Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa
Abstract
:1. Introduction
2. Data, Models and Methods
2.1. Data and Models
2.2. Methods
2.2.1. Derivation of Irrigation Water Requirements and Other Hydrometeorological Variables
2.2.2. Trend Analysis of Hydrological Variables
2.2.3. Projected Changes in Exposure under Enhanced GHGs
3. Results and Discussion
3.1. Validation of CWD, IR and WA Characteristics in Current Climate
3.1.1. Spatial Variability
3.1.2. Temporal Variability
3.2. Projected Changes
Spatial Pattern of the Projected Changes
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank Group. Agriculture Development in West Africa: Improving Productivity through Research and Extension. World Bank Group. Available online: https://www.worldbank.org/en/results/2013/03/28/agriculture-development-in-west-africa-improving-productivity-through-research-and-extension (accessed on 30 August 2016).
- Goedde, L.; Ooko-Ombaka, A.; Pais, G. Winning in Africa’s Agricultural Market. McKinsey & Company. Available online: https://www.mckinsey.com/industries/agriculture/our-insights/winning-in-africas-agricultural-market# (accessed on 8 June 2022).
- United States Geological Survey. West Africa: Land Use and Land Cover Dynamics. Available online: https://eros.usgs.gov/westafrica/population (accessed on 30 April 2022).
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Chang. 2020, 54, 269–293. [Google Scholar] [CrossRef]
- Elgaali, E.; Garcia, L.A.; Ojima, D.S. High resolution modeling of the regional impacts of climate change on irrigation water demand. Clim. Chang. 2009, 84, 441–461. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Konzmann, M.; Gerten, D.; Heinke, J. Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol. Sci. J. 2013, 58, 88–105. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Weatherhead, E.K.; Knox, J.W.; Camacho, E. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg. Environ. Chang. 2007, 7, 149–159. [Google Scholar] [CrossRef]
- Sylla, M.B.; Pal, J.S.; Faye, A.; Dimobe, K.; Kunstmann, H. Climate change to severely impact West African basin scale irrigation in 2 °C and 1.5 °C global warming scenarios. Sci. Rep. 2018, 8, 14395. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Fei, L.; Li, S.; Xue, C.; Shi, Z.; Hinkelmann, R. Development of “water-suitable” agriculture based on a statistical analysis of factors affecting irrigation water demand. Sci. Total. Environ. 2020, 744, 140986. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorol. Organ. Bull. 2009, 58, 175. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations--a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; et al. The ERA5 Global Reanalysis: Achieving a detailed record of the climate and weather for the past 70 years. In Proceedings of the 22nd EGU General Assembly, online, 4–8 May 2020; p. 10375. [Google Scholar] [CrossRef]
- Earth System Grid Federation (ESGF) portal. Available online: https://esgf-data.dkrz.de/projects/esgf-dkrz/ (accessed on 1 June 2020).
- Samuelsson, P.; Gollvik, S.; Kupiainen, M.; Kourzeneva, E.; Berg, W.J. The surface processes of the Rossby Centre regional atmospheric climate model (RCA4). SMHI. 2015. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:948138 (accessed on 7 June 2022).
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Jacob, D.; Van, B.J.J.M.; Andræ, U.; Elgered, G.; Fortelius, C.; Graham, L.P.; Jackson, S.D.; Karstens, U.; Köpken, C.; Lindau, R.; et al. A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol. Atmos. Phys. 2001, 77, 19–43. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Baier, W.; Robertson, G.W. Estimation of latent evaporation from simple weather observations. Can. J. Plant. Sci. 1965, 45, 276–284. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. 1998. Available online: https://www.fao.org/3/x0490e/x0490e00.htm#Contents. (accessed on 1 June 2020).
- Brouwer, C.; Heibloem, Y. Irrigation Water Needs [Irrigation Water Management Training Manual No. 3]; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986. [Google Scholar]
- World Meteorological Organization. Guide to Climatological Practices. Secretariat of the World Meteorological Organization. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=5541 (accessed on 1 April 2022).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Company: New York, NY, USA, 1987. [Google Scholar]
- Sirois, A.; Annex, E. A brief and biased overview of time-series analysis of how to find that evasive trend. In WMO/EMEP Workshop on Advanced Statistical Methods and their Application to Air Quality Data Sets, (Helsinki, 14–18 September 1998); Global Atmosphere Watch No. 133, WMO TD–No. 956; World Meteorological Organization: Geneva, Switzerland, 1998; Available online: https://library.wmo.int/doc_num.php?explnum_id=10098 (accessed on 7 June 2022).
