Radiological Atmospheric Risk Modelling of NORM Repositories in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Determination of Terrestrial Radionuclides’ Concentration
2.3. RESRAD-ONSITE
2.4. RESRAD-BIOTA
3. Results
RESRAD-BIOTA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and Effects of Ionizing Radiation; Report to the General Assembly; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Khandaker, M.U.; Jojo, P.J.; Abu Kassim, H. Determination of Primordial Radionuclides in Natural Samples Using HPGe Gamma-Ray Spectrometry. APCBEE Procedia 2012, 1, 187–192. [Google Scholar] [CrossRef]
- Dragović, S.; Janković, L.; Onjia, A.; Bačić, G. Distribution of primordial radionuclides in surface soils from Serbia and Montenegro. Radiat. Meas. 2006, 41, 611–616. [Google Scholar] [CrossRef]
- Lakshmi, K.; Selvasekarapandian, S.; Khanna, D.; Meenakshisundaram, V. Primordial radionuclides concentrations in the beach sands of East Coast region of Tamilnadu, India. Int. Congr. Ser. 2005, 1276, 323–324. [Google Scholar] [CrossRef]
- Sheppard, S.; Sheppard, M.; Ilin, M.; Tait, J.; Sanipelli, B. Primordial radionuclides in Canadian background sites: Secular equilibrium and isotopic differences. J. Environ. Radioact. 2008, 99, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Schroeyers, W.; Sas, Z.; Bátor, G.; Trevisi, R.; Nuccetelli, C.; Leonardi, F.; Schreurs, S.; Kovacs, T. The NORM4Building database, a tool for radiological assessment when using by-products in building materials. Constr. Build. Mater. 2018, 159, 755–767. [Google Scholar] [CrossRef]
- Imani, M.; Adelikhah, M.; Shahrokhi, A.; Azimpour, G.; Yadollahi, A.; Kocsis, E.; Toth-Bodrogi, E.; Kovács, T. Natural radioactivity and radiological risks of common building materials used in Semnan Province dwellings, Iran. Environ. Sci. Pollut. Res. 2021, 28, 41492–41503. [Google Scholar] [CrossRef]
- Liu, H.; Pan, Z.; Endo, A.; Sato, T. NORM situation in non-uranium mining in China. Ann. ICRP 2012, 41, 343–351. [Google Scholar] [CrossRef]
- Gyollai, I.; Polgári, M.P.; Biro, L.; Vigh, T.; Kovacs, T.; Pal-Molnar, E. Fossilized biomats as the possible source of high natural radionuclide content at the jurassic úrkút manganese ore deposit, Hungary. Carpathian J. Earth Environ. Sci. 2018, 13, 477–487. [Google Scholar] [CrossRef]
- Qaidi, S.; Tayeh, B.A.; Isleem, H.F.; de Azevedo, A.R.; Ahme, H.U.; Emad, W. Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: A review. Case Stud. Constr. Mater. 2022, 16, e00994. [Google Scholar] [CrossRef]
- Kovács, T.; Shahrokhi, A.; Sas, Z.; Vigh, T.; Somlai, J. Radon exhalation study of manganese clay residue and usability in brick production. J. Environ. Radioact. 2017, 168, 15–20. [Google Scholar] [CrossRef]
- Lai, Z.; Cen, K.; Zhou, H. Applicability of coal slag for application as packed bed thermal energy storage materials. Sol. Energy 2022, 236, 733–742. [Google Scholar] [CrossRef]
- Sahu, S.; Tiwari, M.; Bhangare, R.; Pandit, G. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. J. Environ. Radioact. 2014, 138, 421–426. [Google Scholar] [CrossRef]
- Zielinski, R.A.; Budahn, J.R. Radionuclides in fly ash and bottom ash: Improved characterization based on radiography and low energy gamma-ray spectrometry. Fuel 1998, 77, 259–267. [Google Scholar] [CrossRef]
- Flues, M.; Camargo, I.; Filho, P.F.; Silva, P.; Mazzilli, B. Evaluation of radionuclides concentration in Brazilian coals. Fuel 2007, 86, 807–812. [Google Scholar] [CrossRef]
