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Abstract

:

Despite the levels of air pollution in Macao continuing to improve over recent years, there are still days with high-pollution episodes that cause great health concerns to the local community. Therefore, it is very important to accurately forecast air quality in Macao. Machine learning methods such as random forest (RF), gradient boosting (GB), support vector regression (SVR), and multiple linear regression (MLR) were applied to predict the levels of particulate matter (PM10 and PM2.5) concentrations in Macao. The forecast models were built and trained using the meteorological and air quality data from 2013 to 2018, and the air quality data from 2019 to 2021 were used for validation. Our results show that there is no significant difference between the performance of the four methods in predicting the air quality data for 2019 (before the COVID-19 pandemic) and 2021 (the new normal period). However, RF performed significantly better than the other methods for 2020 (amid the pandemic) with a higher coefficient of determination (R2) and lower RMSE, MAE, and BIAS. The reduced performance of the statistical MLR and other ML models was presumably due to the unprecedented low levels of PM10 and PM2.5 concentrations in 2020. Therefore, this study suggests that RF is the most reliable prediction method for pollutant concentrations, especially in the event of drastic air quality changes due to unexpected circumstances, such as a lockdown caused by a widespread infectious disease.
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1. Introduction


Air pollution kills more than 7 million people annually, with 4.2 million deaths from outdoor air pollution and 3.8 million deaths from indoor air pollution [1]. The regions affected by air pollution include over 2 million people in the South-East Asian Region and the Western Pacific Region, nearly 1 million people in the African Region, about 500,000 people in the Eastern Mediterranean Region and the European Region, and more than 300,000 people in the American Region [1]. The cause of death from air pollution includes 21% due to pneumonia, 20% from stroke, 34% from ischemic heart disease, 19% from chronic obstructive pulmonary disease (COPD), and 7% from lung cancer [1,2]. Due to the threats of air pollution, there is a great urge to successfully predict the air pollution episodes ahead of time, in order to alert the population and reduce the number of deaths caused by air pollution. Air quality forecast models are common amongst highly developed and densely populated cities and regions worldwide.



At the beginning of 2020, the COVID-19 pandemic vastly changed the way of living for most people in the world and caused a substantial decrease in air pollution, leading to cleaner ambient air. During the partial lockdown measures in February 2020, the levels of carbon monoxide (CO), nitrogen dioxide (NO2), and PM10 decreased, while ozone (O3) increased due to the decrease in NO2 levels in a VOC-controlled scenario in Rio de Janeiro, Brazil [3]. Furthermore, the lockdown measures caused a significant decrease in NO2 concentrations in European countries, including France, Germany, Italy, and Spain, and a substantial decrease in both levels of NO2 and PM2.5 in China [4].



At the same time, it became more challenging to predict air quality because the overall seasonal and temporal trend of air pollution changed; therefore, new methods must be investigated to accurately predict air quality in the future. Deterministic models, also known as chemical transport models (CTM), are the traditional methods widely used to forecast air quality, but the downside of CTM is that they require extensive and expensive computational resources; therefore, the use of random forest (RF) and multiple linear regression (MLR) was applied to successfully improve the forecast of the levels of O3 concentration in Kennewick, WA [5].



This paper aims to determine whether machine learning or statistical methods are best suited for a prediction model under different scenarios, using Macao as a case study. To predict the next-day concentrations of particulate matter (PM10 and PM2.5) for Taipa Ambient, the background representative station of Macao, a forecast model was developed in this study based on RF, gradient boosting (GB), support vector regression (SVR), and MLR.




2. Previous and Related Works


An innovative framework using the combination of pollutant concentration, urban traffic, aerial imagery, and weather conditions was conducted during a study in Cambridge, UK, to investigate the different forecast models such as statistical methods, machine learning, and neural networks [6]. Weather normalized models (WNMs) are used for air pollution assessment, using various methods, including machine learning and deep learning, and later to compare their performance with GB [7].



A support vector machine (SVM) was used to predict the air quality index (AQI) in a study. The results proved to be effective and accurate with a high coefficient of determination (R2) and a low sum square error (SSE) and mean sum square error (MSSE) [8]. A study in Taiwan used machine learning methods to forecast PM with past air quality datasets. The results show that the machine learning models displayed better performance in the air quality forecast, evaluated by model performance indicators including R2, root mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE), in comparison to traditional deterministic models [9].



