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Abstract: The weighted mean temperature (Tm) is a vital parameter for converting zenith wet delay
(ZWD) into precipitation water vapor (PWV) and plays an essential part in the Global Navigation
Satellite System (GNSS) inversion of PWV. To address the inability of current mainstream models
to fit the nonlinear relationship between Tm and meteorological and spatiotemporal factors, whose
accuracy is limited, a weighted mean temperature model using the random forest (named RFTm) was
proposed to enhance the accuracy of the Tm predictions in mainland China. The validation with the
Tm from 84 radiosonde stations in 2018 showed that the root mean square (RMS) of the RFTm model
was reduced by 38.8%, 44.7%, and 35.5% relative to the widely used Global Pressure and Temperature
3 (GPT3) with 1◦ × 1◦/5◦ × 5◦ versions and Bevis, respectively. The Bias and RMS of the new model
in different latitude bands, various height intervals, and different times were significantly better than
those of the other three comparative models. The accuracy of the new model presented a more stable
adaptability. Therefore, this study provides a new idea for estimating Tm and can provide a more
accurate Tm for GNSS meteorology.

Keywords: weighted mean temperature; random forest; bevis model; GPT3 model; China

1. Introduction

The technique for sensing water vapor with the Global Navigation Satellite System
(GNSS) benefits from its high spatial and temporal resolution, low cost, high precision, and
all-weather functionality. Thus, they have become an essential observation method for
modern meteorology [1–4]. We transformed the GNSS zenith wet delay (ZWD) into PWV
using the weighted mean temperature (Tm) [5–7]. The accuracy of the Tm directly affects
the accuracy of the GNSS inversion PWV, whereby modern meteorology must enhance the
accuracy of the Tm.

Tm is the result of the continuous integration of temperature and water vapor pressure
in the atmosphere from the surface to the tropospheric altitude [8]. Temperature and water
vapor pressure can be obtained from radiosonde stations or atmospheric reanalysis data.
However, it is difficult for users to obtain temperature and water vapor pressure informa-
tion at any location in real time due to the limited spatiotemporal resolution and delay
updating in radiosonde data and atmospheric reanalysis data. Therefore, an appropriate
empirical model of the Tm is usually required. Existing Tm models can be classified into
two categories according to whether or not the operation relies on in situ meteorological
parameters. Bevis et al. proposed and developed a one-dimensional linear globalization
model of the Tm and in situ surface temperature (Ts) [9]. Although it presents good adapt-
ability globally, it is used to calculate Tm in local areas and presents large errors [10,11].
Subsequently, studies based on the Bevis model showed that the Tm is not only related to
the region but also to meteorological parameters, such as surface pressure (Ps) and surface
water vapor pressure (es) [12–14]. To further refine the Tm model, many scholars have
clarified its coefficients based on Ts, Ps, and es for different regions [14–16]. These models
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are established based on the linear relationship between Tm and meteorological factors;
therefore, it is difficult to fit the nonlinear relationship between Tm and meteorological
factors. Another type of Tm model is based on the periodical variation parameters of Tm
and takes into account geographical variations. These models are operated only by the
station’s coordinates and time information, such as the global weighted mean temperature
(GWMT) model [17], global weighted mean temperature-diurnal (GWMT-D) model [18],
global tropospheric (GTrop) model [19], GTm_R model [20], and Global Pressure and Tem-
perature (GPT) series Models [21–23]. Although Böhm et al. [22] and Landskron et al. [23]
proposed GPT2w and GPT3 models, the limitation of the GPT series models lies in the fact
that the height correction of Tm was not taken into consideration [24]. Yang et al. [25] used
the Tm lapse rate for vertical adjustment and extended the GPT2w model to a new one
called the GPT2wh model, with approximately an 8% improvement over the RMS of the
GPT2w model. Although these models are convenient, they only model the average annual,
semi-annual, and daily variations of Tm in different regions, failing to fit the nonlinear
relationship between Tm and spatiotemporal factors. Their accuracy is slightly lower than
that of models that rely on in situ meteorological parameters.

