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Abstract: Accurately predicting air pollutant levels is very important for mitigating their effects.
Prediction models usually fail to predict sudden large increases or decreases in pollutant levels.
Conventional measures for the assessment of the performance of air pollutant prediction models
provide an overall assessment of model behavior, but do not explicitly address model behavior when
large changes are observed. In our work, we propose a method to automatically label the observed
large changes. We also propose two visualization methods and two measures that can help assess
model performance when sudden large changes in pollutant levels occur. The developed measures
enable the assessment of model performance only for large changes (MAE of large changes), or
weigh the model residuals by the rate of change (WErr), making the evaluation measures “cost-
sensitive”. To show the value of the novel evaluation and visualization methods, we employ them
in the evaluation of three empirical examples—different statistical models used in real-life settings
and a popular atmospheric dispersion model. The proposed visualizations and measures can be
a valuable complement to conventional model assessment measures when the prediction of large
changes is as important as (even if they are rare) or more important than predictions of other levels.

Keywords: air pollutant levels; prediction model; large changes; performance measure; visualization

1. Introduction

Inhalation of polluted air is a major environmental health risk [1–4]. Its short- and
long-term exposure can lead to severe adverse health effects such as reduced lung function,
respiratory infections, asthma, heart disease, and diabetes. This is why most countries
have put legislation in place to dictate how air pollutants should be measured, evaluated,
and forecasted with regard to specific predefined limit values. In Europe, air pollutant level
measurements and their limit values are defined in Directive 2008/50/EC [5]. The directive
also dictates that member states have to forecast the exceedances of the limit values.
Accurate forecasting of elevated levels of air pollutants can alleviate their impact on human
health. EU member states have to predict the exceedances of the daily limit value for PM10,
the exceedances of the information threshold for ozone (O3), and the exceedances of the
alert threshold for sulfur dioxide (SO2) and nitrogen dioxide (NO2).

Different types of models are used to forecast air pollutant levels, most commonly
photochemical atmospheric dispersion models [6–10] and different statistical models. Some
statistical models used for the prediction of pollutant levels are described in Taheri S.
and Sodoudi [11], Lu and Wang [12], Dutot et al. [13], Faganeli Pucer et al. [14], Sharma
et al. [15], Kocijan et al. [16] and de Gennaro et al. [17]. Photochemical atmospheric
dispersion models usually produce spatial three-dimensional rasters of pollutant levels
as outputs while statistical models mostly produce point predictions. Models are usually
validated by comparing their outputs to pollutant measurements from a particular location
(point measurements) [18], so both types of models (chemical dispersion and statistical
models) are validated as point predictions. There have been several criteria used for the
assessment of the performance of air quality models, such as the measures that evaluate
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the distance between point prediction and measured values e.g., root mean square error
(RMS) [13,19–26], mean absolute error (MAE) [13,14,25–27], and mean absolute percentage
error [28]. Those measures are useful when models predict pollutant levels as continuous
values (e.g., regression models). Different indexes that assess model performance as
normalized measures have also been used [15] for example the correlation coefficient,
Willmott Index [25,29], Nash–Sutcliffe Efficiency [30], and Legates and McCabe Index [31].
Multiple evaluation measures used in air pollutant level forecasting are described in Sharma
et al. [15], Kocijan et al. [16], and Carslaw and Ropkins [32]. When the model predicts the
exceedance of a predefined threshold (e.g., PM10 daily limit value of 50 µg/m3) or predicts
the range (class) of the pollutant level, the evaluation is performed in terms of accuracy,
true positive rate, false positive rate [17,26,33,34], or the success index [13,17]. If the model
predicts the probability of exceedance of a predefined threshold, the performance can be
evaluated by using the logarithmic score [14].

