Climatology of Different Classifications of Tropical Cyclones Landfalling in Guangdong Province of China during 1951–2020
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Statistical Characteristics
3.1. The Average State of TCs Making Landfall in Guangdong Province
3.2. Time Series of the Annual Frequency
3.3. Seasonal Distribution
3.4. TC Tracks and Landfall Distributions
3.5. Duration of TCs Generated over the WNP and the SCS
4. Composite TC Structure
4.1. SLP and Precipitation
4.2. Vertical Velocity
4.3. Moisture Flux
4.4. Warm Core
4.5. Vertical Wind Shear
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- RefePielke, R.A., Jr.; Landsea, C.W. Normalized hurricane damages in the United States: 1925–1995. Weather Forecast. 1998, 13, 621–631. [Google Scholar]
- Zhang, Q.; Wu, L.G.; Liu, Q.F. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteor. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef]
- Peduzzi, P.B.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Change 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Pielke, R.A., Jr.; Gratz, J.; Landsea, C.W.; Collins, D.; Saunders, M.A.; Musulin, R. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 2008, 9, 29–42. [Google Scholar] [CrossRef]
- Xiao, F.; Xiao, Z. Characteristics of tropical cyclones in China and their impacts analysis. Nat. Hazards 2010, 54, 827–837. [Google Scholar]
- Liu, K.S.; Chan, J.C.L. Recent increase in extreme intensity of tropical cyclones making landfall in South China. Clim. Dyn. 2020, 55, 1059–1074. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.-C. Current understanding of tropical cyclone structure and intensity changes-A review. Meteorol. Atmos. Phys. 2004, 87, 257–278. [Google Scholar] [CrossRef]
- Wu, L.G.; Zhao, H.K.; Wang, C.; Cao, J.; Liang, J. Understanding of the effect of climate change on tropical cyclone intensity: A re. Adv. Atmos. Sci. 2022, 39, 205–221. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K. Paradigms for tropical cyclone intensification. Trop. Cyclone Res. Rep. 2013, 2, 1–31. [Google Scholar] [CrossRef]
- Emanuel, K. 100 years of progress in tropical cyclone research. Meteor. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Holland, G.J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 1997, 54, 2519–2541. [Google Scholar] [CrossRef]
- Durden, S.L. Observed tropical cyclone eye thermal anomaly profiles extending above 300 hpa. Mon. Weather Rev. 2013, 141, 4256–4268. [Google Scholar] [CrossRef]
- Malkus, J.S.; Riehl, H. On the dynamics and energy transformations in steady state hurricanes. Tellus 1960, 12, 1–20. [Google Scholar] [CrossRef]
- Jiang, H.; Zipser, E.J. Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Clim. 2010, 23, 1526–1543. [Google Scholar] [CrossRef]
- Ying, M.; Knutson, T.R.; Lee, T.-C.; Kamahori, H. The Second Assessment Report on the Influence of Climate Change on Tropical Cyclones in the Typhoon Committee Region; TC/TD-No.0004; ESCAP/WMO Typhoon Committee: Manila, Philippines, 2012. [Google Scholar]
- Lee, C.Y.; Camargo, S.J.; Sobel, A.H.; Tippett, M.K. Statistical–dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios. Climate 2020, 33, 4815–4834. [Google Scholar] [CrossRef]
- Lee, T.C.; Knutson, T.R.; Nakaegawa, T.; Ying, M.; Cha, E.J. Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region-Part I: Observed changes, detection and attribution. Trop. Cyclone Res. Rev. 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wu, L.G.; Zhang, Q. Tropical cyclone damages in China under the background of global warming. J. Trop. Meteor. 2011, 27, 442–454. [Google Scholar]
