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Abstract: The concern about air pollution in urban areas has substantially increased worldwide. One
of its main components, particulate matter (PM) with aerodynamic diameter of ≤2.5 µm (PM2.5),
can be inhaled and deposited in deeper regions of the respiratory system, causing adverse effects
on human health, which are even more harmful to children. In this sense, the use of determin-
istic and stochastic models has become a key tool for predicting atmospheric behavior and, thus,
providing information for decision makers to adopt preventive actions to mitigate air pollution
impacts. However, stochastic models present their own strengths and weaknesses. To overcome
some of disadvantages of deterministic models, there has been an increasing interest in the use of
deep learning, due to its simpler implementation and its success on multiple tasks, including time
series and air quality forecasting. Thus, the objective of the present study is to develop and evaluate
the use of four different topologies of deep artificial neural networks (DNNs), analyzing the impact
of feature augmentation in the prediction of PM2.5 concentrations by using five levels of discrete
wavelet transform (DWT). The following types of deep neural networks were trained and tested on
data collected from two living lab stations next to high-traffic roads in Guildford, UK: multi-layer
perceptron (MLP), long short-term memory (LSTM), one-dimensional convolutional neural network
(1D-CNN) and a hybrid neural network composed of LSTM and 1D-CNN. The performance of each
model in making predictions up to twenty-four hours ahead was quantitatively assessed through
statistical metrics. The results show that wavelets improved the forecasting results and that discrete
wavelet transform is a relevant tool to enhance the performance of DNN topologies, with special
emphasis on the hybrid topology that achieved the best results among the applied models.

Keywords: particulate matter; air pollution; artificial neural networks; deep learning; forecasting;
wavelets

1. Introduction

The increase in air pollution in urban areas is a concern on a global scale. Such pollution
occurs especially due to anthropogenic activities, such as industrialization, the growth of
urbanization, automotive vehicles powered by fossil fuels and agricultural burning [1].
According to United Nations, more than half of the world lives in urban regions (around
55%) and this number is increasing, considering some European countries, such as the
United Kingdom, with more than 83% of the population living in urban environments, a
figure that continues to increase over time. Consequently, humans have been constantly
exposed to variety of harmful components from many sources, mainly those from road
vehicles, which are the dominant source of ambient air pollutants, such as particulate
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matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and volatile organic compounds
(VOCs) [2].

Among these pollutants, PM can be highlighted as one of most critical, as it can cause
numerous adverse effects on human health, such as asthma attacks, chronic bronchitis,
diabetes, cardiovascular disease and lung cancer [3], and it is strongly associated with
respiratory diseases in children [2].

PM is an atmospheric pollutant composed of a mixture of solid and liquid particles sus-
pended in the air [2]. These kinds of particles can be directly emitted through anthropogenic
or non-anthropogenic activities, and they are classified according to their aerodynamic
diameter and their impacts on human health. PM2.5 includes fine particles with a diameter
up to 2.5 µm, which can enter the cardiorespiratory systems. The World Health Orga-
nization (WHO) estimates that long-term exposure to PM2.5 increases long-term risk of
cardiopulmonary mortality by 6% to 13% per 10 µg/m3 of PM2.5 [4]. Furthermore, results
from the European project Aphekom indicate that the life expectancy of the most polluted
cities could be increased by approximately 20 months if long-term exposure to PM2.5 were
reduced to the annual limits established by the WHO [2].

For these reasons, countries have been encouraged to adopt of even more stringent
standards and actions to help control and reduce temporal PM concentrations in urban
environments [4]. Hence, the construction of models that predict the concentration of
this component up to 24 h ahead in densely populated areas with lower computational
complexity and cost arises as a key and strategic tool to assist the monitoring process,
support control and preventive actions to improve air quality and, consequently, reduce
impacts on the health of the population.

Thus, the objective of this work is to build and evaluate the performance of four deep
artificial neural network (DNN) models to predict hourly concentrations of PM2.5 up to
24 h ahead of time, as well as the impact on model performance of applying five-level
discrete wavelet transform (DWT) on the data as a feature augmentation method. The
DNN types applied were multilayer perceptron (MLP), long short-term memory (LSTM),
one-dimensional convolutional neural network (1D-CNN) and a hybrid model (LSTM
with 1D-CNN). To train and test the DNN models, data from densely populated areas in
Surrey County, UK, characterized by high vehicle traffic were used and augmented by the
addition of new features based on the reconstructed detail and approximation signals of
wavelet transform from levels 1 to 5. In order to assess the performance of the deep neural
networks in the prediction task, all results were compared to a linear regression model
as a baseline. Then, they were statistically evaluated according to the following metrics:
mean squared error (MSE), mean absolute error (MAE), Pearson’s r and normalized mean
squared error (NMSE).

This paper is organized into five sections. In Section 1, we introduce the background
and research gaps in the topic areas. In Section 2, we explore the related works in the area
of air pollutant forecasting. In Section 3, we present the case study, data, basic concepts of
DNN, DWT and additional methods used in this work. In Section 4, we present and discuss
the results. Finally, in Section 5, we highlight the main points and present our conclusions,
indicating aspects to be explored in future investigations.