Measures that assess the mean or squared mean (MSE, MAE) of the residuals esti-
mated as the difference between the observed and modeled values provide an overall
assessment of model performance, which is intuitive (probably MAE is the most intuitive
measure). When using MSE instead of MAE for the assessment of model performance large
residuals provide a greater contribution to the overall error. All the coefficients and indices
listed above give a comparison of modeled and measured levels. If we model daily air
pollutant levels with the simplest model possible, the “persistence model” (today’s level
is the same as yesterday’s), and assess its performance using the previously mentioned
measures, the persistence model does not seem that inefficient. For example, if we assess
the performance of the persistence model in terms of MAE, in most instances the error
would not be very high as sudden large changes in pollutant levels are not very common in
Europe [35]. The residuals (of the persistence model) would be small when the change in
pollutant level is small from one day (one modelled value) to the next. Still, persistence is
not a good model as it is incapable of predicting changes in pollutant levels. All measures
listed above cannot assess the performance of the models when we are particularly inter-
ested in their ability to predict large pollutant level changes. The conventional measures
are not “cost-sensitive”.

For model evaluation, different visualizations are also used. Still, the most popular visu-
alization is the plot depicting the observed values against the modeled values [18,24,26,36].
Different scatter plots, residual plots, and quantile-quantile plots are also frequently
used [18,36]. For the visual evaluation of air quality models, the Taylor diagram [37]
and the Target plot [38], which enable the visualization of more than one metric in the same
plot, or the polar coordinate diagram of the relative prediction error [26], which shows
the distribution of the errors for different times of the day, are also used. Recently, some
visualizations for feature importance have been proposed [21]. All these visualizations
show interesting aspects of model performance but tell nothing about model performance
when predicting large changes.

When we were developing models to predict PM10 and O3 levels with the Slovenian
Environment Agency (ARSO) [14], air quality experts emphasized that the critical task
when predicting pollutant levels is to correctly predict the onset and offset of an episode
of high PM10 or ozone levels. According to ARSO, correctly predicting large increases
and decreases is more important than the average model performance. They also wanted
measures that would enable them to evaluate model performance during these rare events.
This was the main motivation for our work.

High PM10 levels in Slovenia occur in winter when the meteorological situation is
stable with an unfavorable dispersion situation (temperature inversion and low wind
conditions) [39]. This is usually known as air stagnation, which is characterized by stable
weather, low wind in the lower atmosphere, and no precipitation [27,40,41]. Even emissions
are affected by the meteorological situation, e.g., a sudden decrease in temperature affects
the amount of indoor heating and discourages people from biking or walking to work,
which increases the amount of traffic. Such a decrease in temperature accompanied by
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stable, low wind, low-temperature weather in Slovenia marks the beginning of an episode
of high PM10 levels. When such an episode is forecasted, precautions can be taken to limit
PM emissions (e.g., limit traffic or discourage people from burning wood). Similarly, high
ozone levels are not only induced by the share of ozone precursors and solar radiation,
but also by air stagnation [40]. High ozone levels are common in summer when solar
radiation is high and hours of daylight are long [42]. If high ozone levels are forecasted for
Slovenia, people are advised not to exercise outdoors and to avoid going to the mountains.
As such measures affect people’s lives it is also important to carefully predict the end of
such episodes, so the implemented measures can cease. A similar situation occurs in all of
central Europe. This is the main reason that air quality experts want their models to be able
to predict large increases and decreases.

In our work, we present two new measures for the evaluation of prediction model
performance adapted for the evaluation of large pollutant level changes. We also pro-
pose two new visualizations for the visual evaluation of model performance in these
extreme situations.

The remainder of the paper is organized as follows. In Section 2 we define the pollutant
level changes and discuss what constitutes large changes, we propose new visualizations
and measures that evaluate large changes. In Section 3 we present three examples of the
applicability of the presented visualizations and measures. We conclude the paper with
Section 4.

