usha Mina, Senjuti Nandy, Md Najmus Saadat, Ganesh Kumar Agrawal, and Randeep Rakwal. 2022. "Trends in Summer-Time Tropospheric Ozone during COVID-19 Lockdown in Indian Cities Might Forecast a Higher Future Risk" Atmosphere 13, no. 7: 1115. https://doi.org/10.3390/atmos13071115
APA StyleDas, S., Sarkar, A., Mina, U., Nandy, S., Saadat, M. N., Agrawal, G. K., & Rakwal, R. (2022). Trends in Summer-Time Tropospheric Ozone during COVID-19 Lockdown in Indian Cities Might Forecast a Higher Future Risk. Atmosphere, 13(7), 1115. https://doi.org/10.3390/atmos13071115