- Álvarez, M.C.; Vivero, M.T.D. Natural radionuclide contents in Spanish coals of different rank. Fuel 1998, 77, 1427–1430. [Google Scholar] [CrossRef]
- Ozden, B.; Guler, E.; Vaasma, T.; Horvath, M.; Kiisk, M.; Kovacs, T. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. J. Environ. Radioact. 2018, 188, 100–107. [Google Scholar] [CrossRef]
- Khairul, M.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2018, 141, 483–498. [Google Scholar] [CrossRef]
- Li, W.-Y.; Zhang, Z.-Y.; Zhou, J.-B. Preparation of building materials from Bayer red mud with magnesium cement. Constr. Build. Mater. 2022, 323, 126507. [Google Scholar] [CrossRef]
- Ke, Y.; Liang, S.; Hou, H.; Hu, Y.; Li, X.; Chen, Y.; Li, X.; Cao, L.; Yuan, S.; Xiao, K.; et al. A zero-waste strategy to synthesize geopolymer from iron-recovered Bayer red mud combined with fly ash: Roles of Fe, Al and Si. Constr. Build. Mater. 2022, 322, 126176. [Google Scholar] [CrossRef]
- Siddique, S.; Leung, P.S.; Njuguna, J. Drilling oil-based mud waste as a resource for raw materials: A case study on clays reclamation and their application as fillers in polyamide 6 composites. Upstream Oil Gas Technol. 2021, 7, 100036. [Google Scholar] [CrossRef]
- Ettenhuber, E. Investigations and radiological assessments of mining residues in Germany. Int. Congr. Ser. 2002, 1225, 103–110. [Google Scholar] [CrossRef]
- Manjón, G.; Mantero, J.; Vioque, I.; Díaz-Francés, I.; Galván, J.A.; Chakiri, S.; Choukri, A.; García-Tenorio, R. Natural radionuclides (NORM) in a Moroccan river affected by former conventional metal mining activities. J. Sustain. Min. 2019, 18, 45–51. [Google Scholar] [CrossRef]
- Yu, C. Modeling Radionuclide Transport in the Environment and Assessing Risks to Humans, Flora, and Fauna: The RESRAD Family of Codes. ACS Symp. Ser. 2006, 945, 58–70. [Google Scholar] [CrossRef]
- Somlai, J.; Jobbágy, V.; Kovács, J.; Tarján, S.; Kovács, T. Radiological aspects of the usability of red mud as building material additive. J. Hazard. Mater. 2008, 150, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Jónás, J.; Somlai, J.; Tóth-Bodrogi, E.; Hegedűs, M.; Kovács, T. Study of a remediated coal ash depository from a radiological perspective. J. Environ. Radioact. 2017, 173, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Jónás, J.; Somlai, J.; Csordás, A.; Tóth-Bodrogi, E.; Kovács, T. Radiological survey of the covered and uncovered drilling mud depository. J. Environ. Radioact. 2018, 188, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhi, A.; Kovacs, T. Radiological survey on radon entry path in an underground mine and implementation of an optimized mitigation system. Environ. Sci. Eur. 2021, 33, 66. [Google Scholar] [CrossRef]
- Yu, C.; Zielen, A.J.; Cheng, J.J.; LePoire, D.J.; Gnanapragasam, E.; Kamboj, S.; Arnish, J.; Wallo, I.I.I.A.; Williams, W.A.; Peterson, H. User’s Manual for RESRAD Version 6; Environmental Assessment Division Argonne National Laboratory: Argonne, IL, USA, 2001.
- DOE-STD-1153-2019; A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota. EHSS—Office of Environment, Health, Safety and Security: Ithaca, NY, USA, 2019.
- DOE-STD-1153-2019; The US Department of Energy, DOE Standard: A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota. U.S. Department of Energy: Washington, DC, USA, 2019.
- DOE-STD-1121-2008; The US Department of Energy, DOE Standard: Internal Dosimetry. U.S. Department of Energy: Washington, DC, USA, 2008.
