Spatio-Temporal Analysis of Valley Wind Systems in the Complex Mountain Topography of the Rolwaling Himal, Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Station Network
2.3. Data Processing
2.4. Data Analysis and Visualization Methods
3. Results
3.1. Mean Valley Wind Day Wind Speeds and Seasonal Pattern at Na and NE Bottom Station
3.1.1. Na Station
3.1.2. NE Bottom Station
3.2. Spatio-Temporal Forming of Mountain–Valley Wind-System on a Valley Wind Day
4. Discussion
4.1. Data Coverage
4.2. Diurnal and Seasonal Patterns of the Stations
4.3. Error Discussion, Limitations, and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWS | automatic weather station |
DEM | digital elevation model |
ISM | Indian summer monsoon |
MVWS | mountain–valley wind system |
PISR | potential incoming solar radiation |
SD | standard deviation |
VWD | valley wind day |
References
- Ohata, T.; Higuchi, K.; Ikegami, K. Mountain-Valley Wind System in the Khumbu Himal, East Nepal. J. Meteorol. Soc. Jpn. Ser. II 1981, 59, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Sakai, A.; B Chhetri, T. Meteorological observation in Langtang Valley, 1996. Bull. Glacier Res. 1997, 15, 71–78. [Google Scholar]
- Egger, J.; Bajrachaya, S.; Egger, U.; Heinrich, R.; Reuder, J.; Shayka, P.; Wendt, H.; Wirth, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Mon. Weather Rev. 2000, 128, 1106–1122. [Google Scholar] [CrossRef]
- Haffner, W. Kagbeni: Contributions to the Geoecology of a Typical Village in the Kali Gandaki Valley. In Kagbeni, Contributions to the Village’s History and Geography; Pohle, P., Haffner, E., Eds.; Gießener Geographische Schriften: Giessen, Germany, 2001; pp. 17–24. [Google Scholar]
- Gerlitz, L.; Bechtel, B.; Böhner, J.; Bobrowski, M.; Bürzle, B.; Müller, M.; Scholten, T.; Schickhoff, U.; Schwab, N.; Weidinger, J. Analytic Comparison of Temperature Lapse Rates and Precipitation Gradients in a Himalayan Treeline Environment: Implications for Statistical Downscaling. In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya; Singh, R.B., Schickhoff, U., Mal, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 11, pp. 49–64. [Google Scholar] [CrossRef]
- Schwab, N.; Schickhoff, U.; Müller, M.; Gerlitz, L.; Bürzle, B.; Böhner, J.; Chaudhary, R.P.; Scholten, T. Treeline Responsiveness to Climate Warming: Insights from a Krummholz Treeline in Rolwaling Himal, Nepal. In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya; Singh, R.B., Schickhoff, U., Mal, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 307–345. [Google Scholar] [CrossRef]
- Bürzle, B.; Schickhoff, U.; Schwab, N.; Oldeland, J.; Müller, M.; Böhner, J.; Chaudhary, R.P.; Scholten, T.; Dickoré, W.B. Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia 2017, 47, 197–220. [Google Scholar] [CrossRef]
- Weidinger, J.; Gerlitz, L.; Bechtel, B.; Böhner, J. Statistical modelling of snow cover dynamics in the Central Himalaya Region, Nepal. Clim. Res. 2018, 75, 1518. [Google Scholar] [CrossRef]
- Weidinger, J.; Gerlitz, L.; Bobrowski, M.; Böhner, J.; Chaudhary, R.P.; Schickhoff, U.; Schwab, N.; Scholten, T. TREELINE—Longterm Atmospheric and Pedo-Climatic Observations along an Upper Treeline Ecotone in the Himalayas, Nepal; Hamburg University: Hamburg, Germany, 2021. [Google Scholar] [CrossRef]
- Wagner, A. Theorie und Beobachtung der periodischen Gebirgswinde. Gerlands Beitr. Geophys. 1938, 52, 408–449. [Google Scholar]