- Iloeje, N.P. A New Geography of Nigeria; Williams Colwes Ltd.: Longman, UK, 1981. [Google Scholar]
- Omotosho, J.B.; Abiodun, B.J. A numerical study of moisture build-up and rainfall over West Africa. Meteorol. Appl. 2007, 14, 209–225. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Salami, A.T.; Matthew, O.J.; Odedokun, S. Potential impacts of afforestation on climate change and extreme events in Nigeria. Clim. Dyn. 2013, 41, 277–293. [Google Scholar] [CrossRef]
- Gbode, I.E.; Ogunjobi, K.O.; Dudhia, J.; Ajayi, V.O. Simulation of wet and dry West African monsoon rainfall seasons using the Weather Research and Forecasting model. Theor. Appl. Climatol. 2019, 138, 1679–1694. [Google Scholar] [CrossRef]
- Joyce, B.; Vicuña, S.; Dale, L.; Dracup, J.; Hanemann, M.; Purkey, D.; Yates, D. Climate Change Impacts on Water for Agriculture in California: A Case Study in the Sacramento Valley. Document de Travail, California Climate Change Center, White Paper. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.3114&rep=rep1&type=pdf (accessed on 30 April 2022).
- Hawkins, E.; Sutton, R. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 2009, 90, 195–1108. [Google Scholar] [CrossRef] [Green Version]
- Druyan, L.M. Studies of 21st-century precipitation trends over West Africa. Int. J. Clim. 2011, 31, 1415–1424. [Google Scholar] [CrossRef]
- Sylla, M.B.; Nikiema, P.M.; Gibba, P.; Kebe, I.; Klutse, N.A.B. Climate Change over West Africa: Recent Trends and Future Projections. In Adaptation to Climate Change and Variability in Rural West Africa; Yaro, J.A., Hesselberg, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 25–40. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Review of World Water Resources by Country. Food and Agriculture Organization of the United Nations. 2003. Available online: https://www.fao.org/3/Y4473E/y4473e.pdf (accessed on 30 April 2022).
- Hopmans, J.W.; Maurer, E. Impact of Climate Change on Irrigation Water Availability, Crop. Water Requirements and Soil Salinity in the San Joaquin Valley; University of California Water Resources Center: Riverside, CA, USA. Available online: http://ciwr.ucanr.edu/files/169880.pdf (accessed on 30 April 2022).
Bias | HETo-ET (Irrig. Requirement) | PR-ET (Water Availability) |
---|---|---|
Guinea Coast | −0.06 | 0.58 |
Savannah | −0.24 | 0.33 |
Sahel | −0.33 | 0.25 |
Episode | Period | Guinea Coast | Savannah | Sahel | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CWD | IR | WA | CWD | IR | WA | CWD | IR | WA | ||
Historical | 1976–2005 | 0.002 | 0.003 | 0.009 | 0.002 | 0.001 | −0.003 | 0.003 | 0.002 | −0.001 |
RCP4.5 | 2011–2040 | 0.000 | −0.001 | 0.001 | 0.003 | 0.003 | −0.019 | 0.005 | 0.006 | −0.007 |
2041–2070 | 0.006 | 0.002 | −0.002 | 0.010 | 0.009 | −0.024 | 0.010 | 0.013 | −0.015 | |
2071–2100 | 0.001 | 0.003 | −0.025 | 0.002 | 0.001 | 0.012 | 0.001 | −0.003 | 0.008 | |
RCP8.5 | 2011–2040 | −0.002 | 0.001 | −0.006 | −0.003 | −0.001 | 0.016 | −0.002 | −0.006 | 0.014 |
2041–2070 | 0.002 | −0.000 | 0.015 | 0.007 | 0.006 | −0.007 | 0.011 | 0.012 | −0.005 | |
2071–2100 | 0.006 | 0.004 | −0.032 | 0.013 | 0.014 | −0.013 | 0.019 | 0.028 | −0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbode, I.E.; Diro, G.T.; Intsiful, J.D.; Dudhia, J. Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa. Atmosphere 2022, 13, 1155. https://doi.org/10.3390/atmos13071155
Gbode IE, Diro GT, Intsiful JD, Dudhia J. Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa. Atmosphere. 2022; 13(7):1155. https://doi.org/10.3390/atmos13071155
Chicago/Turabian StyleGbode, Imoleayo Ezekiel, Gulilat Tefera Diro, Joseph Daniel Intsiful, and Jimy Dudhia. 2022. "Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa" Atmosphere 13, no. 7: 1155. https://doi.org/10.3390/atmos13071155
APA StyleGbode, I. E., Diro, G. T., Intsiful, J. D., & Dudhia, J. (2022). Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa. Atmosphere, 13(7), 1155. https://doi.org/10.3390/atmos13071155