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Abstract: We analyzed the multi-year relationship between particulate matter (PM10 and PM2.5)
concentrations and possible precursors including NO2, SO2, and NH3 based on local observations
over the Seoul Metropolitan Area (SMA) from 2015 to 2017. Surface NH3 concentrations were
obtained from Cross-track Infrared Sounder (CrIS) retrievals, while other pollutants were observed at
142 ground sites. We found that NH3 had the highest correlation with PM2.5 (R = 0.51) compared to
other precursors such as NO2 and SO2 (R of 0.16 and 0.14, respectively). The correlations indicate
that NH3 emissions are likely a limiting factor in controlling PM2.5 over the SMA in a high-NOx
environment. This implies that the current Korean policy urgently requires tools for controlling local
NH3 emissions from the livestock industry (for example, from hog manure). These findings provide
the first satellite-based trace gas evidence that implementing an NH3 control strategy could play a
key role in improving air quality in the SMA.

Keywords: ammonia; particulate pollution; Seoul Metropolitan Area; Korea; CrIS

1. Introduction

Particulate matter (PM) pollution in South Korea has improved since the 1990s due to
active local and nationwide policies, including those specific to the Seoul Metropolitan Area
(SMA), but concentrations have not noticeably changed since 2012 [1,2]. There are many
factors affecting PM pollution in South Korea, including (1) meteorological conditions
and thermodynamics between atmospheric compositions such as nitrate, sulfate, and
ammonia [1,3–7] and (2) uncertainty regarding the national emissions inventories reported
by the Korea-United States Air Quality Study (underestimations of local volatile organic
compounds (VOCs) in Korea) [8] and the underestimation of national NOx emissions
by Goldberg et al. [9]. PM2.5 formed from ammonium nitrate (NH3NO3) is an important
contributor to high PM concentrations in Korea and China when atmospheric conditions are
stagnant [10–15]. Recent studies have found that ammonium nitrate is the dominant form
of PM2.5 in Korea; the proportion of ammonium nitrate detected in the atmosphere tends
to double (nearly 38% from NH4 and NO3, combined) during high-PM episodes [16,17].
The portion of NH4 in the composition of PM1 was 14%, estimated from the in situ gas
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and aerosol observations from a NASA DC-8 during the NASA-NIER KORUS-AQ (Korea-
United States Air Quality) campaign ran from May to June of 2016 [18].

Efforts made by the Korean Government to control PM concentrations include reduc-
ing NOx emissions from coal power plants, motor vehicles and the industrial sector [19].
The Korean National Assembly has also enacted a law to strongly enforce PM pollution poli-
cies [20]. SOx emissions are considered local control issues, such as shipping near national
harbors [21], or influenced by transboundary transport (i.e., Chinese emissions) [15,22].
Emissions estimates of volatile organic compounds (VOCs) from industry came to ap-
proximately one million tons per year in 2015 [23], but this figure was found to be an
underestimate due to limited emissions monitoring around industrial areas [8,13,21]. Am-
monia emissions are also a contributing factor to PM formation [15,24–26] and the majority
of these emissions in Korea are from the domestic livestock industry (>75% [23,27]), but as
of yet there is no specific mitigation target or policy in place.

The Korean Ministry of Environment (KMOE) is currently devising a basic plan
for regional air quality management, since the characteristics of PM pollution depend on
geographic location and local emissions sources. Specifically, regional atmospheric chemical
conditions (e.g., the HOx–NOy relationship) need to be better understood considering the
shorter lifetime of atmospheric chemical species such as ammonia and VOCs.

Here, we tried to identify the main contributing factors to PM formation in South
Korea with ground measurements of nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon
monoxide (CO), PM10, and PM2.5 obtained nationwide from 2015 to 2017. In addition,
we used the National Oceanic and Atmospheric Administration’s (NOAA) Cross-track
Infrared Sounder (CrIS) NH3 surface concentration data, since there are few NH3 ground
measurements in South Korea. We used multi-year correlations between chemical species
to help identify the main species or emission sources contributing to local PM formation.
We focused on the Seoul Metropolitan Area (SMA) to determine the regional contributing
species, as dense ground measurements in the area support an understanding of the
regional chemical environment.