- Ekhart, E. De la Structure Thermique de l’Atmosphere Dans la Montagne; La Meteorologie, Société Météorologique de France: Boulogne, France, 1948. [Google Scholar]
- Defant, F. Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklimatol. Ser. A 1949, 1, 421–450. [Google Scholar] [CrossRef]
- Banta, R.M.; Cotton, W.R. An Analysis of the Structure of Local Wind Systems in a Broad Mountain Basin. J. Appl. Meteorol. 1981, 20, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Egger, J. Thermally Forced Flows: Theory. In Atmospheric Processes over Complex Terrain; Banta, R.M., Berri, G., Blumen, W., Carruthers, D.J., Dalu, G.A., Durran, D.R., Egger, J., Garratt, J.R., Hanna, S.R., Hunt, J.C.R., et al., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 43–58. [Google Scholar] [CrossRef]
- Whiteman, C.D. Observations of Thermally Developed Wind Systems in Mountainous Terrain. In Atmospheric Processes over Complex Terrain; Banta, R.M., Berri, G., Blumen, W., Carruthers, D.J., Dalu, G.A., Durran, D.R., Egger, J., Garratt, J.R., Hanna, S.R., Hunt, J.C.R., et al., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 5–42. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: New York, NY, USA, 2000; p. 355. [Google Scholar]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; p. 506. [Google Scholar] [CrossRef]
- Geiger, R.; Aron, R.H.; Todhunter, P. The Climate Near the Ground, 7th ed.; Rowman & Littlefield: Lanham, MD, USA, 2009; p. 623S. [Google Scholar]
- Zardi, D.; Whiteman, C.D. Diurnal Mountain Wind Systems. In Mountain Weather Research and Forecasting; Chow, F.K., Wekker, S.F.J.D., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 31, pp. 35–119. [Google Scholar] [CrossRef]
- Bei, N.; Zhao, L.; Wu, J.; Li, X.; Feng, T.; Li, G. Impacts of sea-land and mountain–valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): A case study. Environ. Pollut. 2018, 234, 429–438. [Google Scholar] [CrossRef]
- Vergeiner, I.; Dreiseitl, E. Valley winds and slope winds—Observations and elementary thoughts. Arch. Meteorol. Geophys. Bioklimatol. Ser. A 1987, 36, 264–286. [Google Scholar] [CrossRef]
- Banta, R.M.; Berri, G.; Blumen, W.; Carruthers, D.J.; Dalu, G.A.; Durran, D.R.; Egger, J.; Garratt, J.R.; Hanna, S.R.; Hunt, J.C.R.; et al. (Eds.) Atmospheric Processes over Complex Terrain; American Meteorological Society: Boston, MA, USA, 1990. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Dibb, J.E.; Mayewski, P.A.; Whitlow, S.I.; Carmichael, G.R.; Ferm, M. Seasonal variations in aerosol concentrations and compositions in the Nepal Himalaya. Atmos. Environ. 2000, 34, 3349–3363. [Google Scholar] [CrossRef]
- Rotach, M.W.; Zardi, D. On the boundary-layer structure over highly complex terrain: Key findings from MAP. Q. J. R. Meteorol. Soc. 2007, 133, 937–948. [Google Scholar] [CrossRef]
- Schmidli, J.; Rotunno, R. Mechanisms of Along-Valley Winds and Heat Exchange over Mountainous Terrain. J. Atmos. Sci. 2010, 67, 3033–3047. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J. Daytime Heat Transfer Processes over Mountainous Terrain. J. Atmos. Sci. 2013, 70, 4041–4066. [Google Scholar] [CrossRef]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Lehner, M.; Rotach, M. Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere 2018, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Wekker, S.D.; Kossmann, M.; Knievel, J.; Giovannini, L.; Gutmann, E.; Zardi, D. Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains. Atmosphere 2018, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J.; Billings, B.; Chow, F.K.; de Wekker, S.F.J.; Doyle, J.; Grubišić, V.; Holt, T.; Jiang, Q.; Lundquist, K.A.; Sheridan, P.; et al. Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System. Mon. Weather Rev. 2011, 139, 1389–1409. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J.; Böing, S.; Fuhrer, O. Accuracy of Simulated Diurnal Valley Winds in the Swiss Alps: Influence of Grid Resolution, Topography Filtering, and Land Surface Datasets. Atmosphere 2018, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Zängl, G.; Gantner, L.; Hartjenstein, G.; Noppel, H. Numerical errors above steep topography: A model intercomparison. Meteorol. Z. 2004, 13, 69–76. [Google Scholar] [CrossRef]
- Chow, F.K.; Weigel, A.P.; Street, R.L.; Rotach, M.W.; Xue, M. High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments. J. Appl. Meteorol. Climatol. 2006, 45, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Weigel, A.P.; Chow, F.K.; Rotach, M.W.; Street, R.L.; Xue, M. High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part II: Flow Structure and Heat Budgets. J. Appl. Meteorol. Climatol. 2006, 45, 87–107. [Google Scholar] [CrossRef] [Green Version]
- Ruffieux, D.; Stübi, R. Wind profiler as a tool to check the ability of two NWP models to forecast winds above highly complex topography. Meteorol. Z. 2001, 10, 489–495. [Google Scholar] [CrossRef]
- Chen, Y.; Ludwig, F.L.; Street, R.L. Stably Stratified Flows near a Notched Transverse Ridge across the Salt Lake Valley. J. Appl. Meteorol. 2004, 43, 1308–1328. [Google Scholar] [CrossRef]
- Gohm, A.; Zängl, G.; Mayr, G.J. South Foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of High-Resolution Numerical Simulations with Observations. Mon. Weather Rev. 2004, 132, 78–102. [Google Scholar] [CrossRef]
- Schmid, F.; Schmidli, J.; Hervo, M.; Haefele, A. Diurnal Valley Winds in a Deep Alpine Valley: Observations. Atmosphere 2020, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.Q.; Whiteman, C.D.; Steenburgh, W.J.; Bian, X. A Climatological Study of Thermally Driven Wind Systems of the U.S. Intermountain West. Bull. Am. Meteorol. Soc. 2002, 83, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Barman, N.; Borgohain, A.; Kundu, S.S.; Kumar, N. Seasonal variation of mountain–valley wind circulation and surface layer parameters over the mountainous terrain of the northeastern region of India. Theor. Appl. Climatol. 2021, 143, 1501–1512. [Google Scholar] [CrossRef]
- Zhong, S.; Whiteman, C.D.; Bian, X. Diurnal Evolution of Three-Dimensional Wind and Temperature Structure in California’s Central Valley. J. Appl. Meteorol. 2004, 43, 1679–1699. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Doran, J.C. The Relationship between Overlying Synoptic-Scale Flows and Winds within a Valley. J. Appl. Meteorol. 1993, 32, 1669–1682. [Google Scholar] [CrossRef] [Green Version]
- Egger, J.; Bajrachaya, S.; Heinrich, R.; Kolb, P.; Lämmlein, S.; Mech, M.; Reuder, J.; Schäper, W.; Shakya, P.; Schween, J.; et al. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part III: Remotely Piloted Aircraft Soundings. Mon. Weather Rev. 2002, 130, 2042–2058. [Google Scholar] [CrossRef]
