Weather-Related Human Outdoor Behavior with Respect to Solar Ultraviolet Radiation Exposure in a Changing Climate
Abstract
:1. Introduction
2. Methods
- Type I: Studies that actually directly or indirectly investigated this question (3 studies);
- Type II: Studies that investigated the relationship between weather influences and behavioral aspects without direct reference to UVR exposure (41 studies);
- Type III: Studies that exclusively examined UVR exposure and discussed possible explanations or indirectly provided indications of weather influences (15 studies).
3. Type I Studies
3.1. Comparison of Climatic Zones: Temperate, Subtropical and Tropical Climates
3.2. Subtropical Climate
4. Type II Studies
- How do meteorological conditions influence the type and scope of leisure activities?
- How do meteorological conditions influence active mobility?
- How do meteorological conditions influence the use of public space?
4.1. How Do Meteorological Conditions Influence the Type and Scope of Leisure Activities
4.1.1. Temperate Climate
4.1.2. Subtropical Climate
4.1.3. Tropical Climate
4.2. How Do Meteorological Conditions Affect Active Mobility
4.2.1. Temperate Climate
4.2.2. Comparison of Climatic Zones: Cold and Temperate Climates
4.2.3. Comparison of Climatic Zones: Temperate and Subtropical Climate
4.3. How Do Meteorological Conditions Influence the Use of Public Space?
4.3.1. Cold and Temperate Climates
4.3.2. Subtropical Climate
4.3.3. Tropical Climate
- How does thermal comfort influence human outdoor behavior?
- How do heat and heat waves affect human outdoor behavior?
- How does the perceived enjoyment of radiation influence human outdoor behavior?
- How does small-scale variability in environmental conditions influence human outdoor behavior?
- How do wind, precipitation, air humidity and cloud cover influence human outdoor behavior?
5. Type III Studies
5.1. Temperate Climate
5.2. Subtropical Climate
6. Lessons Learned
6.1. Temperate and Cold Climates
6.2. Subtropical and Tropical Climates
6.3. Across All Examined Climates
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, M.J.; Torbeck, R.L.; Dubin, D.P.; Lin, C.E.; Khorasani, H. Climate change and skin cancer. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e324–e325. [Google Scholar] [CrossRef]
- Parker, E.R. The influence of climate change on skin cancer incidence—A review of the evidence. Int. J. Women’s Dermatol. 2020, 7, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Norval, M.; Neale, R.E.; Young, A.R.; De Gruijl, F.R.; Takizawa, Y.; Van der Leun, J.C. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem. Photobiol. Sci. 2015, 14, 53–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, J.; Horstmann, R.; Homeier-Bachmann, T.; Jensen, K.; Knieling, J.; Krefis, A.C.; Krüger, A.; Quante, M.; Sandmann, H.; Strube, C. Gesundheit. In Hamburger Klimabericht—Wissen Über Klima, Klimawandel und Auswirkungen in Hamburg und Norddeutschland; Von Storch, H., Meinke, I., Claußen, M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bharath, A.K.; Turner, R.J. Impact of climate change on skin cancer. J. R. Soc. Med. 2009, 102, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, M. Climate augmentation of erythemal UV-B radiation dose damage in the tropics and global change. Curr. Sci. 2007, 93, 1604–1608. Available online: http://www.jstor.org/stable/24099091 (accessed on 27 July 2021).