2. Data and Methodology
2.1. Ground Measurements

In this study, data on air pollutants including NO2, SO2, CO, PM10 and PM2.5 collected
at 142 national air monitoring stations were used (more than 75% of data available on an
annual basis in SMA [6]).

Air pollutants such as SO2 and CO were measured using official test methods es-
tablished by the Environmental Policy Act of Korea [28]. SO2 was measured using the
pulsed ultraviolet (UV) fluorescence method, CO was measured via the non-dispersive in-
frared method, NO2 was measured using chemiluminescence analyses with a molybdenum
convector and PM10 was measured via β-ray absorption [6]. Quality control and quality
assessment of instruments were regularly conducted in accordance with the Environmental
Examination and Inspection Act [28]. NO2 should be considered as the sum of NO2 and
NOz, as the molybdenum convertor causes positive interference with NOz [29]. The detec-
tion limits of SO2, CO, NO2, and PM are 0.1, 50, 0.1 ppb and 5 µg/m3, respectively [28,29].
The measurements from the 142 stations in the SMA were sampled throughout the experi-
mental period (more than 75% of data available on an annual basis) and used to perform
correlation analyses.

2.2. Cross-Track Infrared Sounder Data

A cross-track infrared sounder (CrIS) is a satellite instrument with a Fourier-transform
spectrometer onboard the Suomi National Polar-orbiting Partnership (NPP) satellite, which
is part of the Joint Polar Satellite System (JPSS) program [30], launched in 2011. CrIS is in
a sun-synchronous orbit, with mean local overpass times of 13:30 (ascending node) and
01:30 (descending node) [31–34]. CrIS has three bands in the infrared region (645–1095,
1210–1750, and 2155–2550 cm−1) with a 2200 km swath width and sets of three-by-three
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circular footprints, each approximately 14 km at the nadir [31–33]. The maximum sensitivity
of CrIS NH3 is in the range of 900–750 hPa and the minimum detection limit near the surface
is typically ~1 ppbv [31].

We used surface NH3 concentration data over South Korea during the period from
2015 to 2017 from CrIS Fast Physical Retrieval (CFPR) version 1.5 [31,34]. We used daytime
measurements and removed low-quality data or outliers by applying the standard of
quality flag (less than 4), degrees-of-freedom-of-signal (less than or equal to 0.1) and χ2

(greater than or equal to 0.5). These criteria were selected based on stronger correlation with
two Korean NH3 ground based sites (Imsil, in the southwestern tip of Korea, and Kangwha,
on the western coast near the SMA.) with a range of 0.5 < R < 0.7. The comparison for these
local point source measurements with the regional satellite pixel observations showed that
the satellite had systemic underestimation by a factor of 2.5 in this location. The range
of the long-term (2000–2019) annual mean of ground ammonia measurements in Korea
from the Acid Deposition Monitoring Network in East Asia (EANET) sites is 2.7~6.5 ppbv
(https://monitoring.eanet.asia/document/public/index, accessed on 10 June 2020).

In total, 1512 CrIS data pixels were used from 2015 to 2017 (42 local samples per month);
the retrieval method and data version 1.5 product have been described previously [31,34].
As there is limited independent vertical information [34], the surface and column CrIS NH3
products are highly correlated and show similar spatial variations over South Korea (not
shown).

3. Results

We calculated the three-year correlations among the annual mean of PM10, PM2.5, NH3,
NO2, and SO2 concentrations over the SMA from 2015 to 2017. We sampled all datasets on
an annual basis with a horizontal resolution of 15 km to adjust for the footprint of the nadir
CrIS (14 km), producing ~100 samples of the chemical species for the correlational analysis
(the sample sizes and locations are shown in Figure 1).
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South Korea (2015–2017) (left) and the data over Seoul Metropolitan Area (SMA), which consists of 
Seoul (denoted as “S”), Incheon (denoted as “IN”), the northern Gyeonggi area (denoted as 
“N.GY”), and the southern Gyeonggi area (denoted as “S.GY”) are shown (right). The grid with less 
than 1.5 ppbv were masked out. 