- Rucker, M.; Banta, R.M.; Steyn, D.G. Along-Valley Structure of Daytime Thermally Driven Flows in the Wipp Valley. J. Appl. Meteorol. Climatol. 2008, 47, 733–751. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, L.; Laiti, L.; Serafin, S.; Zardi, D. The thermally driven diurnal wind system of the Adige Valley in the Italian Alps. Q. J. R. Meteorol. Soc. 2017, 143, 2389–2402. [Google Scholar] [CrossRef]
- Flohn, H. Beiträge zur Meteorologie des Himalaya: Mit 4 Abbildungen. In Khumbu Himal—Ergebnisse des Forschungsunternehmens Nepal Himalaya; Hellmich, W., Ed.; Universitätsverlag Wagner: München, Germany, 1970; pp. 25–45. [Google Scholar]
- Zängl, G.; Egger, J.; Wirth, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part II: Modeling. Mon. Weather Rev. 2001, 129, 1062–1080. [Google Scholar] [CrossRef]
- Nepal: An introduction to the Natural History, Ecology and Human Environment of the Himalayas: A Companion Volume to the Flora of Nepal; Miehe, G.; Pendry, C.; Chaudhary, R. (Eds.) Royal Botanic Garden: Edinburgh, UK, 2015; p. 560. [Google Scholar]
- Böhner, J.; Miehe, G.; Miehe, S.; Nagy, L. Climate and Weather. In Nepal; Miehe, G., Pendry, C., Chaudhary, R., Eds.; Royal Botanic Garden: Edinburgh, UK, 2015; pp. 23–90. [Google Scholar]
- Karki, R.; Hasson, S.U.; Schickhoff, U.; Scholten, T.; Böhner, J.; Gerlitz, L. Near surface air temperature lapse rates over complex terrain A WRF based analysis of controlling factors and processes for the Central Himalayas//Near surface air temperature lapse rates over complex terrain: A WRF based analysis of controlling factors and processes for the Central Himalayas. Clim. Dyn. 2019, 31, 161. [Google Scholar] [CrossRef]
- Meiners, S. The history of glaciation of the Rolwaling and Kangchenjunga Himalayas. GeoJournal 1999, 47, 341–372. [Google Scholar] [CrossRef]
- Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Gerlitz, L.; Conrad, O.; Böhner, J. Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia—A neural-network-based approach. Earth Syst. Dyn. 2015, 6, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Ul Hasson, S.; Pascale, S.; Lucarini, V.; Böhner, J. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res. 2016, 180, 42–63. [Google Scholar] [CrossRef] [Green Version]
- Kadel, I.; Yamazaki, T.; Iwasaki, T.; Abdillah, M. Projection of future monsoon precipitation over the Central Himalayas by CMIP5 models under warming scenarios. Clim. Res. 2018, 75, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.J. Typisierung der annuellen Niederschlagsvariationen in Nordostindien in Abhängigkeit vom indischen Monsunklima; Number 46 in Mainzer Geographische Studien; Geographisches Institut: Mainz, Germany, 2000. [Google Scholar]
- Yeh, T.C.; Gao, Y.X. The Meteorology of the Qinghai-Xizang (Tibet) Plateau; Science Press: Beijing, China, 1979. [Google Scholar]
- ESRI. ArcGIS Pro; Environmental Systems Research Institute: Redlands, CA, USA, 2021. [Google Scholar]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Takaku, J.; Tadono, T.; Doutsu, M.; Ohgushi, F.; Kai, H. Updates of ‘AW3D30’ Alos Global Digital Surface Model with Other Open Access Datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B4-2020, 183–189. [Google Scholar] [CrossRef]
- Onset Computer Corporation. HOBOware: Various Specification Data Sheets. Available online: https://www.onsetcomp.com/support/manuals/english/?pnid=All (accessed on 13 June 2022).