2. The Visualization and Evaluation of Large Changes

In this section, we define changes in pollutant levels (see Section 2.1), large pollutant
level changes (see Section 2.2) and propose two new visualizations (see Section 2.3) and two
new measures (see Section 2.4) for the evaluation of air quality models. Figure 1 represents
the steps taken to get to the final model evaluation.

Calculate
ΔC(Δt)

Calculate
ΔCpred(Δt)

Get pollutant
observations (C)

Get pollutant 
predictions(Cpred))

Define
and 
calculate
large
changes

Visualize

Calculate the
new measures

Same time
resolution

Same Δt 

Evaluate
model 
performance 
for large 
changes

Figure 1. The flow of the proposed methods for air pollutant model predictions visualization
and evaluation.

2.1. Defining Pollutant Level Changes

We denote the change in pollutant level as ∆C(x,∆ T), where C(x, T) denotes the
observed value of an investigated pollutant at a certain location (x) at a certain time and
C(x, T + t) the same pollutant t time in advance at the same location (x). Cpred(x, T)
denotes the level predicted by a certain model for the same location as C(x, T). As all
observations and predictions are made for the same location x, we will discard x from
the equations and write the changes in pollutant level as ∆C(∆t), which is defined in
Equation (1). As an example, we can evaluate a statistical model that predicts today’s PM10
levels in Ljubljana and we want to assess if the model correctly predicted how much the
daily average PM10 level will increase today from the level that was observed yesterday, so
we define:

∆C(∆t) = C(T + t)− C(T). (1)

C(T) is the last available observation before we run the model, e.g., if we are predicting the
PM10 level for tomorrow and the last available PM level for today is at midnight. ∆C(∆t)
denotes the difference in observed pollutant level (measured values) at time instant T and
time instant T + t.
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We also define the predicted change in pollutant level ∆Cpred(∆t):

∆Cpred(∆t) = Cpred(T + t)− C(T). (2)

Cpred(T + t) is the value predicted by the model that is located at t time instants in the
future. ∆C(∆t) describes how much the pollutant level changed from one observation to
the next (the true increase) while ∆Cpred(∆t) describes the change assessed by the model.

2.1.1. Defining the ∆Cpred(∆t) for Photochemical Atmospheric Dispersion Models

When assessing the performance of statistical models, we define ∆Cpred(∆t) (de-
scribed in Section 2.1) as the difference between the predicted value and the last observed
value. If we are dealing with photochemical atmospheric dispersion models (e.g., model
EMEP MSC-W [6] model, see Section 3.3), the observed value is not available or at least
is not taken into account by the model. Photochemical dispersion models are usually run
without past measurements as inputs.

If we want to evaluate such models using the new measures, we must define ∆Cpred(∆t)
differently than with statistical models. We propose defining ∆Cpred(∆t) as the difference
between the predicted level at time T and the predicted level at time T + t. This shows
how the model is capable of predicting large changes in pollutant levels disregarding the
actual predicted levels. We speculate that sometimes photochemical dispersion models are
capable of predicting large changes correctly, but the produced value (C(T)) is not correct
due to some inherent biases.

2.2. Defining Large Pollutant Level Changes

Intuitively, a large change is a change in pollutant level between time T and T + t that
is much larger than the average change in pollutant levels in this time interval. Defining
what a large change is can be very ambiguous. It could be defined by a field expert or could
be defined statistically. For example, an expert on air pollution can quickly identify sudden
large increases or decreases in pollutant levels at a certain location, while people who do
not deal with these issues cannot spot these changes. This is why we propose a method
based on the statistical properties of pollutant level changes in a certain time interval.