2. Related Works

In recent years, several methods have been applied to the task of forecasting air
pollution components, mainly using statistical, econometric and deep learning models.
Zhang et al. [5] and Badicu et al. [6] assessed the Autoregressive Integrated Moving Average
Model (ARIMA), a powerful statistical model, to predict PM concentrations. The former
used monthly PM2.5 data from the city Fuzhou, China during the period from August 2014
to July 2016 to train the model and predicted the period of July 2016 to July 2017. The
training results presented a mean absolute error (MAE) of 11.4%, with the highest error
values in cold seasons, when the real values from PM2.5 were higher than those predicted by
the model. The latter worked with data from Bucharest, Romania, considering the period
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of March to May 2019 with a frequency of 15 min to predict PM10 and PM2.5 concentrations.
The results showed that in 89% of cases, the predicted values were under an acceptable
limit of uncertainty. However, this kind of approach has some limitations in long-term
forecasting, as it uses only past data and it has difficulty reaching high peaks, such as in [5],
where it was not able to reach the real peaks of PM2.5.

Considering these limitations, artificial intelligence (AI) methodologies have been used
to improve forecasting performance due to their ability to learn from complex nonlinear
patterns, their robustness and self-adaptation and their ability to, once correctly trained,
perform predictions with limited computational resources and cost when compared to
other approaches, such as numerical modeling. Reis Jr. et al. [7] analyzed the use of
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) to predict
short-term (24 h) ozone concentration. They compared the performance of CNN, recurrent
neural network long short-term memory (LSTM) and gated recurrent unit (GRU) structures
with a simple multi-layer perceptron (MLP) model. The data were collected between
2001 and 2005 in the region of Vitória in southeastern Brazil. The results showed that the
LSTM topology presented an average performance similar to that of MLP but with slightly
worse results. However, when considering individual time steps, the LSTM presented the
most suitable results for the 9th hour, demonstrating the potential of LSTM for learning
long-term behaviors. Ozone forecasting up to 24 h in advance was also evaluated by
Alves et al. [8] using the same data but comparing only the MLP model with baseline
models: the persistence model and the lasso regression technique. The MLP model proved
to be the most effective according to statistical analyses, outperforming the others in almost
all forecasting steps, except for the 1st hour.

Regarding PM forecasting, the use of MLP topology to forecast PM particles was
investigated by Ahani et al. [9], who compared its performance is with that of the ARIMAX
model (ARIMA with exogenous variables) to predict PM2.5 up to 10 h ahead using different
feature selection methods. The applied data were from Tehran City, the capital of Iran, and
represented a period from 2011 to 2015. The ARIMAX model presented a smaller RMSE in
almost all time steps considered, except for the second and the last time steps, for which
the MLP presented similar results. This shows that, despite its higher capacity, the single
application of artificial neural network (ANN) structures in some data may not outperform
simpler methodologies. Thus, it is possible to assess complementary methodologies to
make them even more robust. Yang et al. [10] used four different DNN topologies to
predict PM2.5 and PM10, including two hybrid models. The DNNs used were GRU, LSTM,
CNN-GRU and CNN-LSTM. Data from 2015 to 2018 were used to make predictions 15 days
in advance. The results demonstrated that 15-day predictions remained reliable; however,
the most accurate forecasts are up to 7 days in advance. The hybrid models outperformed
the single models for all stations, and the CNN-LSTM model produced the fewest errors.

Despite the research that has been conducted using ANNs to predict air pollution
components, forecasting accuracy depends on the quality of data provided to the model.
This means that the results can still be improved by different representations of data,
which can reveal hidden patterns, as well as the application of feature augmentation tech-
niques. Therefore, various studied involving preprocessing methods for time series, such
as wavelets, have demonstrated the benefits of their application in improving the perfor-
mance of ANNs in the task of forecasting PM concentrations. For instance, Wang et al. [11]
presented the advantages of using hybrid models combining machine learning techniques
and wavelet transforms to predict PM2.5 signal. The prediction was performed 1 h ahead by
decomposition of PM2.5 data in low- and high-frequency components that capture the trend
and noise from the original signal. The temporal resolution of data was the hourly average
concentration in the period from 2016 to 2017. The machine learning methods used were a
backpropagation neural network (BPNN) and a support vector machine (SVM). The results
indicate that hybrid models are more accurate and stable when using wavelets, highlighting
their importance in detecting time and frequency behaviors. Bai et al. [12] also used a
BPNN model based on wavelet decomposition to forecast air pollutant (PM10, SO2 and
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NO2) concentrations but with additional information concerning meteorological conditions.
The BPNN model was employed to generate wavelet coefficients of the concentrations of
air pollutants for the next day, and then the signals were reconstructed to generate the
predictions. The forecasting horizon was the mean of the next 24 h. Findings showed that
the results of the W-BPNN model were closer to observed data than those of the BPNN
model alone, meaning that the multiresolution data provided by wavelets improve the
accuracy of air pollutant concentration forecasting.

Qiao et al. [13] used a hybrid stacked autoencoder (SAE) to solve the LSTM vanishing
gradient problem and used wavelet transform (WT) to decompose PM2.5 time series into
coefficients as the inputs of an ANN structure to predict average PM2.5 1 day ahead. LSTM
outputs were used to reconstruct the signal and generate the predictions. The data were
from January 2014 to June 2019, and the resulting model outperformed the six other baseline
models, with an MAE of approximately 3.0. The baseline models were SAE-BP (SAE back
propagation), SAE-ELM (SAE extreme learning machine), SAE-BiLSTM (SAE bidirectional
LSTM) and the same machine learning models without SAE (LSTM, BP and ELM (extreme
learning machine)). Results showed that SAE-LSTM predictions were the best compared
with the other models, satisfactorily solving the vanishing gradient problem.