RF, SVM, adaptive boosting (AdaBoost), artificial neural networks (ANNs), and stacking ensemble showed promising results in the forecast of AQI, with stacking ensemble having the best outcome for R2 and RMSE, and AdaBoost showing the best performance for MAE [10]. The use of RF, CART, and logistic regression, along with variable selections by an expert group and with two automatic selection methods, showed that the selected variables with expert knowledge had better results compared to the automatic methods in the air quality forecast of the levels of PM10 concentrations in Bogotá, Columbia [11].



Extreme gradient boosting (XGB) and RF were used to successfully forecast the hourly air quality in Delhi, India [12]. A study to predict the air quality in Beijing showed that GB performed much better in prediction accuracy and operation efficiency in comparison to XGB [13]. RF and SVM were used to explore the relationship between air pollutants (O3, NOx, and CO) and meteorological parameters (wind speed, solar radiation, temperature, and relative humidity) in Rio de Janeiro, Brazil, and successfully forecast the level of ozone concentrations with high R2 [14]. SVM was applied to build a regression model to forecast air quality in the urban area of Avilés, Spain, and the SVR model successfully forecast the levels of air pollutants [15].




3. Materials and Methods


3.1. Air Quality Dataset of Macao


The air quality data and the surface meteorological input data required for the tested prediction models were obtained from the Macao Meteorological and Geophysical Bureau (SMG), and the upper-sounding data were obtained from Hong Kong King’s Park Station (Number 45004). The hourly data (air quality and meteorological variables) obtained from SMG were preprocessed and converted into daily values. In contrast, the upper-sounding data were obtained from 12:00 UTC, which is used in building machine learning and statistical models. In the first step, the 2013 to 2018 data were used to train a model, and the 2019 to 2021 data were used to test the model. One statistical method (MLR) and three widely used machine learning algorithms (RF, GB, and SVR) were employed to construct the models. Finally, their performances were compared. Table 1 shows the different variables considered as predictors in the machine learning and statistical models in the air quality forecast for Macao.



The variables to be predicted were PM10_23D0 and PM25_23D0, while the rest of the air quality and meteorological variables in Table 1 were used as predictors in these models. For instance, PM25_16D1, PM25_23D1, HRMD, and DD were chosen for the SVR model with feature selection for PM2.5 prediction.




3.2. Learning Algorithms


3.2.1. Multiple Linear Regression (MLR)


MLR is a statistical method commonly used to predict the outcome of a variable based on the value of two or more variables. The advantages of MLR include its simplicity and ability to have all potential variables in one model [16,17].



MLR and CART were chosen and successfully developed for the air quality forecast of the next day in Macao, including the pollutant concentration of PM10, PM2.5, NO2, and O3 with a high coefficient of determination (R2) for all pollutants before and during the outbreak of the COVID-19 pandemic in Macao [16,17]. The air quality forecast using statistical methods, including MLR and CART, was applied successfully to three regions, Greater Lisbon Area, Madeira Autonomous Region, and Macao, to the levels of PM10, PM2.5, NO2, and O3 concentrations [18].




3.2.2. Random Forest (RF)


RF is a simple, efficient, interpretable method and one of the most popular ensemble learning techniques based on decision tree predictors. The first step involves bagging the trees, followed by the second step of splitting the tree using the random subspace method or the random split selection, applied at each node of the algorithm, with a subset only of the features to split the node [19]. The model parameters of RF used in this study included the maximum depth of 9 and the number of trees (n estimator) set as 500. The advantages of RF included performing both regression and classification tasks and producing good predictions and results that can be easily interpreted [19].



RF and SVR were used to build regression models to forecast AQI in Beijing and the nitrogen oxide (NOx) levels in Italy. The results show that RF performed better in the forecast of NOx concentration. In contrast, SVR performed better at predicting AQI [20]. RF was used to successfully forecast the levels of PM10 concentrations in Blagoevgrad, Bulgaria, with over nine years of air quality data [21].




3.2.3. Gradient Boosting (GB)


GB is a decision-tree-based ensemble method that builds an ensemble of shallow and weak successive trees, with each tree learning and improving from the previous one [22]. The model parameters of GB used in this study included a learning rate of 0.02, a maximum depth of 6, the number of trees (n estimator) set as 500, and a subsample of 0.5. The advantages of GB included not requiring any preprocessing of the dataset, handling the missing values automatically, not requiring data imputation, with feature selection embedded automatically, and identifying the importance of each variable in the models [22].