In summary, most Tm models have been established based on linear models that fit the
relationship between the Tm and meteorological or spatio-temporal factors [9,13]. Therefore,
the nonlinear relationship between the Tm and meteorological factors is difficult to deter-
mine [26] and the complex spatial and temporal variability characteristics of the Tm have
not been clarified [19]. Therefore, the accuracy of the current models is limited [27]. Many
studies have proved [28–30] that machine learning methods have excellent advantages in
solving nonlinear problems. Ding et al. [31] used a multilayer feedforward neural network
to establish a Tm model, which improved the accuracy of calculating Tm. The RMS of
this Tm model is 3.3 K on a global scale. Long et al. [32] employed an integrated learning
approach to enhance the generalization performance of the Tm model based on a BP neural
network, and the resultant accuracy was significantly improved. Moreover, Yang et al. [33]
developed a new Tm model using sparse kernel learning, which can provide Tm with higher
accuracy and spatiotemporal resolution. Although the Tm model based on the above neural
network achieved better results, the aforementioned algorithm may have been deserved
in the overfitting state. The random forest (RF) is a machine-learning algorithm that can
perform both classification and regression. The algorithm can handle nonlinear problems
well and cannot easily fall into an overfitting state. The study used RF to fit the nonlinear
relationship between Tm and meteorological and spatiotemporal factors. This relationship
is more complicated than the seasonal pattern of Tm variations and the linear relationships
between Tm and meteorological/spatiotemporal factors. Finally, a more accurate Tm model
was proposed in mainland China, which has a massive BeiDou/GNSS user market, to
contribute by providing a precise Tm estimation to BeiDou/GNSS meteorology. Therefore,
we introduced RF to construct a Tm model (RFTm) for China in this paper using radiosonde
data from 84 stations recorded from 2015–2017. The model used GPT3-Tm, surface water
vapor pressure, surface temperature, height, latitude, and time as the input and Tm values
as the output. We tested the accuracy of the RFTm model utilizing Tm data from radiosonde
stations collected in 2018 as a reference.

2. Study Area and Data
2.1. Experimental Area

The experimental area in this study is mainland China, which is located in China
in the range of 16◦ N–56◦ N and 72◦ E–132◦ E. Figure 1 shows the topography of the
experimental area, which indicates that the eastern area has low topography, while the
western region has high topography. There are approximately 33% plains and basins in
the land area, while mountains, hills, and plateaus are approximately 67%. Moreover, the
Qinghai-Tibet Plateau is located in southwestern China. The study area straddles the low-
and mid-latitudinal zones. Therefore, the large topographic relief and diverse climate types
have resulted in more complex Tm variations, which are challenging to model accurately.
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In addition, this area has a significantly larger BeiDou/GNSS market. As expected, this
market has been going more and more massive since the completion of the Chinese BeiDou
navigation network. Therefore, proposing an accurate Tm model in this area can contribute
significantly to BeiDou/GNSS meteorology.
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2.2. Experimental Data

Radiosonde instruments were collected using radiosonde balloons. The Radiosonde
data contained actual measured meteorological information on the relative humidity,
temperature, and pressure from the surface to high altitudes, with a time resolution of
12 h. These parameters are used to calculate Tm, which is accurate and usually used as
a reference for testing other observations and models [34–36]. Therefore, this study used
radiosonde data from 84 stations in mainland China from 2015–2018 downloaded free from
the Integrated University of Wyoming (http://weather.uwyo.edu/upperair/sounding.
html, accessed on 1 March 2021), which contained meteorological data related to pressure,
temperature, dew point temperature, and relative humidity at 12 h intervals. These data
are used to compute Tm solve the following equation:

Tm =

∫ e
T dz∫ e
T2 dz

(1)

where e is the water vapor pressure (hPa) and T is the absolute temperature (K). In practice,
because the radiosonde data only contain the pressure level water vapor pressure and
temperature, Equation (1) is usually discretized as Equation (2) to calculate Tm.

Tm =

i=n−1
∑

i=0

ei
Ti
(hi+1 − hi)

i=n−1
∑

i=0

ei

T2
i
(hi+1 − hi)

(2)

ei =
1
2
× (ei+1+ei) (3)

Ti =
1
2
× (Ti+1 + Ti) (4)

where ei and Ti are the water vapor pressure and absolute temperature of the ith layer,
respectively, and ei and Ti are the water vapor pressure and mean absolute temperature

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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from layer i to layer i+1, respectively. Radiosonde data do not directly provide water vapor
pressure information but relative humidity (RH) and absolute temperature data. Therefore,
we calculated the e indirectly from the dew point temperature Td (◦C) and es (hPa), which
is expressed as follows:

e =
RH × es

100
(5)

es = 6.112 × 10
7.5×Td

Td+273.3 (6)

Td = T − 273.15 (7)

2.3. Tm Empirical Model

As described in Section 1, Tm can be obtained by integration, which has high accuracy
but does not allow the user to obtain the Tm value at any position in real time. Therefore,
many authors have developed empirical Tm models that consider different factors to achieve
real-time conversion from GNSS-ZWD to PWV [22,26,37]. A large part of the Tm model can
be represented by Equation (8).