Huang et al. [14] developed a hybrid CNN-LSTM model to predict the concentrations
of PM2.5 one hour ahead using both air pollution and past meteorological data. They
compared their solution with other traditional machine learning techniques and found
that it achieved the best results for this task. Li et al. [15] developed another hybrid CNN-
LSTM deep neural network to predict PM2.5 concentrations for the next day, comparing
their proposed model with univariate and multivariate approaches and LSTM architecture,
achieving the best results with their approach. Mirzadeh et al. [16] evaluated a traditional
machine learning technique called support vector regression (SVR) with WT to predict
PM10, PM2.5, SO2, NO2, CO and O3 in Isfahan, Iran, finding that SVR with WT presented
better results and lower uncertainty than the other tested models. The same authors [17]
conducted a study to evaluate how WT and traditional AI techniques could be combined to
improve the prediction of short (few hours) and long-term (daily) concentrations of PM2.5
using an adaptive neuro-fuzzy inference system (ANFIS), SVR and a shallow ANN. Their
results showed that WT combined with SVR and ANFIS achieved the best experimental
results among the tested models. Liu et al. [18] presented a combined weighted forecasting
model (CWFM) for air pollution concentration forecasting using WT, bidirectional (Bi)-
LSTM, Bi-GRU and LSTM, along with a weight assignment, and compared the results of
the combined approach with each individual model for prediction of NO2 air pollutants.
They concluded that the combined approach presented a better performance than each
individual model. Jusong et al. [19] developed a hybrid 3D-CNN and Bi-LSTM deep
neural network using WT, feature selection and clustering techniques to predict PM2.5
concentrations up to 10h ahead, achieving the best results compared to other techniques.
Araujo et al. [20] also evaluated the combination of WT and ANNs to predict air pollution
applied to tropospheric O3 forecasting, finding that WT enhanced the ANN’s ability to
forecast air pollution concentrations.

Despite previous studies with the aim of predicting PM2.5 using machine/deep learn-
ing and WT, in the present study, we aim to innovate by systematically constructing and
evaluating four different types of DNN combined with systematic selection and application
of five different levels of WT, with the aim of predicting hourly PM2.5 concentrations up to
24 h ahead for a highly urbanized region in the UK. This research can provide new and
valuable information with respect to how to effectively apply deep learning and WT for
PM2.5 forecasting, improving the ability of regulatory, government or other agencies to
adopt preventive or contingency measures to improve air quality and reduce air pollution
impacts on human health in urban areas.
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3. Materials and Methods
3.1. Case Study and Data Description

As a part of the iSCAPE (Improving the Smart Control of Air Pollution in Europe)
project, with the aim of developing integrated strategies to control air pollution in European
cities, a diverse set of data was collected (https://www.iscapeproject.eu/iscape-data,
accessed on 31 August 2022). One of these approaches consisted of the use of living lab
stations (LLSs), which provided environmental and atmospheric data with the aim of
monitoring the performance of implemented interventions, such as low boundary walls
and green infrastructure in selected cities. Guildford, UK, is one such city, and the data
provided by two LLSs were assessed in this work.

Guildford is located in Guildford Borough, one of the most populated areas in Surrey
County [21], where 72% of residents rely on cars as their main mode of transportation,
leading to an increased air pollution concentrations. The available data were collected by
the University of Surrey in two parks: Stoke Park and Sutherland Memorial Park (Figure 1).
Data were obtained in open-road conditions, on the outer side of hedges that delimit
the two parks. The Stoke Park data were collected from February to September of 2019,
whereas Sutherland Memorial Park data were collected from June to October of the same
year. Both datasets have a time resolution of one minute. The measurements used were air
temperature, air humidity, air pressure, PM2.5, carbon monoxide (CO), nitrogen dioxide
(NO2) and ozone (O3). Table 1 presents the description of all available measured variables
in the data.
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Figure 1. Location of the monitoring stations, represented as numbers: “1” represents Stoke Park LLS,
and “2” represents Sutherland Memorial Park LLS. (Source: https://livinglabs.iscapeproject.eu/,
accessed on 31 August 2022).

3.2. Artificial Neural Networks

ANNs are composed of a basic structure called neurons. These structures are combined
linearly with associated weights, which are assigned with random values at the start of
the training, then passed into an activation function that inserts non-linearities capable of
modelling complex relationships. Through the relation of the basic components and the
activation functions, ANNs can assume different topologies.

The ANNs explored in this paper were MLP, LSTM, CNN and a hybrid model with
the aim of improving the results of LSTM and CNN. A brief explanation of each model is
presented in this section.

https://www.iscapeproject.eu/iscape-data
https://livinglabs.iscapeproject.eu/
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Table 1. Description of the available measurements in the dataset from both stations.

Variable Description

Time Time of the sample, with one-minute frequency
TEMP Air temperature collected at the station
HUM Air humidity collected at the station
PRESS Air pressure collected at the station
PM2.5 Concentration of particulate matter with a size ≤2.5 µm

CO Concentration of carbon monoxide
NO2 Concentration of nitrogen dioxide
O3 Concentration of ozone

3.2.1. Multi-Layer Perceptron (MLP)

The multi-layer perceptron neural network (MLP) is the simplest artificial neural net-
work topology possible. It is basically a combination of multiple perceptrons, which are the
basic neuron units. The functioning of each neuron, or perceptron, can be mathematically
expressed by Equation (1).

yxw = f

(
m

∑
i=1

wixi + b

)
(1)

where yxw is the output of the perceptron, f is the activation function, xi is an attribute or
feature from input data vector x of size m, wi represents each weight from weight vector
w and b is the bias. In summary, the objective is to determine whether the output of the
function (f ) triggers (i.e., returns a value other than zero) after summing up the product of
the input features and the weights, which are the parameters that are automatically learned
through a supervised learning algorithm.

An MLP is generally composed of three or more fully connected layers. Figure 2
presents a schematic diagram of a typical MLP architecture. At least three layers are
required: an input layer, a hidden layer and an output layer.
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corresponds to a perceptron.