GB was also used to evaluate the outbreak of the COVID-19 pandemic through the air quality in Quito, Ecuador, with the best model accuracy in the traffic-busy areas [22]. The algorithm of GB was applied successfully to build a forecast model with the past air quality data and meteorological parameters for the daily prediction of the levels of PM2.5 concentration in Taiwan [23].




3.2.4. Support Vector Regression (SVR)


SVM is a machine learning algorithm that constructs hyperplanes for separating different classes and is generally used for analyzing data with a categorical output variable. In the case of the continuous numeric output variable, regression analysis is used, namely SVR [24]. All of the SVR kernels, including linear, poly, rbf, sigmoid, and precomputed, were considered in this study and the linear kernel function showed the best results. Therefore, the model parameter of SVR used in this study was the linear kernel function. The advantages of SVR include being robust to outliers, having high prediction accuracy, and easy implementation [19].



SVR has been applied to overcome non-linear limitations and uncertainties in order to achieve better prediction accuracy [19]. SVR has been successfully applied to forecast the levels of PM10 concentration in Bangkok, Thailand, with air quality data and meteorological variables (e.g., air pressure, rainfall, relative humidity, temperature, wind direction, and wind speed) [25]. The algorithm of SVR was applied to improve the forecast of the AQI using air quality and meteorological parameters for three cities in China, including Beijing, Tianjin, and Shijiazhuang [24]. SVR was used to successfully forecast CO, SO2, NO2, O3, and PM2.5 concentration levels, and the AQI in California [26].





3.3. Feature Selection


Feature selection is a dimensionality reduction technique that can select a small subset of relevant features from the original set by removing noisy, irrelevant, and redundant features, thereby reducing computing time, improving learning accuracy, and enabling a better understanding of the data [27,28]. In this study, Shapley additive explanation (SHAP) values were used to interpret the contribution of features in prediction models. SHAP calculates the impact of each feature on the predictions made by a model. It expresses model predictions as linear combinations of binary variables that describe whether each covariate is present in the model [29,30]. Here, feature selection based on SHAP values was used to create feature-reduced forecast models, and their performances were compared to full-featured counterparts. The SHAP graphs show that the four variables with the highest feature values were selected and applied using machine learning and statistical methods. The model performance indicators with and without feature selection were compared, and only the best results are listed in Table 2, Table 3 and Table 4.




3.4. Performance Measures


The machine learning models were built in JupyterLab 3.2.1, using Python 3 and the scikit-learn library. Table 1 shows the variables considered as predictors in the training dataset for the machine learning and statistical models in the air quality forecast in Macao. Model performance indicators, including R2 calculated by Equation (1), RMSE calculated by Equation (2), MAE calculated by Equation (3), and systematic error (BIAS) calculated by Equation (4), were used to evaluate the performance of the air quality forecast models with the testing dataset. The equations are defined as


   R  2    =     [   ∫  i = 1  n  (  f i  −  f ¯     )  −  (   o i  −  o ¯     )   ] 2    [  ∫  i = 1  n    (  f  i −      f ¯  )  2   ]   [   ∫  i = 1  n     (   o i  −  o ¯     )   2  ]   .  



(1)






  RMSE =    1 n     ∑  i = 1  n     (   f i  −  o i   )   2     



(2)






  MAE =  1 n     ∑  i = 1  n   |   f i  −  o i   |   



(3)






  BIAS =  1 n     ∑  i = 1  n   (   f i  −  o i   )   



(4)




where    f i      is the forecast value of the sample i,   f ¯   is the forecast average,    o i    is the observation of the sample i,    o ¯    is the observation average, and the n is the number of samples.





4. Results and Discussion


4.1. Air Quality Forecast, 2013–2018 Trained Data, 2019 Test Data


The results of the model performance indicator are listed in Table 2, which shows that MLR without feature selection performed the best in the prediction of PM10 and PM2.5 amongst different machine learning models with 2013 to 2018 trained data, and validated with 2019 test data. Nevertheless, there is no significant difference amongst MLR, RF, GB, and SVR, with high R2 recorded between the predicted and observed data (between 0.88 and 0.90), low RMSE (between 4.26 and 7.65), low MAE (between 2.84 and 4.73), and low BIAS (0.04 to 1.01). The reduced-feature models based on SHAP values do not necessarily yield better results.



