Comparison of Ambient Air Quality among Industrial and Residential Areas of a Typical South Asian City
Abstract
:1. Introduction
2. Materials and Methods
2.1. LaMotte Test for SO2 and NO2 Measurement
2.2. Mini Vol Portable Air Sampler for SPM Analysis in Air
2.3. Single Gas Detector for O2 and CO
2.4. Noise Level Measurement Meter
2.5. Analysis of Carbonaceous Aerosols
2.6. Air Quality Guidelines
3. Results and Discussion
3.1. Sulphur Dioxide (SO2)
3.2. Nitrogen Dioxide (NO2)
3.3. Carbon Monoxide (CO)
3.4. Suspended Particulate Matter (SPM)
3.5. Oxygen (O2)
3.6. Noise Level
3.7. Analysis of Carbonaceous Aerosols in Air Pollutant Samples
3.8. Correlation Matrix between Different Parameters of Air
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gurjar, B.; Butler, T.; Lawrence, M.; Lelieveld, J. Evaluation of emissions and air quality in megacities. Atmos. Environ. 2008, 42, 1593–1606. [Google Scholar] [CrossRef]
- Hopke, P.K.; Cohen, D.D.; Begum, B.A.; Biswas, S.K.; Ni, B.; Pandit, G.G.; Santoso, M.; Chung, Y.-S.; Davy, P.; Markwitz, A. Urban air quality in the Asian region. Sci. Total Environ. 2008, 404, 103–112. [Google Scholar] [CrossRef] [PubMed]
- WHO. The World Health Report 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Rome, Italy, 2002. [Google Scholar]
- FDA. Structural plan of Faisalabad. In Faisalabad Development Structure Plan Book; Faisalabad Development Authority: Faisalabad, Pakistan, 1986; pp. 5–7, 72–93, 191–193. [Google Scholar]
- Fraser, J. Two Million People a Year Killed by Air Pollution; WHO: Rome, Italy, 2006. [Google Scholar]
- Iqbal, M.; Niaz, Y.; Mushtaq, M.; Khera, R.; Cecil, F.; Waqar, M.; Abbas, M.; Bokhari, T. Evaluation of ambient air quality in Faisalabad, Pakistan. Asian J. Chem. 2012, 24, 4479. [Google Scholar]
- Niaz, Y.; Iqbal, M.; Masood, N.; Bokhari, T.; Shehzad, M.; Abbas, M. Temporal and spatial distribution of lead and total suspended particles in ambient air of Faisalabad, Pakistan. Int. J. Chem. Biochem. Sci. 2012, 2, 7–13. [Google Scholar]
- Mage, D.; Wilson, W.; Hasselblad, V.; Grant, L. Assessment of human exposure to ambient particulate matter. J. Air Waste Manag. Assoc. 1999, 49, 1280–1291. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, F.; Adrees, M.; Ibrahim, M.; Mahmood, A.; Khalid, S.; Sipra, H.F.K.; Bokhari, A.; Mubashir, M.; Khoo, K.S.; Show, P.L. Trash to Energy: A Measure for the Energy Potential of Combustible content of Domestic solid waste generated from an industrialized city of Pakistan. J. Taiwan Inst. Chem. Eng. 2022, 104223. [Google Scholar] [CrossRef]
- Aslam, A.; Ibrahim, M.; Shahid, I.; Mahmood, A.; Irshad, M.K.; Yamin, M.; Tariq, M.; Shamshiri, R.R. Pollution characteristics of particulate matter (PM2.5 and PM10) and constituent carbonaceous aerosols in a South Asian future megacity. Appl. Sci. 2020, 10, 8864. [Google Scholar] [CrossRef]
- Karanasiou, A.; Minguillón, M.C.; Viana, M.; Alastuey, A.; Putaud, J.P.; Maenhaut, W.; Panteliadis, P.; Mocnik, G.; Panteliadis, P.; Mocnik, G. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Discuss. 2015, 8, 9649–9712. [Google Scholar]
- Dinoi, A.; Cesari, D.; Marinoni, A.; Bonasoni, P.; Riccio, A.; Chianese, E.; Tirimberio, G.; Naccarato, A.; Sprovieri, F.; Andreoli, V.; et al. Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy. Atmosphere 2017, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Choomanee, P.; Bualert, S.; Thongyen, T.; Salao, S.; Szymanski, W.W.; Rungratanaubon, T. Vertical variation of carbonaceous aerosols with in the PM2.5 fraction in Bangkok, Thailand. Aerosol Air Qual. Res. 2020, 20, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Wolinsky-Nahmias, Y. Cross-national public opinion on climate change: The effects of affluence and vulnerability. Global Environ. Politics 2014, 14, 79–106. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Bisht, D.S.; Ram, K.; Tiwari, S.; Srivastava, M.K. Characterization of carbonaceous aerosols over Delhi in Ganga basin: Seasonal variability and possible sources. Environ. Sci. Pollut. Res. 2014, 21, 8610–8619. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Dong, F.; Yang, Y.; He, D.; Zhao, X.; Zhang, W.; Yao, Q.; Liu, H. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmos. Environ. 2014, 71, 389–398. [Google Scholar] [CrossRef]
- Edenhofer, O. Climate change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; Volume 3. [Google Scholar]
- Pak-EPA. The Health Effects of Air Pollution on School Children in Murree; Pak-EPA: Islamabad, Pakistan.