MLPs are suitable for several applications, with their its main parameters represented
by the number of layers, the activation functions and the number of neurons in each
layer [8], with a flexible topology. The definition of the number of layers and neurons
is variable, and the optimal composition is problem-specific. The number of outputs is
dependent on specific application requirements, permitting multi-step and multivariate
forecasting. The most adequate configuration of these attributes for each of is chosen
mostly empirically for each application. All the connections between MLP layers are of
the forward kind, which means that backward signal propagation is only possible through
a backpropagation algorithm [8]. Although MLPs were not specifically designed to deal
with time series forecasting, due to their simplicity and ability to solve complex problems,
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they have been employed in many studies to predict air pollution components, such as
in [5–9,11,22].

3.2.2. Long Short-Term Memory (LSTM)

RNN is a type of neural network created to deal with sequential data distributed
across time and space. However, such a structure is prone suffer from the vanishing
gradient problem, a characteristic of gradient-based learning methods, which can even
prevent neural networks from training. The main difference between RNNs and basic
neural networks is that RNNs also establish weighted connections between neurons [13],
connected by the hidden state, which carries information from the immediately previous
steps and overwrites at every step with no special or selective control of what is memorized
or forgotten. This limits the ability of traditional RNNs to correctly represent long-term
relationships present in time series or other sequential data.

To tackle this issue, LSTM arose as an alternatives to solve the vanishing gradient
problem of conventional RNN topologies. LSTM is a model structured in the form of chains
comprising the cell state, input gate, forget gate and output gate, making connections with
the next cell through the cell state and hidden state [23]. The cell state is a kind of selective
memory of the past, and the gates work interchangeably to control the flow of data in the
cell state. The input gate processes the input and decides whether it is relevant to change
the memory available in the cell state. The forget gate decides which data should be kept
from older output, controlling the flow of the hidden state and deciding which information
should be carried to the next cell.

To train an LSTM neural network, the input data need to be three-dimensional because
of the addition of the lookback, which represents how many steps back are used to predict
the next step or variables. Owing to this capacity, LSTM has the ability to learn temporal
relations and improve the forecasting results, representing an interesting tool to deal with
time series. Figure 3 shows how an LSTM cell is structured. All lines carry data that can go
through pointwise operations, neural network layers, concatenations and replications.
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In an LSTM, the cell state acts as an internal selective memory of the past, represented
in Figure 3 by the horizontal line starting at ct − 1 and ending at ct. The output of an
LSTM cell is represented by h, i.e., the hidden state. The following equations depict the
mathematical procedure of an LSTM cell:

ft = σ
(

W f

[
h(t−1), xt

]
+ b f

)
(2)

it = σ
(

Wi

[
h(t−1), xt

]
+ bi

)
(3)
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Cst = S
(

WC

[
h(t−1), xt

]
+ bC

)
(4)

Ct = ftC(t−1) + itCs (5)

ot = σ
(

Wo

[
h(t−1), xt

]
+ bo

)
(6)

where ft is the forget gate; it is the input gate; Cst and Ct are the candidates for the cell
state and the cell state at timestep t, respectively; ot is the output gate at t; σ is the sigmoid
function; S is the a hyperbolic tangent function; Wx is the weight matrix of x neurons; ht is
the cell output at t; xt is the input at t; and bx is the bias matrix corresponding to x.

3.2.3. Convolutional Neural Networks (CNN)

A CNN is a type of neural network that learns patterns from data through the applica-
tion of convolutions aimed at learning filters that extract the main features from the data to
perform a specific task (see Figure 4). Thus, CNNs are able to learn spatial and temporal
relations from data [7]. Consequently, CNNs are able to resize and automatically detect
new elements and patterns from data. In addition, pooling layers reduce the size of input
sequence, followed by the application of flattening layers, which adjust the shape of data
to enter a final regular MLP that concludes the specified task. CNNs are widely applied in
image processing [24], and their benefits can be either explored and assessed for time series
predictions, for which lookback is also required as an input to the CNN.
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The following equations mathematically describe the convolution layer:

G[m, n] = ( f ∗ k)[m, n] = ∑j ∑i k[j, i] f [m− j, n− i] (7)

Cl = al
(

V[l]
)

(8)

V l = Kl ·C[l−1] + bl (9)

where G is the feature map; f is the input; k, m and n represent the kernel, rows and
columns of the result matrix, respectively; the indices j and i are related to the kernel; l is
the layer index, V is the intermediate value; K is the tensor that has filters or kernels; C is
the result of the convolution; b is the bias; and a is the corresponding activation function.
In addition, a pooling layer can be employed to reduce the dimensionality of the size of
the output of the convolution step, e.g., by extracting the maximum value (MaxPooling)
or the average value (AvgPooling) from the learned and extracted kernels/filters within a
fixed-size window, thus decreasing the required processing power for network training.

3.2.4. Hybrid Model

Hybrid models exploit the main functionalities of baseline methods, creating a more
robust model that can handle more complex problems. In this sense, the CNN-LSTM
method exploits the advantages of CNNs, extracting the most important multidimensional
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attributes from data, resizing them and sending them as input to the LSTM layers, which
can extract more attributes related to temporal relationships. The combination of a CNN
and LSTM is expected to deliver more reliable predictions. A representation of such an
architecture is shown in Figure 5, with some internal layers that allow for connections
between the parts. Thus, this architecture will be evaluated along with others models.
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3.3. Wavelet Decomposition for Feature Extraction

WT of a time-domain function is a tool that emerged as an improved version of Fourier
transform. Fourier transform consists of taking a time-domain signal and breaking it into a
weighted sum of sine and cosine waves to represent it in the frequency domain [25]. How-
ever, scientists needed a more appropriate function to represent choppy signals [26], and
beyond that, it is necessary to overcome the problem of the window size not changing with
frequency [11]. Wavelet analysis can work with different signal temporal resolutions and
different basis functions, providing a detailed frequency assessment of all discontinuities
and signal patterns, processing data at different scales.