- Barnes, P.W.; Williamson, C.E.; Lucas, R.M.; Robinson, S.A.; Madronich, S.; Paul, N.D.; Bornman, J.F.; Bais, A.F.; Sulzberger, B.; Wilson, S.R.; et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustain. 2019, 2, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Arblaster, J.M.; Gillett, N.P.; Calvo, N.; Forster, P.M.; Polvani, L.M.; Son, W.S.; Waugh, D.W.; Young, P.J.; Barnes, E.A.; Cionni, I.; et al. Stratospheric Ozone Changes and Climate. In Scientific Assessment of Ozone Depletion; Ajavon, A.-L.N., Newman, P.A., Pyle, J.A., Ravishankara, A.R., Eds.; World Meteorological Organization: Geneve, Switzerland, 2014. [Google Scholar]
- Fahey, D.; Newman, P.A.; Pyle, J.A.; Safari, B.; Chipperfield, M.P.; Karoly, D.; Kinnison, D.E.; Ko, M.; Santee, M.; Doherty, S.J. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58; WMO: Geneva, Switzerland, 2018; p. 588. [Google Scholar]
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar]
- Morgenstern, O.; Hegglin, M.I.; Rozanov, E.; O’Connor, F.M.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bekki, S.; Butchart, N.; Chipperfield, M.P.; et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 2017, 10, 639–671. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.; Qin, D.; Platner, G.-K. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge Univ. Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Bernhard, G.H.; Neale, R.E.; Barnes, P.W.; Neale, P.J.; Zepp, R.G.; Wilson, S.R.; Andrady, A.L.; Bais, A.F.; McKenzie, R.L.; Aucamp, P.J.; et al. Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar] [CrossRef] [PubMed]
- Norval, M.; Lucas, R.; Cullen, P.; de Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; van der Leun, J.C. The human health effects of ozone depletion and interactions with climate change. Photochem. Photobiol. Sci. 2011, 10, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [PubMed]
- Armstrong, B.K.; Kricker, A.; English, R. Sun exposure and skin cancer. Australas. J. Dermatol. 1997, 38 (Suppl. S1), S1–S6. [Google Scholar]
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B 2001, 63, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; de Vries, E.; Whiteman, D.C.; Jemal, A.; Bray, F.; Parkin, D.M.; Soerjomataram, I. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer 2018, 143, 1305–1314. [Google Scholar] [PubMed]
- Kricker, A.; Weber, M.; Sitas, F.; Banks, E.; Rahman, B.; Goumas, C.; Kabir, A.; Hodgkinson, V.S.; van Kemenade, C.H.; Waterboer, T.; et al. Early life UV and risk of basal and squamous cell carcinoma in New South Wales, Australia. Photochem. Photobiol. 2017, 93, 1483–1491. [Google Scholar]
- van Dijk, A.; Slaper, H.; den Outer, P.N.; Morgenstern, O.; Braesicke, P.; Pyle, J.A.; Garny, H.; Stenke, A.; Dameris, M.; Kazantzidis, A.; et al. Skin cancer risks avoided by the Montreal Protocol—Worldwide modeling integrating coupled climate-chemistry models with a risk model for UV. Photochem. Photobiol. 2013, 89, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Savoye, I.; Olsen, C.M.; Whiteman, D.C.; Bijon, A.; Wald, L.; Dartois, L.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Kvaskoff, M. Patterns of Ultraviolet Radiation Exposure and Skin Cancer Risk: The E3N-SunExp Study. J. Epidemiol. 2018, 28, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Yam, Y.; Kwok, A. Ultraviolet light and ocular diseases. Int. Ophthalmol. 2014, 34, 383–400. [Google Scholar]
- Rezvan, F.; Khabazkhoob, M.; Hooshmand, E.; Yekta, A.; Saatchi, M.; Hashemi, H. Prevalence and risk factors of pterygium: A systematic review and meta-analysis. Surv. Ophthalmol. 2018, 63, 719–735. [Google Scholar]
- Garzon-Chavez, D.R.; Quentin, E.; Harrison, S.L.; Parisi, A.V.; Butler, H.J.; Downs, N.J. The geospatial relationship of pterygium and senile cataract with ambient solar ultraviolet in tropical Ecuador. Photochem. Photobiol. Sci. 2018, 17, 1075–1083. [Google Scholar] [CrossRef]