- WMO. Guide to Meteorological Instruments and Methods of Observation, 2017 ed.; Number 8 in WMO; World Meteorological Organization: Geneva, Switzerland, 2014; p. 1. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 13 June 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 13 June 2022).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudioTeam. RStudio: Integrated Development Environment for R, Version 1.4.1103; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Grosjean, P. SciViews-R; UMONS: Mons, Belgium, 2021. [Google Scholar]
- Perpiñán, O.; Hijmans, R. rasterVis; R Package Version 0.50.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Sarkar, D.; Andrews, F. latticeExtra: Extra Graphical Utilities Based on Lattice; R Package Version 0.6-29; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008; ISBN 978-0-387-75968-5. [Google Scholar]
- Hijmans, R.J. Terra: Spatial Data Analysis; R Package Version 1.2-10; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Pierce, D. ncdf4: Interface to Unidata netCDF (version 4 or Earlier) Format Data Files; R Package Version 1.17; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Greenberg, J.A.; Mattiuzzi, M. gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities; R Package Version 2.0.3.2; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Garnier, S.; Ross, N.; Rudis, R.; Camargo, P.A.; Sciaini, M.; Scherer, C. Viridis: Colorblind-Friendly Color Maps for R; R Package Version 0.6.1; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar] [CrossRef]
- Campitelli, E. Ggnewscale: Multiple Fill and Colour Scales in ’ggplot2’; R Package Version 0.4.5; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Ooms, J. Magick: Advanced Graphics and Image-Processing in R; R Package Version 2.7.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; R Package Version 3.4-10; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Pebesma, E.J.; Bivand, R.S. Classes and methods for spatial data in R. R News 2005, 5, 9–13. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Leutner, B.; Horning, N.; Schwalb-Willmann, J. RStoolbox: Tools for Remote Sensing Data Analysis; R Package Version 0.2.6.; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H. Forcats: Tools for Working with Categorical Variables (Factors); R Package Version 0.5.1.; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wickham, H. Stringr: Simple, Consistent Wrappers for Common String Operations; R Package Version 1.4.0.; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation; R Package Version 1.0.6.; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Henry, L.; Wickham, H. Purrr: Functional Programming Tools; R Package Version 0.3.4.; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H.; Hester, J. Readr: Read Rectangular Text Data; R Package Version 1.4.0.; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Tidyr: Tidy Messy Data; R Package Version 1.1.3.; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Müller, K.; Wickham, H. Tibble: Simple Data Frames; R Package Version 3.1.2.; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kassambara, A. Ggpubr: ’ggplot2’ Based Publication Ready Plots; R Package Version 0.4.0.; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Attali, D.; Baker, C. ggExtra: Add Marginal Histograms to ’ggplot2’, and More ’ggplot2’ Enhancements; R Package Version 0.9.; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Zeileis, A.; Hornik, K.; Murrell, P. Escaping RGBland: Selecting Colors for Statistical Graphics. Comput. Stat. Data Anal. 2009, 53, 3259–3270. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, R.; Mayr, G.J.; Dabernig, M.; Zeileis, A. Somewhere over the Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations. Bull. Am. Meteorol. Soc. 2009, 96, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Zeileis, A.; Fisher, J.C.; Hornik, K.; Ihaka, R.; McWhite, C.D.; Murrell, P.; Stauffer, R.; Wilke, C.O. colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. J. Stat. Softw. 2020, 96, 1–49. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK; New York, NY, USA, 1987. [Google Scholar]