The relatively higher CrIS NH3 concentrations over the northern and southern parts 
of the SMA (“N.GY” and “S.GY” in Figure 1) and the short lifetime of ammonia reveal 
that there are likely substantial ammonia emissions from the regional livestock industry 

Figure 1. The average concentrations of CrIS surface level NH3 concentration data (unit: ppb) over
South Korea (2015–2017) (left) and the data over Seoul Metropolitan Area (SMA), which consists of
Seoul (denoted as “S”), Incheon (denoted as “IN”), the northern Gyeonggi area (denoted as “N.GY”),
and the southern Gyeonggi area (denoted as “S.GY”) are shown (right). The grid with less than
1.5 ppbv were masked out.

The relatively higher CrIS NH3 concentrations over the northern and southern parts
of the SMA (“N.GY” and “S.GY” in Figure 1) and the short lifetime of ammonia reveal
that there are likely substantial ammonia emissions from the regional livestock industry
(around 5000 tons per year; Pocheon in N.GY and Anseong and Icheon in S.GY; NIER,
2018b) (Figure 2) in these regions.
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Figure 2. Annual ammonia emissions at local administrative levels in 2015, based on national
emissions inventory (CAPSS, NIER, 2018).

Table 1 shows that the NH3 concentrations have the strongest correlation with PM2.5
(R = 0.51) compared to other major PM precursors such as NO2 or SO2 (at R = 0.16 and
0.14, respectively). The correlation between NH3 and PM2.5 over the SMA, a relatively
high-NOx chemical environment [6,9] (around 25 ppbv, Table 2), was higher than that of
all national-level observations (R = 0.31, not in the table). The correlation between NH3
and PM2.5 was particularly high (R = 0.72) in 2016, when the PM2.5 levels over SMA were
highest over the sample period. The correlation between NH3 and PM2.5 was stronger
than the correlation between NH3 and PM10, implying that local atmospheric ammonia
participated in secondary formation.

Table 1. Correlation coefficients between the annual means of PM10, PM2.5, NH3, NO2, CO, and SO2

as measured at the national stations and by CrIS retrievals (for NH3) over the Seoul Metropolitan
Area (SMA) between 2015 and 2017. The correlation coefficients in the parentheses indicate correla-
tions excluding Seoul and Incheon (“S” and “IN” in Figure 1), which have greater emissions from
transportation and industry. The horizontal scale was set at 15 km according to CrIS footprints.

PM10 PM2.5 NH3 NO2 SO2

PM10 1
PM2.5 0.66 (0.60) *** 1
NH3 0.32 (0.35) * 0.51 (0.59) *** 1
NO2 0.23 (0.011) 0.16 (0.09) −0.022 (0.20) 1
SO2 0.17 (0.29) 0.14 (0.17) −0.015 (0.14) 0.38 (0.33) ** 1

Note: *** (p < 0.000), ** (p < 0.001), * (p < 0.01).
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Table 2. Average concentrations of air pollutants including PM10, PM2.5, NH3, NO2, and SO2 in
Seoul Metropolitan Area (SMA), South Korea from 2015 to 2017.

Pollutants (Units) SMA

PM10 (µg/m3) 51 ± 4
PM2.5 (µg/m3) 26 ± 3

NH3 (ppb) 2.26 ± 0.7
NO2 (ppb) 25 ± 9
SO2 (ppb) 5 ± 1

Note: Average ± SD.

However, caution should be exercised when explaining the contribution of ammonia
to PM2.5 over the entire SMA, owing to the complexity of diverse emissions and the
atmospheric chemical environment, with emissions from transportation and industry over
the cities of Seoul and Incheon (“S” and “IN” in Figure 1). Furthermore, there are studies
demonstrating that the atmospheric conditions of Seoul have been ammonium-rich for two
decades now, contributing to the increase in NH3NO3 via homogenous and heterogeneous
reactions [14,35].