Tm = T1(Ts, es, H, B) + T2(doya, doys, doyd) (8)

where Ts, es, H, and B correspond to the surface temperature (K), surface water vapor pres-
sure (hPa), height (m), and latitude (◦), respectively, and doya, doys, and doyd correspond
to the annual, semi-annual, and daily components of the Tm, respectively. In addition,
T1(Ts, es, H, B) and T2(doya, doys, doyd) can be denoted as follows:

T1(Ts, es, H, B) =


a1 × Ts + a2

a1 × Ts + a2 × ea3
s + a4

a1 × Ts + a2 × ea3
s + a4 × H + a5

a1 × Ts + a2 × ea3
s + a4 × H + a5 × B + a6

 (9)

T2(doya, doys, doyd) =


a7 × cos( doy

365.25 × 2π) + a8 × sin( doy
365.25 × 2π) + a9

a7 × cos( doy
365.25 × 4π) + a8 × sin( doy

365.25 × 4π) + a9
a7 × cos( hod

24 ∗ 2π) + a8 × sin( hod
24 ∗ 2π) + a9

 (10)

where a1, a2, a3, a4, a5, a6, a7, a8, and a9 are all unknown coefficients to be determined by
the equation.

3. Methods
3.1. GPT3 Model

The GPT3 model is the latest generation of the GPT model [23], which provides
empirical Tm values. The GPT3 was established using the 10 years (2001–2010) of monthly
mean profiles from the ERA-Interim (37 levels). The topographic model employed by
GPT3 is ETOPO5. The accuracy of the GPT3 model reaches 4.2K [31] for estimating Tm
globally, and is a widely used model [25,31]. We used the new version of the GPT3
model, whose MATLAB codes and the needed text files can be downloaded from https:
//vmf.geo.tuwien.ac.at/ accessed on 1 July 2022. When using the GPT3 model to estimate
Tm at any station, the model first finds the four grid nodes closest to the test station and
calculates the Tm at the four grid nodes. It then interpolates the Tm to the station location
through bilinear interpolation. The GPT3 model uses the ellipsoidal height system, while
the radiosonde data uses the geopotential height system. It is necessary to convert the
geopotential height of radiosonde data to an ellipsoidal height system. We employed
the Earth Gravity Model 2008 (EGM 2008) model to realize the unification of the height
system [38]. The variation characteristics of meteorological parameters over time for the
GPT3 model are characterized by Equation (11). The spatial resolution of the meteorological

https://vmf.geo.tuwien.ac.at/
https://vmf.geo.tuwien.ac.at/
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parameters obtained using the GPT3 model was classified into 5◦ × 5◦, and 1◦ × 1◦,
according to the grid size.

r(t) = A0 + A1cos( doy
365.25 2π) + B1sin( doy

365.25 2π)

+A2cos( doy
365.25 4π) + B2sin( doy

365.25 4π)
(11)

where r(t) indicates Tm, doy indicates the annual accumulation days, A0 indicates the
annual average, A1 and B1 are the annual cycle coefficients, and A2 and B2 are the semi-
annual cycle coefficients.

3.2. Modeling with the Random Forest Regression Algorithm Model

The random forest (RF) model was first proposed as a machine learning algorithm by
Leo Breiman and Adele Cutler in 2001 [39]. RF is a machine-learning algorithm that can
map the nonlinear relationship between diffident variables with good interpretability and
good prediction ability. It solves classification or regression problems by building a large
number of unpruned regression trees based on classification or regression algorithms.

In this study, we mainly used the RF regression algorithm, which uses the bootstrap
aggregation method to randomly draw multiple samples from the original data to build a
regression tree, and it finally takes the average of all regression trees as the final prediction
result. During the construction of the regression tree, the split point of the regression tree
was determined by minimizing the regression error, where the regression error was the
weighted sum of the regression errors of each subset, as shown in Equations (12) and (13).