Despite the algebra involved in the process, the discrete wavelet transform (DWT) of a
signal is calculated by multiple applications of high-pass and low-pass filters, as shown
in Figure 6. The outputs from the former are detail coefficients, and those from the latter
are approximation coefficients. The number of times that filters are used is determined
by the level of decomposition required. The combination of the two outputs contains the
same frequency content as the input signal, but the amount of data is doubled. Therefore, a
downsampling procedure is applied to filter outputs, as shown in Figure 6 using a factor
of two.

For each feature, there is a specific wavelet family that most satisfactorily represents
the original signal in terms of separating more and less significant frequencies. To automate
the process of selecting the most suitable wavelet family, Zucatelli et al. [22] proposed
a method based on the use of RMSE between the original signal and the reconstructed
approximation signal to obtain the most appropriate family for a specific feature. In the
present study, this process was applied to all features considered relevant to the analysis.

The importance of WT in machine learning applications lies in the fact that it permits
the generation of new features using the approximation and detail coefficients from a
pre-determined level of decomposition. The most interesting characteristic of WT is that
its individual functions are localized in time and frequency [27], allowing the data to be
reconstructed in the same length as the original data, which is relevant to improving ANN
model training.
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3.4. Model Setup

Before applying data to ANN models, some preprocessing was performed. The
available data from the two stations were concatenated to provide more data for the
training step. Latitude, longitude and altitude were added to distinguish the regions, and
the data were resampled by the average of each hour. Then, five levels of wavelet transform
were applied, using the family selection criteria described in [22]. For each feature, five
reconstructed detail and approximation signals were obtained.

Previous studies, such as [8], showed the importance of transforming time variables
into periodical information by employing trigonometric functions to enable the representa-
tion of time cycles, which can lead to improved forecasting performance of DNN models.
Thus, the time variable was converted into periodic sine and cosine with the aim of im-
proving the ability of the DNN to learn periodic and temporal relationships [8], depicting
them in six new features corresponding to the sine and cosine of hours, days and months
according to the following equations:

sinta = sin
(

2πta

f

)
(10)

costa = cos
(

2πta

f

)
(11)

where ta is the value of the time attribute being calculated, i.e., hour of the day, day of
the month or month of the year; and f is the of possible value of that time attribute in the
corresponding time scale, i.e., for hour, the number of hours in a day (24); for day, the
number of days in that month; and for month, the number of months in a year (12).

As a result, the final dataset was composed by 86 features, 8 of which were the original
features and the remainder of which were the preprocessed and augmented features, as
previously described. Finally, all variables were scaled to the same range between zero and
one so that they all had the same degree of importance.

Tables 2–5 present the configurations of each implemented DNN topology. The number
of neurons at the input for each DNN is related to the amount of features required as input,
i.e., 86, considering all the features generated by the wavelet transforms, as previously
explained. In the case of the LSTM, 1D-CNN and the hybrid 1DCNN-LSTM models, a
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lookback of three samples was set up for training. The output layer of each DNN was set
to 24, one for each forecasting hour ahead, totaling 24 h. Therefore, to make predictions
once the model was trained, the raw features were collected, as expressed in Table 1, the
time series were resampled for hourly frequency, the time attributes were preprocessed
as detailed in Equations (10) and (11), the corresponding wavelet transforms and levels
were generated, the features between zero and one were scaled and the lookback for each
sample was processed (if working with LSTM, 1D-CNN or 1DCNN-LSTM models). As a
result, the models output the next 24 h of PM2.5 concentrations, given the input.

Table 2. Developed MLP architecture.

Layer Layer Type Neurons Activation Function

Input N/A 86 N/A
First Hidden Layer Dense 10 Sigmoid

Second Hidden Layer Dense 17 ReLu
Output Dense 24 Sigmoid

Table 3. Developed LSTM architecture.

Layer Layer Type Neurons Activation Function

Input N/A 86 N/A
First Hidden Layer LSTM 64 Sigmoid

Second Hidden Layer Dropout (0.4) N/A N/A
Third Hidden Layer Dense 12 ReLu

Output Dense 24 Sigmoid

Table 4. Developed 1D-CNN architecture.

Layer Layer Type Neurons Activation Function

Input N/A 86 N/A
First Hidden Layer 1D-CNN 128 Sigmoid

Second Hidden Layer 1D-CNN 32 ReLu
Third Hidden Layer 1D-MaxPooling N/A N/A

Fourth Hidden Layer Dropout (0.2) N/A N/A
Fifth Hidden Layer Flatten N/A N/A
Sixth Hidden Layer Dense 16 ReLu

Output Dense 24 Sigmoid

Table 5. Developed hybrid (1DCNN-LSTM) architecture.

Layer Layer Type Neurons Activation Function

Input N/A 86 N/A
First Hidden Layer 1D-CNN 128 Sigmoid

Second Hidden Layer 1D-MaxPooling N/A N/A
Third Hidden Layer LSTM 64 Sigmoid

Fourth Hidden Layer Dropout (0.2) N/A N/A
Fifth Hidden Layer Flatten N/A N/A
Sixth Hidden Layer Dense 32 ReLu

Output Dense 24 Sigmoid

The training, validation and test datasets were separated prior to the building, vali-
dation and assessment of the models. The training dataset consisted of the concatenation
of the Stoke Park data from February to June, in addition to August and September, and
the Sutherland Memorial Park dataset corresponding to the months of June, in addition to
August to October, both in 2019. From the training dataset, 30% was randomly separated
for validation. The month of July 2019 was separated as the test dataset, corresponding to
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about 15.38% of the total dataset, and was never seen by the models during the training
and validation of data from both stations. This was done to assess the final performance of
the models in predicting PM2.5 concentrations in order to standardize the tests for the same
period for which data were available for both regions.