- Njinga, R.L.; Tshivhase, V.M. Use of RESRAD-Onsite 7.2 Code to Assess Environmental Risk around Tudor Shaft Mine Tailing Sites. Environ. Nat. Resour. Res. 2018, 8, 138–147. [Google Scholar] [CrossRef]
- Bello, S.; Garba, N.N.; Muhammad, B.G.; Simon, J. Application of RESRAD and ERICA tools to estimate dose and cancer risk for artisanal gold mining in Nigeria. J. Environ. Radioact. 2022, 251, 106932. [Google Scholar]
- Ujić, M.; Dragović, S. Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. J. Environ. Radioact. 2018, 188, 108–114. [Google Scholar]
Coal ash | Red Mud (Ajka) | Red Mud (Almásfüzitő) | Drilling Mud | Manganese Residue | |
---|---|---|---|---|---|
Area of contaminated zone [m2] | 10,000 | 300,000 | 1,720,000 | 17,000 | 18,100 |
Thickness of the contaminated zone [m] | 10 | 11 | 10 | 2 | 6 |
Cover depth | 0 | 0 | 0 | 0 | 0 |
Density of the contaminated zone [g/cm3] | 2.4 | 2.7 | 2.7 | 1.0 | 4.5 |
Wind speed [m/s] | 4.25 | 4.25 | 2.75 | 2.25 | 4.75 |
Precipitation rate | 0.725 | 0.725 | 0.575 | 0.775 | 0.725 |
Indoor time factor | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Outdoor time factor | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Investigated NORM | Ra-226 [Bq/kg] | Th-232 [Bq/kg] | K-40 [Bq/kg] |
---|---|---|---|
Coal ash (Ajka) | 1997 | 33 | 56 |
Red mud (Ajka) | 182 | 245 | 284 |
Red mud (Almásfüzitő) | 347 | 283 | 48 |
Drilling mud (Zalatárnok) | 31 | 35 | 502 |
Manganese residue (Úrkút) | 52 | 40 | 607 |
Investigated NORM Depository | Maximum Annual Dose [mSv/y] (Year of Observation) | Contribution of the Different Radionuclides [mSv/y] | ||
---|---|---|---|---|
Ra-226 | Th-232 | K-40 | ||
Ajka–coal ash | 12.38 (t = 100 year) | 12.03 | 0.30 | 0.05 |
Ajka–red mud | 4.25 (t = 156 year) | 1.13 | 2.32 | 0.80 |
Almásfüzitő–red mud | 5.18 (t = 156 year) | 2.18 | 2.70 | 0.30 |
Zalatárnok-drilling mud | 0.53 (t = 100 year) | 0.14 | 0.29 | 0.10 |
Úrkút-manganese residue | 1.71 (t = 156 year) | 0.32 | 0.37 | 1.02 |
Risk Parameter | Radionuclides | Coal Ash | Red Mud (Ajka) | Red Mud (Almásfüzitő) | Drilling Mud | Manganese Residue |
---|---|---|---|---|---|---|
Sum ratio factor | Ra-226 | 1.88 × 10−1 | 1.71 × 10−2 | 3.26 × 10−2 | 2.91 × 10−3 | 4.89 × 10−3 |
Th-232 | 3.77 × 10−5 | 2.80 × 10−4 | 3.23 × 10−4 | 4.00 × 10−5 | 4.57 × 10−5 | |
K-40 | 1.10 × 10−3 | 5.56 × 10−3 | 9.40 × 10−4 | 9.84 × 10−3 | 1.19 × 10−2 | |