K =
ML
M

∗ K(BL) +
MR
M

∗ K(BR) (12)

M(B) =

M
∑

i=1
(yi − y)2

M
(13)

where K(B) is the regression error, K(BL) and K(BR) denote the regression error of the left
and right subsets, respectively, and ML, MR and M is the number of left subsets, right
subsets, and total samples.

The RFTm model was used, as shown in Figure 2. We found from the correlation
analysis in Section 3.4 that surface temperature, surface water vapor pressure, height, and
latitude were the critical factors affecting the accuracy of Tm. Therefore, we used Ts, es,
latitude (B), height (H), and GPT3-Tm of 84 radiosonde stations from 2015–2017 as the
input values of the RFTm model. It is well known that Tm has seasonal variations, so time
was also employed in the input value. Note that the “Time” in Figure 2 denotes the day
of the year plus the hour of the day divided by 24. Then, the Tm at the location of the
radiosonde stations was obtained by integration as the output values of the RFTm model,
and trained to obtain the RFTm model.

3.3. Model Evaluation Index

To test the accuracy of the RFTm model established in this study, we used the Tm of
84 radiosonde stations of the China region in 2018 as the reference values, and the mean
bias (Bias) and root mean square (RMS) as the accuracy indicators. Bias and RMS were
calculated as follows:

Bias =
1
N

×
N

∑
t=1

(Xt − Pt) (14)

RMS =

√√√√ 1
N

×
N

∑
t=1

(Xt − Pt)

2

(15)

where N denotes the number of predicted samples and Xt and Pt are the true value of the
Tm and the predicted value of the model, respectively.
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3.4. RFTm Model Establishment

Two important parameters are included in the random forest: the number of single
regression tree features and the number of regression trees constructed. To select tree
features, we employed the Pearson correlation coefficient [40] of Equation (16) for the
correlation analysis of the Tm with other parameters, such as Ts, es, height, and latitude.

R =

n
∑

i=1
(Xi − X)× (Yi − Y)√

n
∑

i=1
(Xi − X)

2 ×
√

n
∑

i=1
(Yi − Y)2

(16)

where n denotes the number of samples, and X and Y represent two different variables.
The correlation analysis results are presented in Figure 3. Note that the correlation fol-

lows the criteria: r ≥ 0.81–1.0 excellent, 0.61–0.80 very good, 0.41–0.60 good, 0.21–0.40 fair,
and 0.0–0.20 poor. Figure 3a,b shows that the correlation coefficients of the Tm with Ts and
ln(es) in mainland China are 0.92 and 0.91, respectively, indicating an excellent correlation.
Figure 3c,d shows that the correlation coefficients of height and latitude with Tm are 0.38
and 0.45, signifying a fair and good correlation, respectively. In terms of the degree of
correlation, Ts, es, height, and latitude were chosen as tree features for Tm modelling.

We found that Ts and ln(es) show an excellent linear correlation with Tm, while the
Pearson linear correlation between Tm and height and Tm and latitude were fair and
good. Moreover, Sun et al. [27] revealed that the input of empirical values could improve
the accuracy of machine learning models. The surface temperature, surface water vapor
pressure, time, height, latitude, and GPT3-Tm provided by the radiosonde station were
used as features of the single regression tree. After determining the single regression tree
features, we used the different features selected as the input values and the radiosonde
station Tm as the output values to train a new Tm model (RFTm).
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The fitting accuracy of the RFTm model was affected by the number of regression trees.
The metric for selecting the number of regressions in this paper was the minimum RMS for
out-of-bag observations in the training data using the trained bagger B. Therefore, a step
of five was used to set the number of regression trees as 5–150 to train the RFTm, and then
the RMS for out-of-bag observations in the training data was statistically calculated. The
statistical results are shown in Figure 4, which indicates that the RMS continues to decrease
as the number of regression trees increases. When the number of regression trees reaches
approximately 100, the RMS stabilizes at around 2.6 K. After the number of regression trees
exceeded 100, the RMS remained almost unchanged. Therefore, we selected 100 regression
trees to build the final model (RFTm).
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4. Results and Analysis
4.1. Global Accuracies

To comprehensively evaluate the applicability of the RFTm model, we used the 2018
radiosonde Tm not involved in the modeling as the reference and statistically analyzed the
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Bias and RMS of the RFTm, Bevis, GPT3-1 (1◦ × 1◦), and GPT3-5 models (5◦ × 5◦). The
statistical results are shown in Table 1.