We calculated an additional correlation over the SMA excluding Seoul and Incheon;
NH3 concentrations produced an even stronger correlation with PM2.5 (R = 0.59, Table 1).
These results provide the clearest evidence yet of the contributions of rural livestock
ammonia emissions to PM2.5 formation in the vicinity of the SMA (i.e., “N.GY” and “S.GY”
in Figure 1), as this region includes cities such as Pochen, Anseong and Icheon, which are
home to large livestock operations [8].

Figure 3 shows the average concentrations of PM10, PM2.5, NO2, and NH3 over the
SMA from 2015 to 2017 at a 15 km horizontal resolution. The average NO2 concentrations
over the SMA are consistently higher than 20 ppbv, with the highest over central Seoul
(nearly 40 ppbv; Figure 4). The NO2 concentrations and the corresponding national NOx
emission amounts over the SMA are reportedly underestimated [9], implying that the
SMA is host to NOx-rich conditions. While the spatial distributions of PM10 and PM2.5 are
different from that of NO2, the PM distributions are more similar to those in the CrIS NH3
data (Figure 3). In particular, the northern and southern peaks of NH3 levels (“N.GY” and
“S.GY” in Figure 1) explain the higher PM2.5 and PM10 concentrations (Figure 3), which
strongly suggests that local ammonia emissions from the livestock industry could be a
limiting factor in controlling regional PM2.5 secondary formation.

PM concentrations over the SMA in Korea peak from December to March, when
the impact of the continental emissions is stronger, and gradually decrease from April to
September (Figure 5). On the other hand, the degree of secondary PM formation during
winter decreases until April but rebounds from April to July, as reflected in PM2.5/PM10
ratios (Figure 5). Ammonia concentrations in the SMA are higher between April and
June, and this seasonal peak of ammonia is likely associated with higher secondary PM2.5
formation in the SMA, which is supported by the highest correlation between PM2.5/PM10
and NH3 in May and June (R2 = 0.43, Figure 6), when the secondary formation of PM by
local ammonia emissions such as livestock waste is relatively important. This relationship
can be also explained by another study that found that the greater partitioning of nitrate
(NO3

−) with higher ammonia conditions (and a higher PH) during the warm/dry season
(typically May–June) in Korea can produce greater local PM2.5 formation [7].



Atmosphere 2022, 13, 1227 6 of 10Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 3. Average concentrations of PM10, PM2.5, NO2, and NH3 in the Seoul Metropolitan Area 
(SMA) from 2015 to 2017 (units: PM10 and PM2.5 (μg/m3); NO2 and NH3 (ppbv)). The colored area 
indicates an area where all the chemical species’ measurements are coincidently available. 

Figure 3. Average concentrations of PM10, PM2.5, NO2, and NH3 in the Seoul Metropolitan Area
(SMA) from 2015 to 2017 (units: PM10 and PM2.5 (µg/m3); NO2 and NH3 (ppbv)). The colored area
indicates an area where all the chemical species’ measurements are coincidently available.

Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. The contour plot of annual mean NO2 concentrations over South Korea made only from 
ground measurements in 2017 (adapted from NIER, 2018). The ground measurements of ammonia 
at Kangwha (denoted as the northernmost black star) and at Imsil (denoted as the southernmost 
black star) for validating the CrIS satellite retrievals are shown. 

PM concentrations over the SMA in Korea peak from December to March, when the 
impact of the continental emissions is stronger, and gradually decrease from April to Sep-
tember (Figure 5). On the other hand, the degree of secondary PM formation during win-
ter decreases until April but rebounds from April to July, as reflected in PM2.5/PM10 ratios 
(Figure 5). Ammonia concentrations in the SMA are higher between April and June, and 
this seasonal peak of ammonia is likely associated with higher secondary PM2.5 formation 
in the SMA, which is supported by the highest correlation between PM2.5/PM10 and NH3 
in May and June (R2 = 0.43, Figure 6), when the secondary formation of PM by local am-
monia emissions such as livestock waste is relatively important. This relationship can be 
also explained by another study that found that the greater partitioning of nitrate (NO3−) 
with higher ammonia conditions (and a higher PH) during the warm/dry season (typically 
May–June) in Korea can produce greater local PM2.5 formation [7]. 