Table 6 presents the hyperparameters used to train each DNN. No specific hyperpa-
rameter search technique was implemented, as the primary target was to evaluate different
DNN topologies for the task of forecasting PM2.5 for the next 24 h using WT for feature
augmentation. The parameters were set to be practically the same in order to guarantee
comparativeness between each topology—except for MLP, which required more 100 epochs
than the others models to be successfully trained.

Table 6. Hyperparameters used to train each DNN architecture.

Layer MLP LSTM 1D-CNN 1DCNN-LSTM

Optimizer Adam Adam Adam Adam
Learning Rate 0.001 0.001 0.001 0.001
Loss Function MSE MSE MSE MSE

Batch Size 32 32 32 32
Epochs 300 200 200 200

3.5. Model Evaluation

The performance of each DNN topology was quantitatively evaluated using the error
metrics mean square error (MSE), mean absolute error (MAE) and normalized mean square
error (NMSE), along with the Pearson correlation (r) and coefficient of determination (R2) as
correlation metrics, in both training and test datasets according to the following equations:

MSE =
1
n

n

∑
i=1

(Oi − Fi)
2 (12)

MAE =
1
n

n

∑
i=1
|Oi − Fi| (13)

NMSE =
MSE

Var(O)
(14)

r =
∑n

i=1
(
Oi −O

)(
Fi − F

)√
∑n

i=1
(
Oi −O

)2
√

∑n
i=1
(

Fi − F
)2

(15)

R2 = 1− ∑n
i=1(Oi − Fi)

∑n
i=1
(
Oi −O

)2 (16)

where n is the number of samples; Oi is the i-th observed sample; Fi is the corresponding
predicted value; O and F are the average of all observed and predicted values, respectively;
and Var(O) denotes the variance of the O set of observed samples.

In addition, once the models were trained, the prediction intervals for each model and
each forecasting horizon were estimated by applying quantile regression to the errors of the
predictions made in the validation dataset—which, in this case, was used as the calibration
set. To this end, a quantile of q = 0.95 was employed, meaning that the prediction intervals
contained a range of values that should include the actual future value with a probability
of 95% [28]. The prediction intervals were calculated for each forecast horizon in the test
dataset and averaged to generate the final prediction intervals for each model.

After assessing all the prediction results in the test dataset, the model selected as
presenting the best metrics was evaluated to determine whether its predictions differed
in distribution relative to those of the other model, i.e., whether they were statistically
equivalent or not. To this end, the Wilcoxon signed-rank test [29] was employed, as it is
a nonparametric statistical technique for comparing two paired or related samples and
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determining whether their distributions are equal or not. For a given statistical significance
(α), if the null hypothesis (H0) can be rejected, i.e., if p ≤ α, where p is the calculated p value
according to the test; then, the samples are drawn from different distributions. On the
contrary, if p > α, H0 cannot be rejected, meaning that the samples are drawn from the same
distribution. For this work, α = 0.05 was used.

4. Results and Discussion
4.1. Comparison of Each Approach with and without Wavelet Decomposition

Tables 7–10 present a comparison of the average metrics of all tested models forecasting
24 h ahead with and without the five wavelet-decomposition levels for both train and test
datasets. This average was calculated considering the values of all forecasting hours and
stations. The DNN models were compared with a simple linear regression model in order
to assess how the DNNs performed in comparison with a baseline approach. Best results in
each table for each metric are highlighted in bold.

Table 7. Average results without wavelets considering both stations in the train dataset.

Model MSE MAE NMSE Pearson (r) R2

LR 116.30 7.30 0.48 0.74 0.52
MLP 83.85 5.77 0.35 0.80 0.65

LSTM 82.17 5.74 0.34 0.81 0.66
1D-CNN 64.32 5.53 0.29 0.84 0.71

1DCNN-LSTM 12.78 2.44 0.08 0.96 0.92

Table 8. Average results with five levels of wavelet transform considering both stations in the
train dataset.

Model MSE MAE NMSE Pearson (r) R2

LR 696.57 17.95 1.74 0.0078 −0.74
MLP 44.36 4.48 0.21 0.89 0.79

LSTM 35.45 4.00 0.32 0.91 0.83
1D-CNN 27.04 3.46 0.13 0.93 0.87

1DCNN-LSTM 18.64 2.96 0.91 0.96 0.91

Table 9. Average results without wavelets considering both stations in the test dataset.

Model MSE MAE NMSE Pearson (r) R2

LR 45.61 5.38 1.75 0.37 0.47
MLP 29.18 3.93 1.13 0.37 −0.13

LSTM 28.21 3.86 1.08 0.39 −0.09
1D-CNN 33.27 4.18 1.29 0.37 −0.30

1DCNN-LSTM 127.27 7.58 5.14 0.40 −4.15

Table 10. Average results with five levels of wavelet transform considering both stations in the
test dataset.