- Tsiouri, V.; Kakosimos, K.; Kumar, P. Concentrations, physicochemical characteristics and exposure risks associated with particulate matter in the Middle East area—A review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Aslam, A.; Ibrahim, M.; Mahmood, A.; Mubashir, M.; Sipra, H.F.K.; Shahid, I.; Ramzan, S.; Latif, M.T.; Tahir, M.Y.; Show, P.L. Mitigation of particulate matters and integrated approach for carbon monoxide remediation in an urban environment. J. Environ. Chem. Eng. 2021, 9, 105546. [Google Scholar] [CrossRef]
- Pakistan EPA. Strategic Country Environmental Assessment Report: Rising to the Challenges; Pak-EPA: Islamabad, Pakistan, 2006. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Khanum, F.; Chaudhry, M.N.; Kumar, P. Characterization of five-year observation data of fine particulate matter in the metropolitan area of Lahore. Air Qual. Atmos. Health 2017, 10, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Athar, M. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan. Environ. Monit. Assess. 2008, 136, 219–226. [Google Scholar] [CrossRef]
- Ghauri, B.; Salam, M.; Mirza, M. Air quality in the Karachi metropolitan area. Glob. Environ. Chang. 1992, 2, 157–159. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Colbeck, I.; Ali, Z.; Ahmed, S. Heavy metal composition of particulate matter in rural and urban residential built environments in Pakistan. J. Anim. Plant Sci. 2015, 25, 706–712. [Google Scholar]
- WHO. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Rome, Italy, 2006. [Google Scholar]
- Amen, R.; Hameed, J.; Albashar, G.; Kamran, H.W.; Shah, M.H.; Zaman, M.K.; Mukhtar, A.; Saqib, S.; Ch, S.I.; Ibrahim, M.; et al. Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: A sustainable case study. J. Clean. Prod. 2021, 287, 125575. [Google Scholar] [CrossRef]
- Hashmi, D.; Shaikh, G.; Usmani, T. Ambient air quality at Port Qasim in Karachi city. J. Chem. Soc. Pakistan 2005, 27, 575–579. [Google Scholar]
- USEPA. National ambient air quality standards. 2021.