We propose modeling the differences ∆C(∆t) with the t-distribution [43], which is
very similar to the normal distribution, but it can accommodate heavier tails. The t-
distribution is a symmetric and bell-shaped distribution. It is a class of distributions, not
one distribution. When fitting a t-distribution, we have to specify the degrees of freedom.
The larger the number of degrees of freedom, the more similar to the normal distribution it
becomes (when the t-distribution has infinite degrees of freedom it becomes the normal
distribution). At lower degrees of freedom, it can model heavier tails than the normal
distribution [44]. The t-distribution is usually assumed to be centered at 0 and is not scaled.
In our case, we use a t-distribution with a location and a scale parameter (metRology R
package). The location parameter enables the distribution not to be centered at 0 and
the scale parameter enables the adaptation of the width of the distribution. To fit the
distributions, we use the fitdistr function of the ‘fitdistrplus’ [45] R [46] package.

Figure 2 shows the fit of a normal and t-distribution to ∆C(∆t) values from Ljubljana,
Slovenia. The shape of the fitted t-distribution gives a better fit than the normal distribution.
Using the fitted distribution we can evaluate the limits of the largest ∆C(∆t) values (e.g.,
the largest 5%, 10% level changes).
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Figure 2. Fitting the normal (left) and t-distribution (right) on ∆C(∆t) PM10 values from Ljubljana,
Slovenia for the period 2014–2016.

2.3. Visualizations of ∆C(∆t) for the Assessment of Model Performance

To assess regression model performance, we usually examine different plots. The pre-
ferred plots are those showing the predicted values against the actual values or different
residual plots. To better understand how the models perform with large changes, we
propose two additional visualizations. The visualizations do not focus on the predicted
values but on the predicted change.

Figure 3 shows the residuals of the model against the observed values (∆C(∆t)).
The figure shows the predictions against the observed change in PM10 levels in Ljubljana
in the period from 2014 to 2016. In this example, a random forest model [47] was trained
as described in [14] (this is a re-analysis of those models) for predicting the daily mean
PM10 levels in the morning of the current day. The time series of observed and predicted
values of different models for Ljubljana are shown in the Appendix B. The vertical lines
in the plot show the limits of the 95% and 90% intervals (the intervals containing those
percentages of data as described in Section 2.2). The large changes are represented by
points lying outside the selected interval (on the right of the upper limit and the left of the
lower limit of the interval). The width of the interval is arbitrary, defined by the individual
performing the analysis (whether 95% or 90% or even 85%, 80% of the largest changes
are observed). In these examples, the large change was defined statistically. For smaller
changes, the residuals are distributed evenly around the x-axis, but for large changes, they
are not. The plot shows that the observed model is prone to underestimate large increases
(on the right values lie above the x-axis) and large decreases (on the left values lie under
the x-axis), especially where the largest changes are observed (95% interval). We cannot
spot such model behavior by examining an ordinary residual plot.
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Figure 3. Residuals of the random forest model (left) and the persistence model (right) for PM10

levels forecasted for Ljubljana against ∆C(1 day) actual levels. The persistence model (on the right) is
not good as it does not predict any change so the residuals are equal to the observed changes.
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Figure 4 shows the actual change ∆C(∆t) against the predicted change ∆Cpred(∆t).
The figure shows the same predictions for Ljubljana as the first visualization. The dashed
vertical lines represent the limits of the 95% interval. The diagonal (y = x) shows the
location of the “perfect” predictions. The closer the points lie to the line, the more accurate
the predicted ∆C(∆t) are. The greatest mistake a model can make is to wrongly predict
the direction of the change when large changes occurred in reality; that is, predicting an
increase instead of a large decrease or a decrease instead of a large increase. So all points
on the left of the y-axis (most importantly on the left of the left dashed line) should be lying
below the x-axis and the points on the right of the y-axis (most importantly on the right of
the right dashed line) should be lying below the x-axis. The further the points lie from the
y-axis the more important it is that they lie on the correct side of the x-axis. In this regard,
the example model from Figure 4 performs well; there is only one point lying on the left
side of the left dashed line and above the x-axis. From Figure 4 we can also see that the
model mostly underestimates large changes.
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Figure 4. ∆C(1 day) against ∆Cpred(1 day) for Ljubljana as predicted by the random forest model.