BCG [Bq/kg] | Ra-226 | 1.06 × 104 | 1.06 × 104 | 1.06 × 104 | 1.06 × 104 | 1.06 × 104 |
Th-232 | 8.75 × 105 | 8.75 × 105 | 8.75 × 105 | 8.75 × 105 | 8.75 × 105 | |
K-40 | 5.10 × 104 | 5.10 × 104 | 5.10 × 104 | 5.10 × 104 | 5.10 × 104 | |
External dose [Gy/d] | Ra-226 | 7.67 × 10−5 | 6.98 × 10−6 | 1.33 × 10−5 | 1.19 × 10−6 | 1.99 × 10−6 |
Th-232 | 5.52 × 10−9 | 4.10 × 10−8 | 4.74 × 10−8 | 5.86 × 10−9 | 6.70 × 10−9 | |
K-40 | 5.22 × 10−7 | 2.65 × 10−6 | 4.45 × 10−7 | 4.68 × 10−6 | 5.66 × 10−6 | |
Internal dose [Gy/d] | Ra-226 | 1.80 × 10−3 | 1.64 × 10−4 | 3.13 × 10−4 | 2.79 × 10−5 | 4.69 × 10−5 |
Th-232 | 3.71 × 10−7 | 2.76 × 10−6 | 3.19 × 10−6 | 3.94 × 10−7 | 4.50 × 10−7 | |
K-40 | 1.04 × 10−5 | 5.30 × 10−5 | 8.96 × 10−6 | 9.37 × 10−5 | 1.13 × 10−4 | |
Total dose [Gy/d] | Ra-226 | 1.88 × 10−3 | 1.71 × 10−4 | 3.26 × 10−4 | 2.91 × 10−5 | 4.89 × 10−5 |
Th-232 | 3.77 × 10−7 | 2.80 × 10−6 | 3.23 × 10−6 | 4.00 × 10−7 | 4.57 × 10−7 | |
K-40 | 1.10 × 10−5 | 5.56 × 10−5 | 9.40 × 10−6 | 9.84 × 10−5 | 1.19 × 10−4 |
Risk Parameter | Radionuclides | Coal Ash | Red Mud (Ajka) | Red Mud (Almásfüzitő) | Drilling Mud | Manganese Residue |
---|---|---|---|---|---|---|
Sum ratio factor | Ra-226 | 7.91 × 10−1 | 7.20 × 10−2 | 1.37 × 10−1 | 1.23 × 10−2 | 2.06 × 10−2 |
Th-232 | 2.28 × 10−4 | 1.69 × 10−3 | 1.95 × 10−3 | 2.42 × 10−4 | 2.76 × 10−4 | |
K-40 | 4.41 × 10−3 | 2.24 × 10−2 | 3.78 × 10−3 | 3.96 × 10−2 | 4.78 × 10−2 | |
BCG [Bq/kg] | Ra-226 | 2.53 × 103 | 2.53 × 103 | 2.53 × 103 | 2.53 × 103 | 2.53 × 103 |
Th-232 | 1.45 × 105 | 1.45 × 105 | 1.45 × 105 | 1.45 × 105 | 1.45 × 105 | |
K-40 | 1.27 × 104 | 1.27 × 104 | 1.27 × 104 | 1.27 × 104 | 1.27 × 104 | |
External dose [Gy/d] | Ra-226 | 7.67 × 10−5 | 6.98 × 10−6 | 1.33 × 10−5 | 1.19 × 10−6 | 1.99 × 10−6 |
Th-232 | 5.52 × 10−9 | 4.10 × 10−8 | 4.74 × 10−8 | 5.86 × 10−9 | 6.70 × 10−9 | |
K-40 | 5.22 × 10−7 | 2.65 × 10−6 | 4.45 × 10−7 | 4.68 × 10−6 | 5.66 × 10−6 | |
Internal dose [Gy/d] | Ra-226 | 7.14 × 10−4 | 6.50 × 10−5 | 1.24 × 10−4 | 1.11 × 10−5 | 1.86 × 10−5 |
Th-232 | 2.22 × 10−7 | 1.65 × 10−6 | 1.91 × 10−6 | 2.36 × 10−7 | 2.70 × 10−7 | |
K-40 | 3.89 × 10−6 | 1.97 × 10−5 | 3.34 × 10−6 | 3.49 × 10−5 | 4.22 × 10−5 | |
Total dose [Gy/d] | Ra-226 | 7.91 × 10−4 | 7.20 × 10−5 | 1.37 × 10−4 | 1.23 × 10−5 | 2.06 × 10−5 |
Th-232 | 2.28 × 10−7 | 1.69 × 10−6 | 1.95 × 10−6 | 2.42 × 10−7 | 2.76 × 10−7 | |