Model MSE MAE NMSE Pearson (r) R2

LR 23.75 3.66 0.98 0.52 −0.74
MLP 84.84 6.12 3.15 0.35 0.79

LSTM 25.10 3.70 1.45 0.49 0.83
1D-CNN 27.19 3.73 1.05 0.45 0.87

1DCNN-LSTM 17.09 2.97 0.66 0.68 0.91

Tables 7 and 8 present the metrics for the model results without and with wavelet
transforms in the train dataset, respectively. For the train dataset, the hybrid model 1DCNN-
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LSTM presented the best results for all metrics. The hybrid model achieved the best results
with features augmented with wavelets, showing that they were key to increasing the
models performance.

Tables 9 and 10 present the results for metrics of the test dataset, showing that the
application of wavelets improved the metrics and, consequently, the results of all topologies,
except for MLP, which obtained worse values, except for R2. The hybrid model 1DCNN-
LSTM had exhibited the best improvement, with a reduction in MSE of 127.27 to 17.09,
representing a reduction of almost 90% in the test dataset. The hybrid architecture with
wavelets also presented the best values for all metrics considered, whereas 1D-CNN and
LSTM with wavelets demonstrated similar results individually but performed worse than
the hybrid 1DCNN-LSTM architecture. Metrics changed from the training to the test
metric assessment; in general, the application of wavelet transforms either improved the
models’ ability to generalize, as the metrics did not change considerably, presenting with
similar metric levels. This highlights the importance of feature augmentation with wavelet
transform of time series data to improve the learning ability of DNNs due to their capacity
to capture information from the time and frequency domains at the same time and at
different scales.

Tables 11 and 12 present the prediction intervals for each DNN model for all forecasting
horizons evaluated in the test dataset without and with wavelets. The smaller the prediction
interval, the better because the uncertainties in the predictions are smaller, and the interval
is narrower. According to the results, the hybrid model outperformed the others in both
cases, presenting the best prediction interval with the 5-level wavelet decomposition.

Table 11. Average prediction intervals for all forecasting horizons for each model in the test dataset
without wavelets for both stations.

Model Prediction
Interval (+/−)

Mean
Prediction

Interval Lower
Bound

Mean
Prediction

Mean
Prediction

Interval Upper
Bound

MLP 18.23 −8.91 9.32 27.55
LSTM 18.17 −8.77 9.40 27.57

1D-CNN 16.23 −6.64 9.59 25.82
1DCNN-LSTM 9.09 3.85 12.95 22.05

Table 12. Average prediction intervals for all forecasting horizons for each model in the test dataset
with the five levels of wavelet decomposition for both stations.

Model Prediction
Interval (+/−)

Mean
Prediction

Interval Lower
Bound

Mean
Prediction

Mean
Prediction

Interval Upper
Bound

MLP 13.85 −2.91 10.94 24.80
LSTM 12.09 −3.82 8.27 20.36

1D-CNN 10.76 −2.65 8.11 18.86
1DCNN-LSTM 8.59 0.21 8.79 17.38

4.2. Assessing Individual Forecasting Hour Performance for Each Approach

It is also important to verify how each model performs for each forecasting horizon
(or each individual hour ahead) in the test dataset, which was never seen by the models
during the training and validation. Figure 7 shows the average NMSE and Pearson r
behavior metrics for each forecasting hour for each station, considering the data with
wavelet transform, as this method was proven to produce superior results relative to no
wavelet transform. In general, the hybrid method using 1DCNN-LSTM presented better
performance than the others models.



Atmosphere 2022, 13, 1451 15 of 20

Atmosphere 2022, 13, x FOR PEER REVIEW 15 of 21 
 

 

Table 11. Average prediction intervals for all forecasting horizons for each model in the test dataset 
without wavelets for both stations. 

Model Prediction Inter-
val (+/−) 

Mean Prediction 
Interval Lower 

Bound 
Mean Prediction 

Mean Prediction 
Interval Upper 

Bound 
MLP 18.23 −8.91 9.32 27.55 

LSTM 18.17 −8.77 9.40 27.57 
1D-CNN 16.23 −6.64 9.59 25.82 

1DCNN-LSTM 9.09 3.85 12.95 22.05 

Table 12. Average prediction intervals for all forecasting horizons for each model in the test dataset 
with the five levels of wavelet decomposition for both stations. 

Model Prediction Inter-
val (+/−) 

Mean Prediction 
Interval Lower 

Bound 
Mean Prediction 

Mean Prediction 
Interval Upper 

Bound 
MLP 13.85 −2.91 10.94 24.80 

LSTM 12.09 −3.82 8.27 20.36 
1D-CNN 10.76 −2.65 8.11 18.86 

1DCNN-LSTM 8.59 0.21 8.79 17.38 

4.2. Assessing Individual Forecasting Hour Performance for Each Approach 
It is also important to verify how each model performs for each forecasting horizon 

(or each individual hour ahead) in the test dataset, which was never seen by the models 
during the training and validation. Figure 7 shows the average NMSE and Pearson r be-
havior metrics for each forecasting hour for each station, considering the data with wave-
let transform, as this method was proven to produce superior results relative to no wave-
let transform. In general, the hybrid method using 1DCNN-LSTM presented better per-
formance than the others models. 

 
Figure 7. Metrics of the hybrid 1DCNN-LSTM model with five-level wavelet decomposition for each
forecasting horizon calculated for Stoke Park (a) and Sutherland (b) stations.