Table 1. Overall accuracy of the different models in 2018.

Model/Accuracy Bevis RFTm GPT3-1 GPT3-5

RMS
Max 7.32 4.08 7.30 7.97
Min 2.32 1.68 2.31 2.70
Ave 4.45 2.87 4.69 5.17

Bias
Max 6.45 0.80 2.20 2.52
Min −2.96 −0.54 −6.76 −7.21
Ave 1.12 0.13 −1.22 −1.55

Table 1 shows that compared with the Bevis, GPT3-1, and GPT3-5 models, the max-
imum, minimum, and average of Bias and RMS of the RFTm were greatly smaller and
reached 0.13 K and 2.87 K, respectively. The RMS of the RFTm was reduced by 35.5%, 38.8%,
and 44.7% compared with that of the Bevis, GPT3-1, and GPT3-5 models, respectively.
These results indicate that the overall accuracy of the RFTm was better than that of the
Bevis and GPT3 models in mainland China. The RMS of the maximum, minimum, and
average of the Bevis and GPT3 models were similar, although the maximum and minimum
Bias values of the Bevis, GPT3-1, and GPT3-5 models differed significantly, with annual
average values of 1.12, -1.22 K, and -1.55 K, respectively. Moreover, the overall accuracy of
the GPT3-1/5 models and the Bevis models was not very different.

Because China has a large area, the adaptability of the model has to be analyzed
in different regions of China. The Bias and RMS were calculated for different models at
84 stations, and the results are shown in Figures 5 and 6.
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Figure 5a,b shows that the Bias of the GPT3-1 and GPT3-5 models was distributed
between −4 K and 0 K in mainland China, and the absolute value of the Bias was greater
than 4 K in the western region of China, which may be attributed to the higher terrain in
the western region. As shown in Figure 5c, the distribution of Bias for the Bevis model in
the southern region of China was between −4 K and 0 K, while that in the northern region
of China was between 0 K and 7 K. These discrepancies are likely due to the more drastic
variation in the Tm in the middle and high latitudes [19]. More interestingly, contrary to
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Bevis’s Tm estimation showing positive and negative bias values, the GPT3’s Tm prediction
is systematically bigger than the measured Tm in mainland China, which is mainly due to
the complex terrain of the study area, as the GPT3 model does not consider the impact in
Tm from height differences between the grid sites and the test sites. Figure 5d indicates that
the Bias of the RFTm was concentrated around 0 K in different regions of China, indicating
that the adaptation of the RFTm in different regions of China was better than that of Bevis,
GPT3-1, and GPT3-5.
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As shown in Figure 6, the RMS of the RFTm in the southern region of China was
distributed between 2 K and 3 K, while that of the GPT3-5, GPT3-1, and Bevis models
ranged from 3–4 K. The RMS of the RFTm was reduced by approximately 1 K compared
with that of the GPT3-1, GPT3-5, and Bevis models. In northern China, the RMS of the
RFTm ranged from 3 K to 4 K, and that of GPT3-1 ranged from 5 K to 6 K. The RMS of
GPT3-5 was slightly worse than that of GPT3-1. The RMS of Bevis was distributed around
5 K, which is superior to that of GPT3-1 and GPT3-5, whereas the RMS of the RFTm was
optimal. Generally, RFTm was more stable than Bevis, GPT3-1, and GPT3-5 in different
regions of the study area.

4.2. Accuracies in Different Heights

Height is a key factor that affects the Tm [13,22]. To analyze the adaptability of different
models at different heights, we statistically analyzed the Bias and RMS of the Bevis, RFTm,
GPT3-1, and GPT3-5 models from 0 km to 4.5 km at intervals of 500 m. The results are
shown in Figure 7 and Table 2.