Figure 1 shows the observed and predicted PM10 concentrations using MLR in 2019, which offers a high R2 of 0.90, the best result out of all the models, and the use of reduced-feature models based on SHAP values was not applied. Figure 1 shows that it is very challenging to predict some of the extremely high-pollution episodes, and the outliers refer to the high concentration, which is challenging to predict by the respective method.



Figure 2 shows the observed and predicted PM2.5 concentrations using RF in 2019, which offers a high R2 of 0.88, a very promising result in the air quality prediction. Figure 2 shows that it is very challenging to predict some of the extremely high pollution episodes, and the outliers refer to the high concentration, which is challenging to predict by the respective method.



Figure 3 shows the SHAP values in the RF model using the 2013 to 2018 trained data and the 2019 test data, which shows the importance and the weighting of each variable of the forecast models. It indicates that PM25_16D1 and PM25_23D1 were the most critical variables in the forecast model as they obtained the highest SHAP values in Figure 3. This result was expected as the pollutant concentrations of previous days had a significant influence on the next day’s forecast.




4.2. Air Quality Forecast, 2013 to 2018 Trained Data, 2020 Test Data


The results of the model performance indicators are listed in Table 3, which shows that RF without the use of SHAP values performed the best in the prediction of PM10, and GB without the use of SHAP values performed the best in the prediction of PM2.5 in the 2013 to 2018 trained data, validated with 2020 test data. Nevertheless, there is a more significant variation in the R2 in the 2013 to 2018 trained data validated with 2020 test data (R2 between 0.57 and 0.90), high RMSE (between 7.43 and 16.13), high MAE (between 4.78 and 13.01), and high BIAS (between 1.59 and 11.18) in comparison to 2019 test data (with R2 from 0.88 to 0.90, RMSE from 4.26 to 7.47, MAE from 2.84 to 4.73, and BIAS from 0.04 to 1.01). This may be attributed to the unusually low levels of PM10 and PM2.5 concentrations in the second half of 2020 due to the outbreak of the COVID-19 pandemic, which affected the performance of the air quality forecast models. SVR struggled the most to predict the levels of PM2.5 concentrations in 2020, with an unusual low R2 of 0.57. In contrast, MLR, RF, and GB did relatively well in the prediction of PM10 (R2 of 0.81, 0.90, and 0.85, respectively) and the prediction of PM2.5 (R2 of 0.61, 0.65, and 0.66, respectively) in the air quality forecast of 2020. The reduced-feature models based on SHAP did not yield better results.



Figure 4 shows observed and predicted PM10 concentrations using RF in 2020, with a high R2 of 0.90, the same results as 2019 and 2021. The outbreak of the COVID-19 pandemic did not influence the performance of the PM10 prediction in 2020, which showed the robustness of RF compared to other methods (MLR, GB, and SVR). The use of reduced-feature models based on SHAP values was not applied. Figure 4 shows that it is very challenging to predict some of the extremely low- and high-pollution episodes during the pandemic, and the outliers refer to the low and high concentration, which is challenging to predict by the respective method.



Figure 5 shows observed and predicted PM2.5 concentrations using GB in 2020, with a moderate R2 of 0.66, which tends to overestimate the peaks and misses most of the low-pollution episodes. This may be due to the unusually low levels of PM2.5 concentration in 2020 compared to the previous years, which falls out of the prediction range for the machine learning and statistical models. Figure 5 shows that it is very challenging to predict some of the extremely low- and high-pollution episodes during the pandemic, and the outliers refer to the low and high concentration, which is challenging to predict by the respective method.




4.3. Air Quality Forecast, 2013 to 2018 Trained data, 2021 Test Data


The results of the model performance indicators are listed in Table 4, which shows that MLR without feature selection performed the best in the prediction of PM10, and RF without feature selection served the best in the prediction of PM2.5 amongst different machine learning and statistical methods in 2013 to 2018 trained data, validated with 2021 test data. The obtained result of MLR, RF, GB, and SVR in 2019 (R2 between 0.88 and 0.90) shows similar results to 2021 (R2 between 0.79 and 0.90), with low RMSE (between 3.72 and 13.96), low MAE (between 2.74 and 11.92), and low BIAS (between 1.47 and 11.30). Therefore, there is no significant difference between MLR, RF, and GB, with a high R2 recorded between the predicted and observed data (between 0.88 and 0.90), while SVR performed the worst in the prediction of PM2.5 (with an R2 of 0.79). The reduced-feature models based on SHAP do not necessarily yield better results.