- Aziz, A.; Bajwa, I. Minimizing human health effects of urban air pollution through quantification and control of motor vehicular carbon monoxide (CO) in Lahore. Environ. Monit. Assess 2007, 135, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Alvi, M.U.; Kistler, M.; Shahid, I.; Alam, K.; Chishtie, F.; Mahmud, T.; Kasper-Giebl, A. Composition and source apportionment of saccharides in aerosol particles from an agro-industrial zone in the Indo-Gangetic Plain. Environ. Sci. Pollut. Res. 2020, 27, 14124–14137. [Google Scholar] [CrossRef]
- Shahid, M.Z.; Shahid, I.; Zahid, M. Inter-annual variability and distribution of aerosols during winters and aerosol optical thickness over Northeastern Pakistan. Int. J. Environ. Sci. Technol. 2022, 19, 875–888. [Google Scholar] [CrossRef]
- Yamin, M.; Yousaf, Z.; Bhatti, K.M.; Ibrahim, M.; Akbar, F.N.; Shamshiri, R.R.; Mahmood, A.; Tauni, R.A. Noise exposure and its impact on psychological health of agricultural tractor operators. Noise Control Eng. J. 2021, 69, 500–506. [Google Scholar] [CrossRef]
- Bian, Q.; Alharbi, B.; Shareef, M.M.; Husain, T.; Pasha, M.J.; Atwood, S.A.; Kreidenweis, S.M. Sources of PM2.5 carbonaceous aerosols in Riyadh, Saudi Arabia. Atmos. Chem. Phys. 2018, 18, 3969. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nature Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Weinhold, B. Global bang for the buck: Cutting black carbon and methane benefits both health and climate. Environ. Health Perspect. 2012, 120, A245. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, P.; Schwarz, J.; Ždímal, V. Analysis of one year’s OC/EC data at a Prague suburban site with 2h time resolution. Atmos. Environ. 2013, 77, 865–872. [Google Scholar] [CrossRef]
- Huang, X.H.H.; Bian, Q.J.; Louie, P.K.K.; Yu, J.Z. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong. Atmos. Chem. Phys. 2014, 14, 9279–9293. [Google Scholar] [CrossRef] [Green Version]
- Zeb, B.B.; Alam, K.; Sorooshian, A.A.; Blaschke, T.; Ahmad, I.; Shahid, I. On the morphology and composition of particulate matter in an urban environment. Aerosol Air Qual. Res. 2018, 18, 1431–1447. [Google Scholar] [CrossRef] [Green Version]
- Zeb, B.; Alam, K.; Ditta, A.; Ullah, S.; Ali, H.M.; Ibrahim, M.; Salem, M.Z. Variation in coarse particulate matter (PM10) and its characterization at multi-locations of an industrial area in the semiarid region. Front. Environ. Sci. 2022, 10, 843582. [Google Scholar] [CrossRef]
- Bilal, M.; Hassan, M.; Tahir, D.B.T.; Iqbal, M.S.; Shahid, I. Understanding the role of atmospheric circulations and dispersion of air pollution associated with extreme smog events over South Asian megacity. Environ. Monit. Assess. 2022, 194, 82. [Google Scholar] [CrossRef] [PubMed]
Locations | Summer | Winter | NEQS | WHO (2021) | Health Effects | Diseases |
---|---|---|---|---|---|---|
Liaqatabad | 418 µg/m3 | 423 µg/m3 | 120 µg/m3 | 40 µg/m3 | Respiratory illness, alterations in pulmonary defenses, lung cancer | Cardiovascular problems, bronchitis emphysema, asthma, pneumonia |
Khurrianwala | 652 µg/m3 | 661 µg/m3 |
Locations | Summer | Winter | NEQS | WHO (2021) | Health Effects | Diseases |
---|---|---|---|---|---|---|
Liaqatabad | 0 µg/m3 | 0.2 µg/m3 | 80 µg/m3 | 25 µg/m3 | Respiratory infections, acute respiratory illness in children | Influenza, respiratory diseases, bronchitis, asthma, COPD |
Khurrianwala | 0 µg/m3 | 0.3 µg/m3 |
Locations | Summer | Winter | NEQS | WHO (2021) | Health Effects | Diseases |
---|---|---|---|---|---|---|