The visualization shown in Figure 3 helps evaluate how the residuals relate to observed
changes in pollutant levels if there is some kind of expected behavior associated with the
amount of the observed change, e.g., in our case the model underestimates almost all
large changes. The visualization from Figure 4 helps evaluate the relationship between the
observed changes and the predicted changes. The greatest mistake air quality models can
make is to predict a decrease instead of a large increase or vice versa and, by looking at
Figure 4, it is easy to spot such instances.

2.4. Performance Measures

As discussed in the Introduction section, numeric measures for the evaluation of
model performance usually evaluate the overall (unweighted) performance of the model
or the classification performance (accuracy, sensitivity, specificity, etc.) when a threshold
is predefined. To evaluate the performance of our models when the prediction of large
changes is crucial, we propose two new performance measures.

The first proposed evaluation measure based on the proposed visualization shown in
Figure 3 is to calculate the MAE or the MSE only for the data lying outside of the predefined
intervals. Figure 5 shows MAE with two standard errors for different shares of largest
changes taken into account (from the upper 5% of the largest to the 20% of the largest
∆C(∆t)) we can compare it to the same measure calculated for all values (see Figure 5).
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In our example (see Figure 5), MAE increases when we narrow the width of the observed
intervals. MAE is the largest when only the most extreme changes are observed.

Ljubljana
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Threshold for large changes

M
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 [μ
g/

m
3 ]

PM10 for today

Share n MAE 2 St.err.

0.05 61 9.60 1.92
0.10 115 8.20 1.28
0.15 171 7.22 0.95
0.20 228 6.65 0.78
1.00 1065 4.16 0.25

Figure 5. Model performance on the entire dataset (figure left x-axis 1) and on different shares of
highest ∆C(∆t). The figure on the left shows MAE with two standard errors for the example discussed
above (see Figures 3 and 4). There is a significant increase in MAE for the largest ∆C(∆t) compared
to MAE for all instances. We can also display the numerical results in a table (see left; Share—the
share of ∆C(∆t) labeled as large, n—number of instances, MAE—mean absolute errors, 2 St. err—two
standard errors).

To assess the behavior of all predictions at once, not splitting them as we did with
the first proposed measure, we propose to weight the large changes ∆C(∆t) as more
important than smaller changes. We propose to weight each absolute error (residual) with
the associated absolute value of ∆C(∆t) and divide it by the average absolute value of
∆C(∆t). We will denote the weighted error as WErr and calculate it as:

WErr =
|∆C(∆t)||Cpred− C|

|∆C(∆t)|
. (3)

This way, the residuals of the models predicting large changes are weighed more than
residuals of smaller changes.

Both presented measures focus on large changes. The first one only evaluates the
residuals for the chosen percentage of largest changes and ignores all others. The second
measure tries to evaluate all model residuals at the same time but weighs the residuals for
large changes more, and the residuals for smaller changes less.

Figure 6 shows a comparison of different models used for PM10 prediction in Ljubljana
in the period from 2014 to 2016 based on WErr. The random forest model shows a superior
performance over other models in terms of WErr. Still, the confidence intervals of the RF
and GP models show a great overlap.
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Figure 6. Figure on the left shows WErr with two standard errors for different models trained and
tested on the same data (PM10 in Ljubljana) the used models are Lasso–L1-regularized regression,
BLasso–Bayesian lasso, RF—random forest, GP—Gaussian process. The table on the right shows the
numerical values (WErr—calculated as described in Equation (3), 2 st. err—two standard errors).
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3. How Can the New Visualizations and Measures Improve the Evaluation of
Our Models?

In this section, we show three examples of model evaluation using the methodology
described above. We do not train and test new models but render a new analysis of existing
models. The first two examples comprise the comparison of different statistical models for
PM10 and ozone forecasting for the current and following day (a re-analysis of the results
presented in [14]); the third example shows a case of a comparison of the performance of a
statistical model with a photochemical dispersion model.