- Song, P.; Wang, H.; Theodoratou, E.; Chan, K.Y.; Rudan, I. The national and subnational prevalence of cataract and cataract blindness in China: A systematic review and meta-analysis. J. Glob. Health 2018, 8, 010804. [Google Scholar] [CrossRef]
- Schwarz, T. The dark and the sunny sides of UVR-induced immunosuppression: Photoimmunology revisited. J. Investig. Dermatol. 2010, 130, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, F.; Lucas, R.; Hales, S.; Neale, R. Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: Empirical relationships. JAMA Dermatol. 2014, 150, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diffey, B. A behavioral model for estimating population exposure to solar ultraviolet radiation. Photochem. Photobiol. Sci. 2008, 84, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B.L. An overview analysis of the time people spend outdoors. Br. J. Dermatol. 2011, 164, 848–854. [Google Scholar] [CrossRef]
- Diffey, B.L. Time and place as modifiers of personal UV exposure. Int. J. Environ. Res. Public Health 2018, 1, 1112. [Google Scholar] [CrossRef] [Green Version]
- Xiang, F.; Harrison, S.; Nowak, M.; Kimlin, M.; van der Mei, I.; Neale, R.E.; Sinclair, C.; Lucas, R.M.; the AusD Study Investigator Group. Weekend personal ultraviolet radiation exposure in four cities in Australia: Influence of temperature, humidity and ambient ultraviolet radiation. J. Photochem. Photobiol. B Biol. 2015, 143, 74–81. [Google Scholar] [CrossRef]
- Steadman, R.G. A universal scale of apparent temperature. J. Clim. Appl. Meteorol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Steadman, R.G. Norms of Apparent Temperature in Australia. Aust. Met. Mag. 1994, 43, 1–16. [Google Scholar]
- Dobbinson, S.; Wakefield, M.; Hill, D.; Girgis, A.; Aitken, J.; Beckmann, K.; Reeder, A.; Herd, N.; Fairthorne, A.; Bowles, K. Prevalence and determinants of Australian adolescents’ and adults’ weekend sun protection and sunburn, summer 2003–2004. J. Am. Acad. Dermatol. 2008, 59, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.E.; Kimlin, M.G. The Dislike of Hot Thermal Conditions and Its Relationship with Sun (Ultraviolet Radiation) Exposure in the Southeastern United States. Int. J. Environ. Res. Public Health 2018, 15, 2161. [Google Scholar] [CrossRef] [Green Version]
- Matthews, L.; Scott, D.; Andrey, J. Development of a data-driven weather index for beach parks tourism. Int. J. Biometeorol. 2021, 65, 749–762. [Google Scholar] [CrossRef]
- Spinney, J.; Millward, H. Weather impacts on leisure activities in Halifax, Nova Scotia. Int. J. Biometeorol. 2010, 55, 133–145. [Google Scholar] [CrossRef]
- Bélanger, M.; Gray-Donald, K.; O’Loughlin, J.; Paradis, G.; Hanley, J. Influence of weather conditions and season on physical activity in adolescents. Ann. Epidemiol. 2009, 19, 180–186. [Google Scholar] [CrossRef]
- Knuschke, P.; Kurpiers, M.; Koch, R.; Kuhlisch, W.; Witte, K. Mittlere UV Expositionen der Bevölkerung. In Schlussbericht BMBF-Vorhaben 07UV-B54C/3; Technische Informationsbibliothek: Hannover, Germany, 2004. [Google Scholar]
- Knuschke, P.; Unverricht, I.; Ott, G.; Janssen, M. Personenbezogene Messung der UV-Exposition von Arbeitnehmern im Freien. In Abschlussbericht Zum Projekt, Personenbezogene Messung der UV-Exposition von Arbeitnehmern im Freien—Projekt F 1777; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2007. [Google Scholar]