Liaqatabad | 3.03 mg/m3 | 3.08 mg/m3 | 10 mg/m3 | 4 mg/m3 | Bloodstream Oxygen delivery, Toxicity of nervous system and heart | Asthma, headaches, dizziness, nausea, loss of vision |
Khurrianwala | 3.44 mg/m3 | 3.51 mg/m3 |
Locations | Summer | Winter | NEQS | WHO(2021) | Health Effects | Diseases |
---|---|---|---|---|---|---|
Liaqatabad | 667 µg/m3 | 682 µg/m3 | 500 µg/m3 | 500 µg/m3 | Respiratory systems, lungs, eye effect, Skin | Asthma attacks, dust allergy, influenza, scabies, dermatitis |
Khurrianwala | 555 µg/m3 | 581 µg/m3 |
Locations | Summer | Winter | NEQS | Health Effects | Diseases |
---|---|---|---|---|---|
Liaqatabad | 20.2% | 20.3 % | 21% | Increased breathing volume, nausea, muscle fatigue at a low level, accelerated heartbeat | |
Khurrianwala | 19.0% | 19.5 % |
Locations | Summer | Winter | NEQS | Health Effects | Diseases |
---|---|---|---|---|---|
Liaqatabad | 68 dB(A) | 69 dB(A) | 65 dB(A) Elementa | Deafness, headache, nausea, depression | |
Khurrianwala | 73 dB(A) | 75 dB(A) |
Location | Aerosol species | EC (µg/m3) | OC (µg/m3) | TC (µg/m3) |
---|---|---|---|---|
Liaqatabad | (a) SO2 | 33.73 ± 6.92 | 101.89 ± 1.18 | 135.62 ± 8.1 |
Khurrianwala | 65.34 ± 1.60 | 119.5 ± 2.67 | 184.84 ± 4.27 | |
Liaqatabad | (b) NO2 | 89.67 ± 1.52 | 178.4 ± 3.51 | 268.08 ± 5.03 |
Khurrianwala | 69.37 ± 3.56 | 133.4 ± 4.86 | 202.77 ± 8.42 | |
Liaqatabad | (c) CO | 79.46 ± 0.65 | 144.87 ± 2.97 | 224.34 ± 3.62 |
Khurrianwala | 41.58 ± 1.23 | 73.12 ± 1.53 | 114.71 ± 2.76 | |
Liaqatabad | (e) SPM | 83.41 ± 2.30 | 164.82 ± 3.49 | 248.23 ± 5.79 |
Khurrianwala | 72.79 ± 1.94 | 150.42 ± 1.87 | 223.21 ± 3.82 | |
Liaqatabad | (f) O2 | 18.79 ± 1.70 | 32.37 ± 1.44 | 51.16 ± 3.14 |
Khurrianwala | 67.94 ± 2.92 | 167.74 ± 2.10 | 235.68 ± 5.02 |
Location | Aerosol species | EC (µg/m3) | OC (µg/m3) | TC (µg/m3) |
---|---|---|---|---|
Liaqatabad | (a) SO2 | 36.07 ± 6.09 | 106.51 ± 1.60 | 142.58 ± 7.69 |
Khurrianwala | 69.78 ± 1.12 | 124.48 ± 3.18 | 194.27 ± 4.30 | |
Liaqatabad | (b) NO2 | 94.1 ± 1.41 | 183.4 ± 3.49 | 277.5 ± 4.9 |
Khurrianwala | 85.16 ± 1.03 | 151.97 ± 1.86 | 237.13 ± 2.89 | |
Liaqatabad | (c) CO | 49.71 ± 1.24 | 80.34 ± 1.36 | 130.04 ± 2.6 |
Khurrianwala | 75.92 ± 4.22 | 140.06 ± 4.61 | 215.97 ± 8.82 | |
Liaqatabad | (e) SPM | 41.39 ± 1.01 | 39.08 ± 2.40 | 80.47 ± 3.41 |
Khurrianwala | 90.49 ± 1.41 | 171.52 ± 2.27 | 262.01 ± 3.68 | |
Liaqatabad | (f) O2 | 78.46 ± 1.59 | 155.94 ± 2.50 | 234.4 ± 4.08 |
Khurrianwala | 25.47 ± 1.44 | 37.87 ± 1.34 | 63.34 ± 2.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahra, S.I.; Iqbal, M.J.; Ashraf, S.; Aslam, A.; Ibrahim, M.; Yamin, M.; Vithanage, M. Comparison of Ambient Air Quality among Industrial and Residential Areas of a Typical South Asian City. Atmosphere 2022, 13, 1168. https://doi.org/10.3390/atmos13081168
Zahra SI, Iqbal MJ, Ashraf S, Aslam A, Ibrahim M, Yamin M, Vithanage M. Comparison of Ambient Air Quality among Industrial and Residential Areas of a Typical South Asian City. Atmosphere. 2022; 13(8):1168. https://doi.org/10.3390/atmos13081168
Chicago/Turabian StyleZahra, Syeda Iram, Muhammad Javid Iqbal, Sobia Ashraf, Afifa Aslam, Muhammad Ibrahim, Muhammad Yamin, and Meththika Vithanage. 2022. "Comparison of Ambient Air Quality among Industrial and Residential Areas of a Typical South Asian City" Atmosphere 13, no. 8: 1168. https://doi.org/10.3390/atmos13081168
APA StyleZahra, S. I., Iqbal, M. J., Ashraf, S., Aslam, A., Ibrahim, M., Yamin, M., & Vithanage, M. (2022). Comparison of Ambient Air Quality among Industrial and Residential Areas of a Typical South Asian City. Atmosphere, 13(8), 1168. https://doi.org/10.3390/atmos13081168