K-40 | 4.41 × 10−6 | 2.24 × 10−5 | 3.78 × 10−6 | 3.96 × 10−5 | 4.78 × 10−5 |
Risk Parameter | Radionuclides | Coal Ash | Red Mud (Ajka) | Red Mud (Almásfüzitő) | Drilling Mud | Manganese Residue |
---|---|---|---|---|---|---|
Sum ratio factor | Ra-226 | 7.91 × 10−1 | 7.20 × 10−2 | 1.37 × 10−1 | 1.23 × 10−2 | 2.06 × 10−2 |
Th-232 | 2.49 × 10−4 | 1.85 × 10−3 | 2.13 × 10−3 | 2.64 × 10−4 | 3.02 × 10−4 | |
K-40 | 3.71 × 10−3 | 1.88 × 10−2 | 3.18 × 10−3 | 3.32 × 10−2 | 4.02 × 10−2 | |
BCG [Bq/kg] | Ra-226 | 2.53 × 103 | 2.53 × 103 | 2.53 × 103 | 2.53 × 103 | 2.53 × 103 |
Th-232 | 1.33 × 105 | 1.33 × 105 | 1.33 × 105 | 1.33 × 105 | 1.33 × 105 | |
K-40 | 1.51 × 104 | 1.51 × 104 | 1.51 × 104 | 1.51 × 104 | 1.51 × 104 | |
External dose [Gy/d] | Ra-226 | 7.67 × 10−5 | 6.98 × 10−6 | 1.33 × 10−5 | 1.19 × 10−6 | 1.99 × 10−6 |
Th-232 | 5.52 × 10−9 | 4.10 × 10−8 | 4.74 × 10−8 | 5.86 × 10−9 | 6.70 × 10−9 | |
K-40 | 5.22 × 10−7 | 2.65 × 10−6 | 4.45 × 10−7 | 4.68 × 10−6 | 5.66 × 10−6 | |
Internal dose [Gy/d] | Ra-226 | 7.14 × 10−4 | 6.50 × 10−5 | 1.24 × 10−4 | 1.11 × 10−5 | 1.86 × 10−5 |
Th-232 | 2.43 × 10−7 | 1.81 × 10−6 | 2.09 × 10−6 | 2.58 × 10−7 | 2.95 × 10−7 | |
K-40 | 3.18 × 10−6 | 1.61 × 10−5 | 2.73 × 10−6 | 2.85 × 10−5 | 3.45 × 10−5 | |
Total dose [Gy/d] | Ra-226 | 7.91 × 10−4 | 7.20 × 10−5 | 1.37 × 10−4 | 1.23 × 10−5 | 2.06 × 10−5 |
Th-232 | 2.49 × 10−7 | 1.81 × 10−6 | 2.13 × 10−6 | 2.64 × 10−7 | 3.02 × 10−7 | |
K-40 | 3.71 × 10−6 | 1.61 × 10−5 | 3.18 × 10−6 | 3.32 × 10−5 | 4.02 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csordás, A.; Shahrokhi, A.; Tóth, G.; Kovács, T. Radiological Atmospheric Risk Modelling of NORM Repositories in Hungary. Atmosphere 2022, 13, 1305. https://doi.org/10.3390/atmos13081305
Csordás A, Shahrokhi A, Tóth G, Kovács T. Radiological Atmospheric Risk Modelling of NORM Repositories in Hungary. Atmosphere. 2022; 13(8):1305. https://doi.org/10.3390/atmos13081305
Chicago/Turabian StyleCsordás, Anita, Amin Shahrokhi, Gergely Tóth, and Tibor Kovács. 2022. "Radiological Atmospheric Risk Modelling of NORM Repositories in Hungary" Atmosphere 13, no. 8: 1305. https://doi.org/10.3390/atmos13081305
APA StyleCsordás, A., Shahrokhi, A., Tóth, G., & Kovács, T. (2022). Radiological Atmospheric Risk Modelling of NORM Repositories in Hungary. Atmosphere, 13(8), 1305. https://doi.org/10.3390/atmos13081305