Figure 6 shows observed and predicted PM10 concentration using MLR in 2021, with a high R2 of 0.90, maintaining a similar level in 2019 and 2020. The use of reduced-feature models based on SHAP values was not applied. Figure 6 shows that it is very challenging to predict some of the extremely high-pollution episodes during the new normal period, and the outliers refer to the high concentration, which is challenging to predict by the respective method.



Figure 7 shows observed and predicted PM2.5 concentrations using RF in 2021, with a high R2 of 0.89, showing that the performance of the PM2.5 prediction was restored to 2019 levels. The use of reduced-feature models based on SHAP values was not applied. Figure 7 shows that it is very challenging to predict some of the extremely high pollution episodes during the new normal period, and the outliers refer to the high concentration, which is challenging to predict by the respective method.





5. Conclusions


The application of machine learning and statistical methods to forecast the daily average concentration of PM10 and PM2.5 for the next day, from 2019 to 2021 in the region of Macau, was successful in the Taipa Ambient Air Quality Monitoring Station. The results show that it was more challenging to forecast the levels of PM2.5 concentration in 2020, as suggested by a lower R2 and higher RMSE, MAE, and BIAS, than the PM10 concentration. The levels of PM2.5 concentration during the outbreak of the COVID-19 pandemic reached a record low, which falls outside of the detection range of the machine learning and statistical methods, thus making it very difficult to make an accurate prediction of the levels of PM2.5 concentration. Due to the significant decrease in the emission of PM10 and PM2.5 in the Greater Bay Area (GBA) region, the difficulty of accurately predicting air quality increased substantially. In addition, the variables PM10_16D1, PM10_23D1, PM25_16D1, and PM25_23D1, representing pollutant concentration persistence, played an essential role in predicting PM10 and PM2.5 for the following days. Nevertheless, the levels of PM10 and PM2.5 concentration in Macao slowly returned to normal in 2021 as the world adapted to a new normal environment, and the prediction of air quality models in 2021 has been restored to a similar performance before the COVID-19 pandemic in 2019.
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Figure 1. Observed and predicted PM10 concentrations using MLR for the year of 2019. 
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Figure 2. Observed and predicted PM2.5 concentrations using RF for the year 2019. 
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Figure 3. Feature ranking using the SHAP values for the RF model trained using 2013–2018 data and tested using 2019 data which predicts PM2.5 with SHAP values in 2013 to 2018 trained data and 2019 test data. 
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Figure 4. Observed and predicted PM10 concentrations using RF for the year 2020. 
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Figure 5. Observed and predicted PM2.5 concentrations using GB in 2020. 
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Figure 6. Observed and predicted PM10 concentrations using MLR in 2021. 
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Figure 7. Observed and predicted PM2.5 concentrations using RF in 2021. 
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Table 1. Variables considered as predictors in the machine learning models in the air quality forecast.
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Variable Type

	
Variable Name

	
Variable Description (Units)/Observations






	
Air quality variables

	
NO2, PM10, PM2.5

	
Average hourly concentration values (µg/m3)




	
O3 MAX

	
Maximum hourly concentration values (µg/m3)




	
16D#, 23D#

	
23D#: 24 h concentration averaging period between 00 h and 23 h

16D#: 24 h concentration averaging period between 16 h of D1 and 15 h of D0

e.g.: PM10_16D1, O3_MAX_23D1.




	
D0, D1, D2, D3

	
D0: Forecast Day; D1: Previous Day (Forecast Day-1); D2: Forecast Day-2; and D3: Forecast Day-3.




	
Meteorological variables

	
Upper-air obs. *

	
H1000, H850, H700, H500

	
Geopotential height of 1000 hPa, 850 hPa, 700 hPa, and 500 hPa (m)/indicator of synoptic-scale weather pattern.




	
TAR925, TAR850, TAR700

	
Air temperature of 925 hPa, 850 hPa, and 700 hPa (°C)/measure of strength and height of the subsidence inversion.




	
HR925, HR850, HR700

	
Relative humidity of 925 hPa, 850 hPa, and 700 hPa (%).




	
TD925, TD850, TD700

	
Dew point temperature of 925 hPa, 850 hPa, and 700 hPa (°C).




	
THI850, THI700, THI500

	
Thickness of 850 hPa, 700 hPa, and 500 hPa (m)/related to the mean temperature in the layer.