- Dreiseitl, E.; Feichter, H.; Pichler, H.; Steinacker, R.; Vergeiner, I. Windregimes an der Gabelung zweier Alpentäler. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1980, 28, 257–275. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Zhong, S. Downslope Flows on a Low-Angle Slope and Their Interactions with Valley Inversions. Part I: Observations. J. Appl. Meteorol. Climatol. 2008, 47, 2023–2038. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L.; Richardson, S.; Seaman, N.; Stauffer, D. Non-stationary drainage flows and motions in the cold pool. Tellus Dyn. Meteorol. Oceanogr. 2010, 62, 698–705. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Allwine, K.J.; Fritschen, L.J.; Orgill, M.M.; Simpson, J.R. Deep Valley Radiation and Surface Energy Budget Microclimates. Part II: Energy Budget. J. Appl. Meteorol. 1989, 28, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, C.; Li, Q. Wind Regimes above and below a Temperate Deciduous Forest Canopy in Complex Terrain: Interactions between Slope and Valley Winds. Atmosphere 2015, 6, 60–87. [Google Scholar] [CrossRef] [Green Version]
- Schwab, N.; Bürzle, B.; Bobrowski, M.; Böhner, J.; Chaudhary, R.P.; Scholten, T.; Weidinger, J.; Schickhoff, U. Predictors of the Success of Natural Regeneration in a Himalayan Treeline Ecotone. Forests 2022, 13, 454. [Google Scholar] [CrossRef]
Station | Latitude (N) | Longitude (E) | Elevation (m a.s.l.) | Position | Mean Hourly Wind Speed (m s) |
---|---|---|---|---|---|
NW bottom | 27.9009 | 86.3762 | 3718.9 | Valley floor | 0.62 |
NE bottom | 27.8986 | 86.3791 | 3734.2 | Valley floor | 1.08 |
Na | 27.8782 | 86.4337 | 4192.1 | Valley floor | 1.66 |
Dudgunda | 27.8756 | 86.4604 | 4532.2 | Valley floor | 1.25 |
Gompa | 27.9050 | 86.3755 | 3886.0 | Slope | 0.94 |
NW top | 27.8967 | 86.3742 | 4035.9 | Slope | 1.46 |
NE top | 27.8934 | 86.3759 | 4158.3 | Slope | 1.14 |
Yalun | 27.8590 | 86.4338 | 5005.2 | Slope | — |
Sensor Type | Sensor ID | Measurement Range | Operating Range | Other Details |
---|---|---|---|---|
Weather station data logger | U30-NRC | −40–60 C | Logging interval: 15 min (user defined), storage capacity: 512 Kb flash storage | |
Wind speed | S-WSB-M003 | 0–76 m s, accuracy: ±1.1 m s or ±4%, automatic averaging | −40–75 C | Starting threshold: 1 m s horizontal movement |
Wind direction | S-WDA-M003 | 0–355, 5 dead band, accuracy: ±5, unit vector averaging | −40–70 C | Starting threshold: 1 m s resolution: 1.4 horizontal movement |
Solar radiation | S-LIB-M003 | −1280 W m, Accuracy: ±10 W m, Drift: <±2% per year | −40–75 C | ±0.38 W m error at conditions >25 C, Spectral range: 300–1100 nm |
Temperature | S-THB-M008 | −40–75 C, accuracy: ±0.02 from 0–50 C, drift: <0.1 C per year | −40–75 C | |
Rain gauge | S-RGB-M002 | 0–12.7 cm h, Max. 4000 tips per logging interval, accuracy: ±1.0 at 20 mm h | 0–50 C | Resolution: 0.2 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jentsch, H.; Weidinger, J. Spatio-Temporal Analysis of Valley Wind Systems in the Complex Mountain Topography of the Rolwaling Himal, Nepal. Atmosphere 2022, 13, 1138. https://doi.org/10.3390/atmos13071138
Jentsch H, Weidinger J. Spatio-Temporal Analysis of Valley Wind Systems in the Complex Mountain Topography of the Rolwaling Himal, Nepal. Atmosphere. 2022; 13(7):1138. https://doi.org/10.3390/atmos13071138
Chicago/Turabian StyleJentsch, Helge, and Johannes Weidinger. 2022. "Spatio-Temporal Analysis of Valley Wind Systems in the Complex Mountain Topography of the Rolwaling Himal, Nepal" Atmosphere 13, no. 7: 1138. https://doi.org/10.3390/atmos13071138
APA StyleJentsch, H., & Weidinger, J. (2022). Spatio-Temporal Analysis of Valley Wind Systems in the Complex Mountain Topography of the Rolwaling Himal, Nepal. Atmosphere, 13(7), 1138. https://doi.org/10.3390/atmos13071138