- Wang, Y.M.; Ren, F.M.; Li, W.J.; Wang, X.L. Climatic characteristics of typhoon precipitation over China. J. Trop. Meteor. 2008, 24, 233–238. [Google Scholar]
- Wu, Y.; Gao, Y.D.; Chen, D.; Wei, M.; Liang, L.; Wen, L. Synoptic characteristics related to warm-sector torrential rainfall events in South China during the annually first rainy season. J. Trop. Meteor. 2020, 26, 253–260. [Google Scholar]
- Li, C.; Zhou, W. Change in destructiveness of landfalling tropical cyclones over China in recent decades. J. Clim. 2017, 30, 3367–3379. [Google Scholar] [CrossRef]
- Zhou, M.; Kuang, Y.; Ruan, Z.; Xie, M. Geospatial modeling of the tropical cyclone risk in the Guangdong Province, China. Geomat. Nat. Haz. Risk. 2021, 12, 2931–2955. [Google Scholar]
- Hu, Y.; Song, L.; Liu, A. The comparison of climatic characters for tropical cyclone landfall over the different regions in China. Atmos. Sci. Res. Appl. 2008, 1, 1–8. (In Chinese) [Google Scholar]
- World Meteorological Organization (WMO). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); WHO: Geneva, Switzerland, 2021; pp. 62–65. [Google Scholar]
- Hu, Y.M.; Chen, Y.Z.; He, J.; Liu, S.J.; Yan, W.J.; Liang, Z.; Ming, W.; Zhi, L.; Juan, W.; Shao, D.; et al. Annual Frequency of Tropical Cyclones Directly Affecting Guangdong Province: Prediction Based on LSTM-FC. J. Trop. Meteor. 2022, 28, 45–56. [Google Scholar]
- Wen, G.H.; Liu, C.X.; Bi, X.Y.; Huang, H.J. A composite study of rainfall asymmetry of tropical cyclones after making landfall in Guangdong Province. J. Trop. Meteor. 2017, 23, 417–425. [Google Scholar]
- Chen, S.S.; Knaff, J.A.; Marks, F.D., Jr. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Weather Rev. 2006, 134, 3190–3208. [Google Scholar] [CrossRef]
- Wingo, M.T.; Cecil, D.J. Effects of vertical wind shear on tropical cyclone precipitation. Mon. Weather Rev. 2010, 138, 645–662. [Google Scholar]
- Wang, Y.J.; Yin, Y.Z.; Song, L.C. Characteristics and Diagnosis of the Landfalling Tropical Cyclones in the Guangdong-Hong Kong-Macao Greater Bay Area of China during 1981–2018. J. Trop. Meteor. 2021, 27, 246–258. [Google Scholar]
- Yu, Z.; Wang, Y.; Xu, H. Observed rainfall asymmetry in tropical cyclones making landfall over China. J. Appl. Meteorol. Clim. 2015, 54, 117–136. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Lu, X.Q.; Yu, H.; Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.N.; Wan, R.J. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Blackman, R.B.; Tukey, J.W. The measurement of power spectra from the point of view of communications engineering. Bell Syst. Tech. J. 1958, 37, 185–282. [Google Scholar] [CrossRef]
- Blackman, R.B.; Tukey, J.W. The measurement of power spectra from the point of view of communications engineering—Part II. Bell Syst. Tech. J. 2013, 37, 571–575. [Google Scholar] [CrossRef]
- Jenkins, G.M. General considerations in the analysis of spectra. Technometrics 1961, 3, 133–166. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to Wavelet analysis. Bull. Am. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
- Chia, H.H.; Ropelewski, C.F. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Clim. 2002, 15, 2934–2944. [Google Scholar] [CrossRef]
- Wang, B.; Chan, J.C.L. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 2002, 15, 1643–1658. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J. Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci. 2005, 62, 3396–3407. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, M.; Zhang, M. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun. 2015, 6, 6591. [Google Scholar] [CrossRef]