- Eisinga, R.; Franses, P.H.; Vergeer, M. Weather conditions and daily television use in the Netherlands, 1996–2005. Int. J. Biometeorol. 2011, 55, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner-Cendrowska, K.; Błażejczyk, K. Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland). Int. J. Biometeorol. 2018, 62, 113–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banwell, C.; Dixon, J.; Bambrick, H.; Edwards, F.; Kjellström, T. Socio-cultural reflections on heat in Australia with implications for health and climate change adaptation. Glob. Health Act. 2012, 5, 19277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaabane, S.; Chaabna, K.; Doraiswamy, S.; Mamtani, R.; Cheema, S. Barriers and Facilitators Associated with Physical Activity in the Middle East and North Africa Region: A Systematic Overview. Int. J. Environ. Res. Public Health 2021, 18, 1647. [Google Scholar] [CrossRef]
- Hall, C.M.; Ram, Y. Weather and climate in the assessment of tourism-related walkability. Int. J. Biometeorol. 2021, 65, 729–739. [Google Scholar] [CrossRef]
- Giehl, M.W.C.; Schneider, I.; Corseuil, H.X.; Benedetti, T.; d’Orsi, E. Physical activity and environment perception among older adults: A population study in Florianópolis, Brazil. Rev. Saúde Pública 2012, 46, 1–9. [Google Scholar]
- Rutty, M.; Scott, D. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. Int. J. Biometeorol. 2015, 59, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Rose, G.; Jacob, C. Impact of weather on commuter cyclist behaviour and implications for climate change adaptation. In Proceedings of the 33rd Australasian Transport Research Forum, Canberra, Australia, 29 September–1 October 2010. [Google Scholar]
- Miranda-Moreno, L.F.; Nosal, T. Weather or Not to Cycle: Temporal Trends and Impact of Weather on Cycling in an Urban Environment. Transp. Res. Rec. 2011, 2247, 42–52. [Google Scholar] [CrossRef]
- Nosal, T.; Miranda-Moreno, L.F. The effect of weather on the use of North American bicycle facilities: A multi-city analysis using automatic counts. Transp. Res. Part A Policy Pract. 2014, 66, 213–225. [Google Scholar] [CrossRef]
- Hanson, S.; Hanson, P. Evaluating the impact of weather on bicycle use. Transp. Res. Rec. 1977, 629, 43–48. [Google Scholar]
- Helbich, M.; Böcker, L.; Dijst, M. Geographic heterogeneity in cycling under various weather conditions: Evidence from greater Rotterdam. J. Transp. Geogr. 2014, 38, 38–47. [Google Scholar] [CrossRef]
- Thomas, T.; Jaarsma, R.; Tutert, B. Exploring temporal fluctuations of daily cycling demand on Dutch cycle paths: The influence of weather on cycling. Transportation 2013, 40, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Phung, J.; Rose, G. Temporal variations in usage of Melbourne’s bike paths. In Proceedings of the 30th Australasian Transport Research Forum, Melbourne, Australia, 25–27 September 2007. [Google Scholar]
- Wessel, J. Using weather forecasts to forecast whether bikes are used. Transp. Res. Part A Policy Prac. 2020, 138, 537–559. [Google Scholar] [CrossRef]
- Böcker, L.; van Amen, P.; Helbich, M. Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands. Transportation 2017, 44, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Böcker, L.; Dijst, M.; Faber, J. Weather, transport mode choices and emotional travel experiences. In Climate, Weather and Daily Mobility: Transport Mode Choices and Travel Experiences in the Randstad Holland; Böcker, L., Ed.; Dissertation, Faculty of Geosciences, Utrecht University: Utrecht, The Netherlands, 2016; ISBN 978-94-6203-736-6. [Google Scholar]
- Böcker, L.; Thorsson, S. Integrated weather effects on cycling shares, frequencies and durations in Rotterdam, the Netherlands. Weather Clim. Soc. 2014, 6, 468–481. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Xing, Z.; Luan, X.; Jiang, Y. Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane. Transp. Res. Part A Policy Pract. 2018, 111, 119–135. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. Investigating the impacts of weather variability on individual’s daily activity–travel patterns: A comparison between commuters and non-commuters in Sweden. Transp. Res. Part A Policy Pract. 2015, 82, 47–64. [Google Scholar] [CrossRef]
- Ermagun, A.; Lindsey, G.; Hadden Loh, T. Urban trails and demand response to weather variations. Transp. Res. Part D Transp. Environ. 2018, 63, 404–420. [Google Scholar] [CrossRef]