3.1. Evaluation of Different Models for PM10 Prediction in Nova Gorica, Slovenia

Nova Gorica is a town in western Slovenia with around thirty thousand inhabitants.
It is located in the Mediterranean part of Slovenia close to the Italian border. PM10 levels
are higher in winter than in summer, but they are usually quite low. In winter, PM10 levels
are affected by increased emissions from indoor heating and an unfavorable dispersion
situation. Another contributing factor is the long-range pollution from heavily industri-
alized and densely populated northern Italy, which has a notable effect on this part of
Slovenia [39]. Meteorological conditions (especially the changes in the dispersion situation)
can induce sudden increases or decreases in pollutant levels. The following example shows
the comparison in performance for different models predicting PM10 levels (see [14]) for
the current day (morning predictions for the current day).

Figure 7 shows the comparison of the performances of the lasso (Lasso) [48], Bayesian
lasso (BLasso) [49], random forest (RF) [47] and Gaussian process (GP) [50] models in Nova
Gorica tested on data from 2014 to 2016. The models are briefly described in Appendix A.
Figure 7 top left shows that in terms of MAE all four models perform equivalently, while,
in terms of WErr, the GP model outperforms all other models. When observing MAE for
different percentages of highest ∆ C(1 day) values (as described in Section 2.4) the GP
model outperforms other models in the prediction of the largest changes (see Figure 7 top
right). If we only judge the performance of the models with conventional measures we can
conclude that all models perform equivalently. When we explore model performance for
large changes, we can see the clear advantage of using the GP model. If we want our model
to predict large changes well, the GP model is the best model and it clearly outperforms
the RF model.

3.2. Evaluation of Different Models for Ozone Prediction in Koper, Slovenia

Koper is a town on the Slovenian coast. It is home to about thirty thousand inhabitants
and lies across the bay from Trieste (Italy), which is a much larger city. The climate in
Koper is Mediterranean with hot, dry summers and mild winters. Long sunny, warm
days accompanied by local emissions and emissions from across the bay of Trieste and
neighboring Italian regions contribute to high ozone levels [39,51]; one of the highest in
Slovenia (apart from high altitude measurement sites).
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Figure 7. The top left figure shows MAE for different models for PM10 prediction for today in Nova
Gorica, while figure top right shows WErr for the same models. The lower figure shows MEA for
different ∆ C(1 day).

Figure 8 shows the comparison of the Lasso, BLasso, RF, and GP models for the predic-
tion of the daily maximal values of ozone in Koper (tested on 2014–2016 data). On average,
according to MAE, the best performing model is GP (see Figure 8 up left), but when ob-
serving WErr the GP model does not stand out much (see Figure 8 upper figure on the
right). According to WErr, all observed models perform similarly although the GP model
exhibits the best performance. Overall RF and GP models show a similar performance
when predicting large changes; they both outperform the two linear models, which is not
evident when only observing the MAE for all instances. By using our evaluation measures,
we can conclude that when it is crucial to carefully predict large changes the non-linear
models (RF or GP models) are the best models for predicting ozone in Koper.
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Figure 8. The top left figure shows MAE for different models for O3 prediction for the following day
in Koper, while the top right Figure shows WErr for the same models. The lower figure shows MEA
for different ∆ C(2 day).

3.3. Comparison of the EMEP MSC-W Model with Statistical Models for the Prediction of
PM10 Levels

The same evaluation methodology can also be applied to photochemical dispersion
models (they are briefly described in Appendix A). As an example, we compare the results
of the best performing statistical model for the prediction of PM10 levels for the next day
(∆t = 2 days) in Ljubljana (GP model) to the predictions of the EMEP MSC-W model [6].
We compare both predictions as point predictions for the same location (modeling point)
where the measurements were performed. We selected the EMEP MSC-W model because
the results are available online and it is a popular photochemical dispersion model used
for the assessment of long-range transport pollution in Europe. The presented example
is not intended as a strict comparison of statistical and photochemical dispersion models,
nor as a critique of a model type. This is simply a case study on how we can compare
the performance of two different types of models as point predictions using the presented
methodology. The ∆C(2 days) are calculated as described in Section 2.1.1.