- Tu, S.; Xu, J.; Chan, J.C.; Huang, K.; Xu, F.; Chiu, L.S. Recent global decrease in the inner-core rain rate of tropical cyclones. Nat. Commun. 2021, 12, 1948. [Google Scholar] [CrossRef] [PubMed]
- Rozoff, C.M.; Schubert, W.H.; McNoldy, B.D.; Kossin, J.P. Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci. 2006, 63, 325–340. [Google Scholar] [CrossRef]
- Wissmeier, U.; Smith, R.K. Tropical-cyclone convection: The effects of ambient vertical vorticity. Quart. J. R. Meteor. Soc. 2011, 137, 845–857. [Google Scholar] [CrossRef]
- Kilroy, G.; Smith, R.K. A numerical study of rotating convection during tropical cyclogenesis. Quart. J. R. Meteor. Soc. 2013, 139, 1255–1269. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H. A 13-year global climatology of tropical cyclone warm-core structures from AIRS data. Mon. Weather Rev. 2019, 147, 773–790. [Google Scholar] [CrossRef]
- Frank, W.M.; Ritchie, E.A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Weather Rev. 2001, 129, 2249–2269. [Google Scholar] [CrossRef]
- Wong, M.L.M.; Chan, J.C.L. Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci. 2004, 61, 1859–1876. [Google Scholar] [CrossRef]
- Tang, B.; Emanuel, K. Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci. 2010, 67, 1817–1830. [Google Scholar] [CrossRef]
- Corbosiero, K.L.; Molinari, J. The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci. 2003, 60, 366–376. [Google Scholar] [CrossRef]
- Xu, W.X.; Jiang, H.Y.; Kang, X.B. Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in south China and southeast United States. Atmos. Res. 2014, 139, 18–26. [Google Scholar] [CrossRef]
- Shan, K.; Yu, X. Variability of tropical cyclone landfalls in China. J. Clim. 2021, 34, 9235–9247. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, S.; Walsh, K.J.E. Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Clim. Chang. 2018, 8, 730–736. [Google Scholar] [CrossRef]
Categories | Total TCs | Average Landfall Intensity (m·s−1) | Maximum Lifetime Intensity (m·s−1) | Lifetime Duration (h) | On-Land Duration (h) |
---|---|---|---|---|---|
Total TCs | 234 | 22 | 35 | 170 | 29 |
TDs | 46 | 13 | 22 | 125 | 29 |
TSs | 52 | 18 | 32 | 160 | 30 |
STSs | 72 | 25 | 37 | 170 | 29 |
TYs | 64 | 33 | 50 | 200 | 27 |
Generated Area | Total TCs | TDs | TSs | STSs | ≥TYs | |
---|---|---|---|---|---|---|
WNP | Lifetime duration (h) | 181 | 139 | 174 | 180 | 205 |
On-land duration (h) | 26 | 26 | 27 | 26 | 26 | |
SCS | Lifetime duration (h) | 129 | 106 | 123 | 139 | 143 |
On-land duration (h) | 36 | 32 | 40 | 41 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zheng, Y.; Liu, C.; Huang, Z.; Weng, H.; Xu, J.; Tu, S. Climatology of Different Classifications of Tropical Cyclones Landfalling in Guangdong Province of China during 1951–2020. Atmosphere 2022, 13, 1306. https://doi.org/10.3390/atmos13081306
Zhang S, Zheng Y, Liu C, Huang Z, Weng H, Xu J, Tu S. Climatology of Different Classifications of Tropical Cyclones Landfalling in Guangdong Province of China during 1951–2020. Atmosphere. 2022; 13(8):1306. https://doi.org/10.3390/atmos13081306
Chicago/Turabian StyleZhang, Shuqin, Yanzhu Zheng, Chunlei Liu, Zhefan Huang, Hanwei Weng, Jianjun Xu, and Shifei Tu. 2022. "Climatology of Different Classifications of Tropical Cyclones Landfalling in Guangdong Province of China during 1951–2020" Atmosphere 13, no. 8: 1306. https://doi.org/10.3390/atmos13081306
APA StyleZhang, S., Zheng, Y., Liu, C., Huang, Z., Weng, H., Xu, J., & Tu, S. (2022). Climatology of Different Classifications of Tropical Cyclones Landfalling in Guangdong Province of China during 1951–2020. Atmosphere, 13(8), 1306. https://doi.org/10.3390/atmos13081306