- An, R.; Zahnow, R.; Pojani, D.; Corcoran, J. Weather and cycling in New York: The case of Citibike. J. Transp. Geogr. 2019, 77, 97–112. [Google Scholar] [CrossRef]
- Heaney, A.K.; Carrión, D.; Burkart, K.; Lesk, C.; Jack, D. Climate change and physical activity: Estimated impacts of ambient temperatures on bikeshare usage in New York city. Environ. Health Perspect. 2019, 127, 37002. [Google Scholar] [CrossRef] [Green Version]
- Flynn, B.S.; Dana, G.S.; Sears, J.; Aultman-Hall, L. Weather factor impacts on commuting to work by bicycle. Prev. Med. 2012, 54, 122–124. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. Examining the impact of weather variability on non-commuters’ daily activity-travel patterns in different regions of Sweden. J. Transp. Geogr. 2014, 39, 36–48. [Google Scholar] [CrossRef]
- Böcker, L.; Dijst, M.; Prillwitz, J. Impact of everyday weather on individual daily travel behaviours in perspective: A literature review. Transp. Rev. 2013, 33, 71–91. [Google Scholar] [CrossRef]
- Böcker, L.; Priya Uteng, T.; Liu, C.; Dijst, M. Weather and daily mobility in international perspective: A cross-comparison of Dutch, Norwegian and Swedish city regions. Transp. Res. Part D Transp. Environ. 2019, 77, 491–505. [Google Scholar] [CrossRef]
- Lewin, A. Temporal and Weather Impacts on Bicycle Volumes; Transportation Research Board of the National Academies: Washington, DC, USA, 2011. [Google Scholar]
- Ahmed, F.; Rose, G.; Jacob, C. Commuter Cyclist Travel Behavior: Examination of the Impact of Changes in Weather. Transp. Res. Rec. 2013, 2387, 76–82. [Google Scholar] [CrossRef]
- Baechler, M.C.; Williamson, J.; Gilbride, T.; Cole, P.; Hefty, M.; Love, P.T. Guide to Determining Climate Regions by County. In Building America Best Practices Series; U.S. Department of Energy: Richland, WA, USA, 2015; p. 7. [Google Scholar]
- Larsson, A.; Chapman, D. Perceived impact of meteorological conditions on the use of public space in winter settlements. Int. J. Biometeorol. 2020, 64, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Olofsson, T.; Nair, G.; Kabanshi, A. Outdoor thermal comfort under subarctic climate of north Sweden—A pilot study in Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [Google Scholar] [CrossRef]
- Becker, S.; Potchter, O.; Yaakov, Y. Calculated and observed human thermal sensation in an extremely hot and dry climate. Energy Build. 2003, 35, 747–756. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Use of outdoor spaces and microclimate in a Mediterranean urban area. Build. Environ. 2007, 42, 3691–3707. [Google Scholar] [CrossRef] [Green Version]
- Vasilikou, C.; Nikolopoulou, M. Outdoor thermal comfort for pedestrians in movement: Thermal walks in complex urban morphology. Int. J. Biometeorol. 2020, 64, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Faustini, F.B.; de Faria, J.R.G.; Fontes, M.G. The influence of thermal comfort conditions on user’s exposure time in open spaces. Int. J. Biometeorol. 2020, 64, 243–252. [Google Scholar] [CrossRef]
- Sun, J.; Lucas, R.M.; Harrison, S.; van der Mei, I.; Armstrong, B.K.; Nowak, M.; Brodie, A.; Kimlin, M.G. The relationship between ambient ultraviolet radiation (UVR) and objectively measured personal UVR exposure dose is modified by season and latitude. Photochem. Photobiol. Sci. 2014, 13, 1711–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, R.M.; Valery, P.; Mei, I.; Dwyer, T.; Pender, M.P.; Taylor, B.; Ponsonby, A.-L. The Ausimmune Investigator Group Sun exposure over a lifetime in Australian adults from latitudinally diverse regions. Photochem. Photobiol. 2013, 89, 737–744. [Google Scholar] [CrossRef]