Figure 9 shows similar visualizations to the ones we observed when comparing
different statistical models. If we examine the top plots (MAE and WErr) we can conclude
that the GP model is a much better performing model than the EMEP model. When
analyzing only large changes, we see that as we restrict the observed percentage of the
largest changes, the difference between the GP and EMEP models becomes smaller. For only
extreme changes, the EMEP model outperforms the GP model. Still, this outperformance
of the EMEP model for large changes is not evident in the WErr plot (Figure 9) in the top
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left. This leads us to question, how is this possible? To further analyze this inconsistency,
we visualize our results as proposed in Section 2.3. The top of Figure 10 shows the plots
of the residuals against ∆C(2 days) for the two observed models. The changes predicted
by the EMEP model sometimes exhibit very high deviation from the observed changes
(even when the changes in pollutant levels are small), but in some instances the difference
between the actual and predicted changes for very large changes is small. The EMEP model
does not underestimate large decreases as consistently as the GP model, but similar to the
GP model, generally underestimates large increases. Figure 10 shows ∆C(2 days) against
∆Cpred(2 days) for the observed models. As in the previous figure, the predictions of
the GP model show smaller divergence (in this figure this means less scatter around the
y = x line). The EMEP MSC-W model contrary to the GP model often predicts an increase
instead of a large decrease (points lying on the left of the left dashed line and above the
x-axis). It also predicts more increases instead of large decreases as compared to the GP
model. By looking at those plots, we can better compare the performance of both models
and understand why the MAE for extreme changes (the largest 5%) is smaller for the EMEP
model, but when observing WErr the GP model clearly outperforms the EMEP model.
Some EMEP model residuals are large when small changes in pollutant levels occur and
even if they are weighed with much smaller weights than large changes, they increase
WErr substantially. By observing the plots in Figure 9 the performance of the GP model
looks much more coherent than that of the EMEP model, especially when observing the
bottom plots where the points lie much closer to the y = x line for the GP model.
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Figure 9. The top left figure shows MAE for GP and EMEP MSC-W models for PM10 prediction for
the following day in Ljubljana, top right figure shows WErr for the same models. The lower figure
shows MAE for different GP and EMEP MSC-W models for different percentages of highest values
∆ C(2 day).
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Figure 10. Plots on top show the residuals (GP and EMEP MSC-W models) against the observed
change in PM10 level in Ljubljana. Plots of ∆C(2 days) against ∆Cpred(2 days) (GP and EMEP MSC-W
models) for PM10 level in the lower of the plots for Ljubljana.

Usual Assessment of Model Performance

We usually assess the performance of the models with the help of plots showing
the measured PM10 levels (results of different models) against the levels predicted by
our models (see Figure 11). These plots can help us with the usual model assessment.
In Figure 11 on the right we can observe the performance of the EMEP model. The predicted
levels are further from the true levels as PM10 levels get higher. The spread around the
y = x line is quite large. In Figure 11 left, we can observe the performance of the GP model
for the same location (Ljubljana). Here the spread around the y = x line is smaller as with
the EMEP model, but it still increases with increasing PM10 levels. The GP model generally
underestimates large PM10 levels. From these two plots, it is impossible to say anything
about model predictions of different level changes.
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Figure 11. Observed PM10 levels from Ljubljana against predicted PM10 levels (GP and EMEP MSC-W
models) for tomorrow. Results from the same models as discussed above.
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4. Conclusions