With respect to the NMSE for Stoke Park, the LSTM and MLP models outperformed
the 1DCNN-LSTM model for last-hour forecasting, but 1DCNN-LSTM performed better
for the overall forecasting hours, with a more consistent and robust performance than that
of the other models, including for the Pearson r metric. However, for Sutherland Memorial
Park, the MLP model presented the highest errors for the entire range for NMSE, whereas
the 1DCNN-LSTM model achieved the best performance in almost all steps, except when
LSTM slightly overcame its results for the last forecasting hours. Linear regression and MLP
presented the worst performance in Stoke Park for NMSE and Pearson r, whereas MLP
presented the worst results for Sutherland Memorial Park data for both metrics, followed
by 1DCNN. For both datasets, the smallest error occurred in the first step, increasing along
the forecasting horizon. This behavior occurs due to the decreasing ability of all methods
with respect to longer-term forecasting, which reduces the capacity of the trained DNN
models to make precise inferences about events in farther in the future. Therefore, the
prediction performance decreases as the time horizon increases, making the metrics worse
in the 24th hour. This also provides a basis for future research in the field of deep neural
networks, with the aim of improving the ability of such models to learn and represent
longer-term temporal relationships for multivariate time series forecasting. These results
are related to a unique model trained for both stations at once.

Figures 8–10 show a qualitative analysis of the forecasting behavior for Stoke and
Sutherland parks of the 1st, 12th and 24th hours using the 1DCNN-LSTM model built with
and without wavelet transforms, including the prediction intervals of the model—plotted as
shadowed regions around the predictions. It is possible to notice the qualitative differences
between the observed data and the predictions using the specified model with and without
wavelets. In general, the application of wavelets increased the model’s ability to predict
PM2.5 concentrations. Wavelets contributed to more smoothed and robust predictions,
presenting a behavior closer to the real data, with more precise behavior and less noise,
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which was not the case without wavelets. This behavior was more evident for Stoke Park
than for Sutherland Memorial Park, where the predictions without wavelets preserved some
characteristics of the original signal but, in general, performed worse than using wavelets.
The results of this analysis are in agreement with the quantitative metrics, reflecting the
lower error values for the approach using 1DCNN-LSTM and wavelet transforms.
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4.3. Evaluation of the Generalization Ability of the DNN

It is important to evaluate of the generalization ability of the DNN, which is demon-
strated by analyzing the evolution of the loss (MSE) value for each epoch during the training
and validation procedures, using the portion of the data separated for each purpose. The
aim is to evaluate whether the model performs well during training with the same behavior
both in the training and validation sets. If the model presents different results of loss
along the epochs, it may be suffering some sort of under- or overfitting, depending on the
behavior of the loss curve measured at each epoch for each set.

Figure 11 presents a graphical evolution, showing that the model generalizes well, pre-
senting no overfitting or underfitting, as the loss of both training and validation presented
the same convergence behavior, and PM2.5 predictions in the test dataset, which had not
been seen before by the model, were successfully performed.
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4.4. Assessment of the Statistical Difference of the Predictions

As presented in Section 3.5, the Wilcoxon signed-rank test was employed to assess
whether the models’ predictions differed in terms of distribution and whether they were
statistically similar. Table 13 presents the evaluation of the hybrid 1DCNN-LSTM model
relative to other DNN models, both with features augmented with 5-level wavelet trans-
forms. According to the results, the Wilcoxon signed-rank test demonstrated that the
predictions of the 1DCNN-LSTM had a different distribution than the other DNN models,
as the null hypothesis was rejected for every paired test, demonstrating that the hybrid
model’s predictions were statistically different from those of the other models.

Table 13. Wilcoxon signed-rank test assessment of the predictions of the hybrid 1DCNN-LSTM model
against the other models with five-level wavelet transforms. If H0 is rejected, i.e., if p ≤ α, α = 0.05,
the distributions are different.

Model Stoke
p-Value Sutherland p-Value Test Result

MLP 0.00 0.00 Different distribution
LSTM 0.00 0.04 Different distribution

1D-CNN 0.00 0.00 Different distribution

5. Conclusions

In the present study, we systematically evaluated different deep learning models, along
with WT, to predict the concentration of PM2.5 up to 24 h ahead in two open-road regions
of Surrey, UK, characterized by the proximity of parks where children and adults perform
recreational activities by the high vehicle traffic, which are relevant factors with respect
to air pollution monitoring and assessment. The methodology implemented consisted of
developing and validating the use of deep learning associated with WT and comparing the
results of the tested models with those of simpler methodologies. Different deep neural
network topologies were implemented, namely MLP, LSTM, 1D-CNN and 1DCNN-LSTM,
with and without WT, along with a linear regressor model as a baseline. The results showed
that the best performance was achieved by the 1DCNN-LSTM model among all other DNN
architectures, with WT applied on the time series data. The final deep neural network
model captured the real data behavior and presented a good generalization of the problem
in test data, despite being related to a period of data that was never seen by the model
during the training and validation.

WT was implemented with the aim of decomposing the original time-series signals
into several low- and high-frequency components, extracting some information from the
data that was not yet available. This increased the results of all deep neural networks,
which is in line with other previously developed studies [12,13,22]. Our results highlight
the positive impact of with respect to improving DNN performance and how this approach
is appropriate to deal with complex problems.

Thus, this methodology proved to have a great potential for use in by academics,
authorities, industry and society to construct and validate deep learning models to predict
hour PM2.5 concentrations in advance for the next 24 h with good performance. This
research provides a solid basis for understanding, developing, and evaluating deep learning
models for this task, enabling the adoption of preventive or mitigation actions when
necessary, such as alerting people to avoid highly polluted areas when the predictions of
PM2.5 concentrations reach hazardous levels, avoiding imminent health risks associated
with exposure to air pollutants.

In future studies, this methodology can be assessed in other places and scenarios
under varying conditions to verify its robustness. Furthermore, other deep neural network
approaches and models can be implemented, such as transformers or physics-informed
neural networks (PINNs), including feature augmentation methodologies, to assess their
capability of predicting long-term PM2.5 concentrations with high fidelity.
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