- Kimlin, M.G.; Fang, L.; Feng, Y.; Wang, L.; Hao, L.; Fan, J.; Wang, N.; Meng, F.; Yang, R.; Cong, S.; et al. Personal ultraviolet Radiation exposure in a cohort of Chinese mother and child pairs: The Chinese families and children study. BMC Public Health 2019, 19, 281. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, E.K.; Wheeler, D.C.; Kimlin, M.G.; Kwok, R.K.; Alexander, B.H.; Little, M.P.; Linet, M.S.; Freedman, D.M. Individual, environmental, and meteorological predictors of daily personal ultraviolet radiation exposure measurements in a United States cohort study. PLoS ONE 2013, 8, e54983. [Google Scholar] [CrossRef] [Green Version]
- Godar, D.E.; Wengraitis, S.P.; Shreffler, J.; Sliney, D.H. UV Doses of Americans. Photochem. Photobiol. 2001, 73, 621–629. [Google Scholar] [CrossRef]
- Thieden, E.; Philipsen, P.A.; Wulf, H.C. Ultraviolet radiation exposure pattern in winter compared with summer based on time-stamped personal dosimeter readings. Br. J. Dermatol. 2006, 154, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.E.; Hamilton, A.R.; Janda, M.; Gies, P.; Green, A.C. Seasonal variation in measured solar ultraviolet radiation exposure of adults in subtropical Australia. Photochem. Photobiol. 2010, 86, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Gies, P.; Roy, C.; Javorniczky, J.; Henderson, S.; Lemus-Deschamps, L.; Driscoll, C. Global Solar UV Index: Australian Measurements, Forecasts and Comparison with the UK. Photochem. Photobiol. 2004, 79, 32–39. [Google Scholar] [CrossRef]
- Schmalwieser, A.W.; Schmalwieser, V.T.; Schmalwieser, S.S. Influence of air temperature on the UV exposure on different body sites due to clothing of young women during daily errands. Photochem. Photobiol. 2019, 95, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, B.; Thieden, E.; Philipsen, P.A.; Heydenreich, J.; Wulf, H.C.; Young, A.R. Determinants of personal ultraviolet-radiation exposure doses on a sun holiday. Br. J. Dermatol. 2013, 168, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Baczynska, K.A.; Khazova, M.; O’Hagan, J.B. Sun exposure of indoor workers in the UK—survey on the time spent outdoors. Photochem. Photobiol. Sci. 2019, 18, 120–128. [Google Scholar] [CrossRef]
- Silva, I.S.; Higgins, C.D.; Abramsky, T.; Swanwick, M.A.; Frazer, J.; Whitaker, L.M.; Blanshard, M.E.; Bradshaw, J.; Apps, J.M.; Bishop, D.T.; et al. Overseas sun exposure, nevus counts, and premature skin aging in young English women: A population-based survey. J. Investig. Dermatol. 2009, 129, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Diffey, B.L.; Gibson, C.J.; Haylock, R.; McKinlay, A.F. Outdoor ultraviolet exposure of children and adolescents. Br. J. Dermatol. 1996, 134, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Chodick, G.; Kleinerman, R.A.; Linet, M.S.; Fears, T.; Kwok, R.K.; Kimlin, M.G.; Alexander, B.H.; Freedman, D.M. Agreement between diary records of time spent outdoors and personal ultraviolet radiation dose measurements. Photochem. Photobiol. 2008, 84, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainwright, L.K.; Parisi, A.V.; Downs, N.J. Concurrent evaluation of personal damaging and beneficial UV exposures over an extended period. J. Photochem. Photobiol. 2017, 170, 188–196. [Google Scholar] [CrossRef]
- Downs, N.J.; Parisi, A.V. Ultraviolet exposures in different playground settings: A cohort study of measurements performed in a school population. Photodermatol. Photoimmunol. Photomed. 2009, 25, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Diffey, B.L.; Jansen, C.T.; Urbach, F.; Wulf, H.C. The standard erythema dose: A new photobiological concept. Photodermatol. Photoimmunol. Photomed. 1997, 13, 64–66. [Google Scholar] [CrossRef]
- Guy, C.; Diab, R.; Martincigh, B. Ultraviolet radiation exposure of children and adolescents in Durban, South Africa. Photochem. Photobiol. 2003, 77, 265–270. [Google Scholar] [CrossRef]