In our article, we have presented new and “cost-sensitive” measures for the perfor-
mance evaluation of prediction models used for the prediction of air pollutant levels (point
predictions). We have also presented two new visualizations. Our first method is based
on the estimation of large pollutant level changes that occur in the time interval ∆t. We
use the identified large changes to evaluate the performance of prediction models only in
the event large changes were observed (MAE for different percentages of largest changes).
The second evaluation metric weights the model residuals with the absolute value of the
observed change (WErr). We have also proposed two new visualizations, where the pre-
dicted values or model residuals are plotted against the change in pollutant level, which
allows for a graphic evaluation of model performance related to the rate of the observed
change in ∆t. As shown in Section 3, the proposed visualizations and measures can better
provide an understanding of model performance. The reanalysis of existing models shows
that models usually underestimate large changes.

When examining model performance with our measures and visualizations, we
showed that, when only large changes are important, the evaluation should be performed
with the first measure—MAE for the selected percentage of largest changes. When large
changes are as important as any other prediction, conventional measures should be used,
such as MAE or MSE. When all results are important but predictions of large changes are
proportionally more important, the WErr measure demonstrates a good trade-off between
our first measure and conventional measures. The same measures could be used for the
evaluation of meteorological models or other environmental models.

The presented measures and visualizations are useful only when dealing with models
that predict some temporal variable (that changes with time) and we have a strictly defined
time step; e.g., one day predictions are made for the next day. The measures are useful
when large changes are more important than usual changes and are not frequent.

As properly predicting large changes is very important for relevant institutions to
fulfill the requirements dictated by the European Directive 2008/50/EC [5] and to imple-
ment adequate measures, the proposed evaluation measures and visualizations of model
predictions should provide further insight into model performance. In future work, we
will employ the new measures and visualizations alongside the ones generally used and
use them to better evaluate our air quality models.
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Appendix A. The Evaluated Models

L1-reguarised regression (lasso) [48], Bayesian lasso [49], random forest [47] and
Gaussian processes [50] are machine learning models. The examples we analyzed above
(see Section 3) were all used as regression models, but they can also be used as classifica-
tion models.

L1-regularized regression also referred to by the shortened name lasso (least absolute
shrinkage and selection operator) is a type of regularized model. In our case, we use the
regularized linear regression. Regularization is a technique implemented to avoid model
overfitting by adding a penalty parameter on the coefficients of the linear model. In the case

https://gitlab.com/janafp/model_evaluation.git
https://gitlab.com/janafp/model_evaluation.git
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of lasso the coefficients are shrunk towards zero which reduces the number of coefficients
and reduces the complexity of the model and mutli-collinearity.

Bayesian lasso is a Bayesian version of the lasso regression where constraints are
imposed through prior distributions. The regularization parameter is treated like a model
parameter and is fit simultaneously with the coefficients. The Laplace prior provides
constraints that have the same analytic form as the L1 penalty used in lasso.

The random forest model is an ensemble non-linear model composed of multiple
decision trees. It trains different decision trees on bootstrapped samples of the training set
(bagging) and a random subset of features. The final result for the regression is the average
of the results of the decision trees.

Gaussian process is a Bayesian non-linear model where a Gaussian process is used
as a prior probability distribution over functions. Gaussian processes are a set of random
variables that have a multivariate normal distribution. Gaussian process models represent
a Bayesian equivalent to artificial neural networks.

Atmospheric dispersion models are mathematical formulations of the physics and
chemistry of the atmosphere [52]. They combine meteorology, pollutant emissions, atmo-
spheric chemistry, and transport of pollutants, as well as removal processes, to predict air
pollution concentrations at different locations and at different temporal resolutions. They
also consider the transformation and chemical reactions of the pollutants.

Appendix B. Time Plots of Observed and Predicted Levels

Figure A1 shows time series of observed and modeled values by different models
for Ljubljana.
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Figure A1. Observed and predicted PM10 levels by different models for today for Ljubljana.
The dashed line represents the observed levels.
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