	
STB925, STB850, STB700

	
Stability of 925 hPa, 850 hPa, and 700 hPa (°C)/indicator of atmospheric stability.




	
Surface observations

	
T_AIR_MX, T_AIR_MD, T_AIR_MN

	
Maximum, average, and minimum air temperature (°C)




	
HRMX, HRMD, HRMN

	
Maximum, average, and minimum relative humidity (%)




	
TD_MD

	
Average dew point temperature (ground level) (°C)




	
RRTT

	
Precipitation (mm)/associated with atmospheric washout




	
VMED

	
Average wind speed (m/s)/related to dispersion




	
Other variables

	
DD

	
Duration of the day: number of hours of sun per day (h)




	
FF

	
Weekday indicator (flag): weekday = 0, weekend = 1








Meteorological variables: * Daily sounding of 12H (GMT+8) at King’s Park Meteorological Station—Hong Kong Observatory.













[image: Table] 





Table 2. Comparison of the MLR, RF, GB, and SVR models trained using 2013–2018 data and tested on 2019 data.
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Method

	
Pollutant

	
Model Performance Indicator

	
Model Built Using SHAP/Feature Selection




	
R2

	
RMSE

	
MAE

	
BIAS

	
Yes

	
No






	
MLR

	
PM10

	
0.90

	
7.14

	
4.60

	
0.81

	

	
✓




	
PM2.5

	
0.89

	
4.26

	
2.84

	
0.57

	

	
✓




	
RF

	
PM10

	
0.89

	
7.49

	
4.73

	
1.01

	

	
✓




	
PM2.5

	
0.88

	
4.56

	
3.00

	
0.67

	
✓

	




	
GB

	
PM10

	
0.89

	
7.47

	
4.73

	
0.80

	
✓

	




	
PM2.5

	
0.88

	
4.47

	
2.95

	
0.77

	

	
✓




	
SVR

	
PM10

	
0.89

	
7.65

	
4.70

	
0.16

	
✓

	




	
PM2.5

	
0.88

	
4.57

	
2.92

	
0.04

	
✓

	








The best results are shown in bold.
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Table 3. Comparison of the MLR, RF, GB, and SVR models trained using 2013–2018 data and tested on 2020 data.
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Method

	
Pollutant

	
Model Performance Indicator

	
Model Built Using SHAP/Feature Selection




	
R2

	
RMSE

	
MAE

	
BIAS

	
Yes

	
No






	
MLR

	
PM10

	
0.81

	
10.74

	
7.83

	
6.12

	

	
✓




	
PM2.5

	
0.61

	
7.67

	
5.52

	
2.91

	

	
✓




	
RF

	
PM10

	
0.90

	
8.15

	
6.64

	
5.02

	

	
✓




	
PM2.5

	
0.65

	
6.89

	
4.78

	
1.59

	

	
✓




	
GB

	
PM10

	
0.85

	
10.59

	
8.54

	
7.11

	

	
✓




	
PM2.5

	
0.66

	
7.43

	
5.71

	
3.72

	

	
✓




	
SVR

	
PM10

	
0.68

	
16.13

	
13.01

	
11.18

	
✓

	




	
PM2.5

	
0.57

	
11.11

	
9.24

	
8.06

	
✓

	








The best results are shown in bold.
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Table 4. Comparison of the MLR, RF, GB, and SVR models trained using 2013–2018 data and tested on 2021 data.
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Method

	
Pollutant

	
Model Performance Indicator

	
Model Built Using SHAP/Feature Selection




	
R2

	
RMSE

	
MAE

	
BIAS

	
Yes

	
No






	
MLR

	
PM10

	
0.90

	
7.90

	
6.08

	
4.16

	

	
✓




	
PM2.5

	
0.88

	
3.92

	
2.97

	
1.65

	

	
✓




	
RF

	
PM10

	
0.89

	
8.05

	
6.14

	
3.84

	

	
✓




	
PM2.5

	
0.89

	
3.72

	
2.74

	
1.47

	

	
✓




	
GB

	
PM10

	
0.89

	
8.98

	
7.32

	
5.30

	

	
✓




	
PM2.5

	
0.88

	
4.60

	
3.85

	
2.96

	

	
✓




	
SVR

	
PM10

	
0.86

	
13.96

	
11.92

	
11.30

	
✓

	




	
PM2.5

	
0.79

	
8.87

	
7.58

	
7.40

	
✓

	








The best results are shown in bold.
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