- World Health Organization; World Meteorological Organization; United Nations Environment Programme; International Commission on Non-Ionizing Radiation Protection. Global Solar UV Index: A Practical Guide; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Heckman, C.J.; Liang, K.; Riley, M. Awareness, understanding, use, and impact of the UV index: A systematic review of over two decades of international research. Prev. Med. 2019, 123, 71–83. [Google Scholar] [CrossRef]
- Buller, D.B.; Berwick, M.; Lantz, K.; Buller, M.K.; Shane, J.; Kane, I.; Liu, X. Evaluation of immediate and 12-week effects of a smartphone sun-safety mobile application: A randomized clinical trial. JAMA Dermatol. 2015, 151, 505–512. [Google Scholar] [CrossRef]
- Dixon, H.G.; Hill, D.J.; Karoly, D.J.; Jolley, D.J.; Aden, S.M. Solar UV forecasts: A randomized trial assessing their impact on adults’ sun-protection behavior. Health Educ. Behav. 2007, 34, 486–502. [Google Scholar] [CrossRef]
- Carli, P.; Crocetti, E.; Chiarugi, A.; Salvini, C.; Nardini, P.; Zipoli, G.; Simeone, E. The use of commercially available personal UV-meters does cause less safe tanning habits: A randomized-controlled trial. Photochem. Photobiol. 2008, 84, 758–763. [Google Scholar] [CrossRef]
- Calvache Ruales, M.F.; Westerhausen, S.; Zapata Gallo, H.A.; Strehl, B.; Naza Guzman, S.D.; Versteeg, H.; Stöppelmann, W.; Wittlich, M. UVR Exposure and Prevention of Street Construction Workers in Colombia and Germany. Int. J. Environ. Res. Public Health 2022, 19, 7259. [Google Scholar] [CrossRef]
- Wittlich, M.; Westerhausen, S.; Kleinespel, P.; Rifer, G.; Stöppelmann, W. An approximation of occupational lifetime UVR exposure: Algorithm for retrospective assessment and current measurements. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Wittlich, M. Criteria for Occupational Health Prevention for Solar UVR Exposed Outdoor Workers—Prevalence, Affected Parties, and Occupational Disease. Front. Public Health 2022, 9, 772290. [Google Scholar] [CrossRef] [PubMed]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Prävention von Hautkrebs, Langversion 2.0, 2021, AWMF Registernummer 032/052OL. Available online: https://www.leitlinienprogramm-onkologie.de/leitlinien/hautkrebs-praevention/ (accessed on 30 July 2021).
City | Adjusted Personal UVR = f (Maximum Temperature) | Adjusted Personal UVR = f (Relative Humidity) | Adjusted Personal UVR = f (Daily Ambient UVR) | |||
---|---|---|---|---|---|---|
Townsville 19° S | 0 | 0 | 0 | |||
tout | clo | tout | clo | tout | clo | |
Brisbane 27° S | 0 | 0 | 0 | |||
tout | clo | tout | clo | tout | clo | |
Canberra 35° S | + | 0 | 0 | |||
tout | clo | tout | clo | tout | clo | |
Hobart 43° S | 0 | 0 | + | |||
tout | clo | tout | clo | tout | clo |
Climate Zone | Country, Location, Latitude | Key Messages (Bullet Points) and Conclusions (Bullet Arrows) | Studies |
---|---|---|---|
Temperate | Australia, Canberra 35° S, Hobart 43° S |
| [32] |
Subtropical, (* tropical) | Australia, Townsville * 19° S, Brisbane 27° S |
| [32] |
USA, Athens 34° N |
| [36] | |
Over All Exa-Mined Climates |
|
dT | Region | Walking | Cycling | ||||||
---|---|---|---|---|---|---|---|---|---|
Sp | Su | Au | Wi | Sp | Su | Au | Wi | ||
Much warmer | North | ||||||||
Central | |||||||||
South | |||||||||
Warmer | North | ||||||||
Central | |||||||||
South | |||||||||
Colder | North | ||||||||
Central | |||||||||
South | |||||||||
Much colder | North | ||||||||
Central | |||||||||
South |
Climate Zone | Country, Location, Latitude | Key Messages (Bullet Points) and Conclusions (Bullet Arrows) | Studies |
---|---|---|---|
Leisure activities | |||
Temperate | Canada Great Lakes Region (43° N) |
| [37] |
Halifax (44° N) | [38] | ||
Montreal (45° N) | [39] | ||
Netherlands |
| [42] | |
Poland Warsaw (52° N) |
| [43] | |
| |||
Subtropical | Australia Sydney (33° S) |
| [44] |
Middle East and Northafrica |
| [45] | |
Tropical | Brazil Florianópolis (28° S) |
| [47] |