Figure 4. The contour plot of annual mean NO2 concentrations over South Korea made only from
ground measurements in 2017 (adapted from NIER, 2018). The ground measurements of ammonia at
Kangwha (denoted as the northernmost black star) and at Imsil (denoted as the southernmost black
star) for validating the CrIS satellite retrievals are shown.
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Figure 6. Scatter plots representing the correlation between PM2.5/PM10 ratio and CrIS NH3 over the
SMA from May to June, when secondary PM formation was increasing. The data were prepared from
monthly means at a 15 km resolution (shown in Figure 3).

4. Discussion

We analyzed the multi-year relationship of particulate matter (PM) concentrations
with precursors such as NO2, SO2 and NH3 over the Seoul Metropolitan Area from 2015 to
2017. This study is unique in that we found measurement-based evidence of local limiting
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factors for regional PM formation using spatially dense measurements and satellite data
(CrIS surface NH3).

We found NH3 concentrations over the NOx-rich SMA to be most highly correlated
with PM2.5 (R = 0.51) compared to other precursors and PM10 (R = 0.32), indicating stronger
secondary formation of PM2.5, likely due to local ammonia emissions.

These correlation patterns were not repetitive when we applied all nationwide mea-
surements in South Korea (there were no higher correlations found), which implies that
the controlling species (e.g., NO2, SO2 and NH3) need to be identified for regional air
pollution policy. Doing so would require an assessment of the regional atmospheric chemi-
cal environment (e.g., NOx- or NH3-rich conditions) affected by local emissions and the
transboundary transport of pollutants.

Our results show that NH3 emissions are likely to be a local limiting factor in control-
ling PM2.5 pollution over the NOx-rich SMA. Another recent study with in situ measure-
ments in several parts of SMA also showed that ammonia could be a main controller of fine
particle formation [36]. This suggests that the current Korean policy for mitigating NOx
emissions from transportation, power plants and industry may not be as effective in some
regions (such as the suburbs of the SMA) without an active reduction in local ammonia
emissions, mostly from the livestock industry (and in particular from manure). One work
showed that a 50% reduction in NH3 emissions can contribute to a 25% reduction in PM2.5
concentrations in winter over Europe [37]. Additionally, unlike other precursors being
observed, the relative ammonium concentration has increased recently in Seoul (Han and
Kim, 2015). However, a chemical environment with diverse emissions sources (such as the
SMA) can be very complex [38]; Seo et al. [7] claimed that a NOx control strategy may be
more effective in Seoul considering synergistic nitrate partitioning to the particle phase by
wet particles depending on PH conditions. Therefore, more investigations are necessary
with measurements of the chemical species of PM2.5 to better understand regional NOx or
NH3 limiting conditions, which might vary seasonally. The other limitation of this study is
that the relatively low CrIS sensitivity near the surface does not represent direct surface
measurements, which implies more local validations of the satellite samples are necessary.

Korean policy for ammonia reduction is still being formulated, as there exist few
continuous NH3-monitoring sites and any reduction targets for NH3 emissions from the
livestock industry will require cooperation between the KMOE and the Ministry of Agri-
culture, Food and Rural Affairs (MAFRA) [39]. The Korean PM mitigation policy now
focuses more on regionally specific pollution controls, through the Basic Plan for Regional
Air Quality Management [40].

Korea has very diverse emissions sources in a relatively small spatial area, resulting
in numerous complex atmospheric regional chemical environments. Additional compre-
hensive measurements and analyses of air pollution (including chemically speciated PM
precursors) will prove helpful in understanding atmospheric chemical conditions and
prioritizing regional PM mitigation policies.
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