As shown in Figure 7 and Table 2, the Bias of the Bevis model was overall positive
at different heights. Both the Bias and RMS of the Bevis model showed an increasing
trend with higher height, which may be attributed to the fact that the Bevis model has not
corrected for Tm in the height direction. The GPT3-1 and GPT3-5 models both had negative
Bias values at different heights. According to Figure 7 and Table 3, the GPT3-1 and GPT3-5
models’ Bias was concentrated at −5 K to 0 K, while the Bevis model Bias was distributed
at 0 K to 5 K. The fluctuation range of Bias for the Bevis model was approximately opposite
to the fluctuation range of the GPT3-1 and GPT3-5 models. The GPT3-1 and GPT3-5 models
showed large fluctuations of Bias up and down with the increase in height, and the Bias
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was concentrated from −1 K to 0 K in 0–500 m and 1500–3000 m and from −5 K to −1 K in
500–1500 m and above 3000 m. For the RFTm model, the Bias was distributed around 0 K
at different heights, and the RMS values were all less than 3 K. This finding indicates that
the RFTm has better applicability to height than Bevis, GPT3-1, and GPT3-5. Moreover, the
RFTm considers the effect of height on the Tm, which further verifies the rationality of using
height as a model factor in this study.
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Figure 7. Variation of the Tm with height in 2018 for the different models, where (a) is the variation of
the Bias in the height direction for Tm predicted by different models in 2018, and (b) is the variation
of RMS in the height direction for Tm predicted by different models in 2018.

Table 2. RMS of different models at different heights of the Tm in 2018.

Height
RMS[K]

Bevis RFTm GPT3-1 GPT3-5

0–500 3.65 2.71 4.38 4.48
500–1000 4.66 3.42 5.57 6.07

1000–1500 4.60 3.05 4.58 5.27
1500–2000 3.69 2.39 3.77 4.05
2000–2500 3.72 2.24 4.04 4.15
2500–3000 6.02 2.44 3.90 4.73
3000–3500 6.71 1.99 4.05 4.30
3500–4000 7.06 2.17 5.60 4.48

>4000 7.04 2.58 3.41 3.24

Table 3. Bias of different models at different heights of the Tm in 2018.

Height
Bias[K]

Bevis RFTm GPT3-1 GPT3-5

0–500 −0.39 0.09 −0.67 −0.78
500–1000 1.84 0.12 −2.21 −2.56

1000–1500 1.96 0.11 −1.40 −2.20
1500–2000 1.32 0.25 −0.57 −0.48
2000–2500 1.93 0.29 −0.13 0.02
2500–3000 5.08 0.34 0.02 −1.59
3000–3500 5.82 0.16 −2.34 −2.84
3500–4000 6.24 -0.16 −4.75 −3.08

>4000 5.47 0.24 −1.57 −0.97
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4.3. Accuracies in Different Latitudes

The variation of Tm with latitude is more obvious [27,34]. Therefore, we computed the
Bias and RMS of Tm for 2018 predicted by different models in latitude direction, and the
results are shown in Figure 8.
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As shown in Figure 8a, the Bias of the Bevis model presented negative values in
latitudes lower than 30◦, while the Bias of RFTm, GPT3-1, and GPT3-5 models were con-
centrated around 0 K. On latitudes larger than 30◦, the Bias of Bevis, GPT3-1, and GPT3-5
models ranged from 0 K to 8 K, −6 K to 2 K, and −8 K to 2 K, respectively. The Bias range of
the GPT3-5 model was larger than GPT3-1. The Bias of RFTm was concentrated around 0 K.
The Bias of the RFTm model was concentrated at around 0K. However, when the latitude
was greater than 40◦, Bias was greater than 0 K. This phenomenon may be because the
seasonal variation of Tm was larger at high latitudes [19], which posed more difficulties
for Tm modeling and resulted in a larger Bias for Tm models. Even so, its corresponding
RMS is within 3 K, which is significantly better than the Bevis and GPT3 models. These
results suggest that the RFTm model can better capture the variation of Tm in the latitudinal
direction than the Bevis, GPT3-1, and GPT3-5 models. In Figure 8b, the RMS of the Bevis,
RFTm, GPT3-1, and GPT3-5 models tended to become larger with rising latitude, but the
RMS of RFTm was concentrated within 3 K. The RMS of RFTm with increasing latitude was
notably lower than that of Bevis, GPT3-1, and GPT3-5, indicating that the adaptation of
RFTm to latitude changes was better than that of Bevis, GPT3-1, and GPT3-5. Generally,
the RFTm model has lower Bias and RMS than the Bevis, GPT3-1, and GPT3-5 models in
different regions. These also imply that RFTm has better stability and adaptability than
Bevis, GPT3-1, and GPT3-5 at various latitudes.