Caribbean Tobago (11° N) Barbados (13° N), St. Lucia (14° N) |
| [48] | |
Subtropical and tropical |
| ||
Active Mobility | |||
Temperate | Australia Melbourne (38° S) |
| [49,55] |
Canada Montreal (45° N) |
| [50,51] | |
Germany 37 locations (48–54° N) |
| [56] | |
Netherlands Ede und Gouda (52° N) |
| [54] | |
Rotterdam (52° N) | [53,57,58,59] | ||
Sweden Uppsala (60° N) |
| [52] | |
USA New York (41° N) |
| [63,64] | |
Vermont (44° N) | [65] | ||
Seattle (48° N) | [60] | ||
| |||
Comparison: cold and temperate zone | Sweden |
| [61] |
[66] | |||
Norway, Sweden, Netherlands |
| [68] | |
| |||
Comparison: temperate and subtropical zone | USA |
| [62] |
| |||
Use of public space | |||
Cold and temperate | Canada and Skandinavia |
| [72] |
Sweden |
| [73] | |
| |||
Subtropical | Greece Athens (38° N) |
| [75] |
Italy Rome (42° N) |
| [76] | |
Tropical | Brazil Bauru (22° S) |
| [77] |
Subtropical and tropical |
|
Human Biometeorological Factors | Key Messages about Influencing Human Outdoor Behavior | Regions or Countries with Contributing Studies | Studies |
---|---|---|---|
Thermal comfort/ slight thermal discomfort |
| Australia | [49,55] |
Canada | [37,38,39,50,51] | ||
Germany | [56] | ||
Netherlands | [42,53,54,57,58,59] | ||
Norway | [68] | ||
Sweden | [52,68] | ||
United States | [60,63,64,65] | ||
Heat and Heatwaves |
| Australia | [44] |
Bahrain | [45] | ||
Brazil | [47,77] | ||
Canada | [39] | ||
Egypt | [45] | ||
Germany | [56] | ||
Greece | [75] | ||
Kuwait | [45] | ||
Netherlands | [54,57,58,59] | ||
Oman | [45] | ||
Qatar | [45] | ||
Saudi-Arabia | [45] | ||
United Arab Emirates | [45] | ||
United States | [64,65] | ||
Solar radiation enjoyment |
| Canada | [37,72] |
Scandinavia | [72,73] | ||
Small-scale thermal diversity |
| Italy | [76] |
United Kingdom | [76] | ||
Wind, precipitation, humidity, cloud cover |
| Canada | [37,39,50,51] |
Germany | [56] | ||
Netherlands | [53,54] | ||
Scandinavia | [68] | ||
United States | [63,65] |
Climate Zone | Country, Location, Latitude | Key Messages (Bullet Points) and Conclusions (Bullet Arrows) | Studies |
---|---|---|---|
Temperate | Australia, Canberra 35° S, Hobart 43° S |
| [78] |
Geelong 37° S Tasmania 43° S | [79] | ||
| |||
Austria, Vienna 48° N |
| [86] | |
| |||
China, Location 39° N (Name not given) |
| [80] | |
| |||
Denmark, Country 56° N |
| [83,87] | |
| |||
Germany, Dresden 51° N |
| [40,41] | |
| |||
UK Country 52° N Yorkshire 54° N |
| [88] | |
Durham 54° N Wallingford 51° N Plymouth 50° N | [89] | ||
[90] | |||
| |||
USA Minnesota 46° N Wisconsin 44° N |
| [81] | |
| |||
Subtropical, (* tropical) | Australia Toowoomba 27° S |
| [92] |
[78] | |||
Townsville * 19° S Brisbane 27° S Newcastle 33° S Brisbane 27° S | [79] | ||
[93] | |||
Queensland 25° S | |||
| |||
China Location 31° N (Name not given) |
| [80] | |
| |||
South Africa Durban 30° S |
| [95] | |
| |||
USA North Carolina 35° N Georgia 32° N |
| [81] | |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laschewski, G.; Matzarakis, A. Weather-Related Human Outdoor Behavior with Respect to Solar Ultraviolet Radiation Exposure in a Changing Climate. Atmosphere 2022, 13, 1183. https://doi.org/10.3390/atmos13081183
Laschewski G, Matzarakis A. Weather-Related Human Outdoor Behavior with Respect to Solar Ultraviolet Radiation Exposure in a Changing Climate. Atmosphere. 2022; 13(8):1183. https://doi.org/10.3390/atmos13081183
Chicago/Turabian StyleLaschewski, Gudrun, and Andreas Matzarakis. 2022. "Weather-Related Human Outdoor Behavior with Respect to Solar Ultraviolet Radiation Exposure in a Changing Climate" Atmosphere 13, no. 8: 1183. https://doi.org/10.3390/atmos13081183
APA StyleLaschewski, G., & Matzarakis, A. (2022). Weather-Related Human Outdoor Behavior with Respect to Solar Ultraviolet Radiation Exposure in a Changing Climate. Atmosphere, 13(8), 1183. https://doi.org/10.3390/atmos13081183