4.4. Accuracies in Different Time Variations

To further investigate the relationship between the models and time, we computed the
Bias and RMS from the Bevis, GPT3-1, GPT3-5, and RFTm models in 2018 with a temporal
resolution of 12 h, respectively. The results are shown in Figure 9.
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Figure 9. Bias and RMS of different models Tm in 2018, where (a) is the Bias of different models Tm in
2018, and (b) is the RMS of different models Tm in 2018.

Figures 9–11 show the daily, monthly, and quarterly average Bias and RMS variations
for the four models, respectively. As illustrated in Figures 9–11, the Bias of the RFTm model
fluctuated above and below 0 K, and the RMS of the RFTm model ranged between 2 K and
4 K. The RFTm model showed better RMS and Bias than the Bevis, GPT3-1, and GPT3-5
models for different months and seasons, and there was no apparent seasonal variation in
Bias and RMS. The reason for this phenomenon might be that RFTm model added a time
factor in the modeling, which somewhat weakened the influence of seasonal variation on
the model accuracy. Bias and RMS of the Bevis, GPT3-1, and GPT3-5 models were larger in
winter and spring but relatively lower in summer and autumn. The RMS of the GPT3-1
and GPT3-5 models fluctuated at around 5 K. The variation of Bias with time was mainly
distributed between −10 K and 0 K, and extremely few of them were distributed between
0 K and 6 K, indicating that the GPT3-1 and GPT3-5 models might have negative deviations
overall. The RMS of the Bevis model fluctuated around 5 K, which was consistent with that
of the GPT3-1 and GPT3-5 models, but the overall Bevis model Bias ranged from 0 K to 6 K,
denoting that the Bevis model showed an overall positive deviation in mainland China.
Overall, RFTm outperforms at different times than Bevis, GPT3-1, and GPT3-5.
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Figure 10. Monthly average Bias and RMS of different models Tm in 2018, where (a) is the monthly
average Bias changes of different models Tm in 2018, and (b) is the monthly average RMS changes of
different models Tm in 2018.
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China as a whole, and its annual average Bias and RMS were 0.13 K and 2.87 K. Com-
pared with the Bevis model, GPT3-1 model, and GPT3-5 model, the annual average RMS 
of RFTm model were reduced by 35.5%, 38.8%, and 44.7%, respectively. The overall accu-
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Comprehensive validations indicate that the RFTm model based on RF outperformes 
the Bevis model and GPT3 model in mainland China, and the accuracy is more stable in 
different spatiotemporal intervals. Therefore, the proposed model can be implemented 
for the relevant application of GNSS meteorology in China. However, the proposed 
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In future research, we hope to develop a global machine learning-based model for esti-
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5. Conclusions

We proposed a weighted mean temperature model (RFTm) based on a random forest
with GPT3-Tm, surface water vapor pressure, surface temperature, height, latitude, and
time as input parameters in the paper, and tested the accuracy of RFTm in the Chinese
region. The results indicated that: The RFTm model achieved better accuracy in mainland
China as a whole, and its annual average Bias and RMS were 0.13 K and 2.87 K. Compared
with the Bevis model, GPT3-1 model, and GPT3-5 model, the annual average RMS of RFTm
model were reduced by 35.5%, 38.8%, and 44.7%, respectively. The overall accuracy of
RFTm model has been significantly superior to that of the Bevis model and the GPT3-1
and GPT3-5 models. The RFTm model had better accuracy than the Bevis model, GPT3-1
model, and GPT3-5 model for different latitudes and heights, and it captured the change
of Tm with height and latitude more effectively than the Bevis model, GPT3-1 model, and
the GPT3-5 model. The RFTm model could better perceive the change of Tm with time in
comparison to the Bevis model, the GPT3-1 model, and the GPT3-5 model.

Comprehensive validations indicate that the RFTm model based on RF outperformes
the Bevis model and GPT3 model in mainland China, and the accuracy is more stable in
different spatiotemporal intervals. Therefore, the proposed model can be implemented for
the relevant application of GNSS meteorology in China. However, the proposed model
only supports regional Tm estimation and needs in situ measured meteorological. In future
research, we hope to develop a global machine learning-based model for estimating Tm
based only on geographical and temporal information.
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GPT3 Global Pressure and Temperature 3
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