Characteristics of Photochemical Reactions with VOCs Using Multivariate Statistical Techniques on Data from Photochemical Assessment Monitoring Stations
Abstract
:1. Introduction
2. Methodology
2.1. Locations of Photochemical Assessment Monitoring Stations and Data Selection
2.2. Multivariate Statistical Analyses–Factor Analysis
2.3. Multivariate Statistical Analyses–Cluster Analysis
3. Results and Discussion
3.1. VOC Data Processing
3.2. Selecting the Results of the Factor Analysis
3.3. Determining the Number of Factors
3.4. Explanation of Factors
3.4.1. Factor 1
3.4.2. Factor 2
3.4.3. Factor 3
3.5. Results of Photochemical Pollution Characteristics Analyses—Cluster Analysis
- (1)
- Cluster 1
- (2)
- Cluster 2
- (3)
- Cluster 3
- (4)
- Cluster 4
- (5)
- Cluster 5
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karle, M.M.; Mahmud, S.; Sakai, R.; Fitzgerald, R.M. Investigation of the successive ozone episodes in the El Paso–Juarez region in the summer of 2017. Atmosphere 2010, 11, 532. [Google Scholar] [CrossRef]
- Fujita, E.M.; Campbell, D.E.; Stockwell, W.R.; Lawson, D.R. Past and future ozone trends in California’s south coast air basin: Reconciliation of ambient measurements with past and projected emission inventories. J. Air Waste Manag. Assoc. 2013, 63, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.W.; Wei, H.C.; Liu, C.S. Exposure to 16 volatile organic compounds while commuting in Taichung Taiwan. Atmos. Environ. 2000, 34, 3331–3336. [Google Scholar] [CrossRef]
- Kaipara, R.; Rajakumar, B. Oxidative degradation kinetics and mechanism of two biodiesel constituents (ethyl-2-methyl propionate (E2MP) and ethyl-2,2-dimethyl propionate (E22DMP)) initiated by Cl atoms. ACS Earth Space Chem. 2020, 4, 142–156. [Google Scholar] [CrossRef]
- Balan, R.C.; Rajakumar, B. Photo oxidation reaction kinetics of ethyl propionate with Cl atom and formation of propionic acid. J. Phys. Ckem. A 2018, 122, 8274–8285. [Google Scholar]
- Chou, T.G. The Research of Air Quality Management in Fine Particulate Matters; Central Office of Administration, Academia Sinica Research weekly 1276; Central Office of Administration, Academia Sinica: Taipei, Taiwan, 2010. (In Chinese) [Google Scholar]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A.J.; Hong, S.M.; Altamirano-Medina, H. A victorian school and a low carbon designed school: Comparison of indoor air quality, energy performance, and student health. Indoor Built Environ. 2014, 23, 417–432. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.A.; Evtyugina, M.G.; Nunes, T.; Cerqueira, M.; Franchi, M.; Pio, C.A.; Almeida, S.M.; Verde, S.C.; Freitas, M.C. Seasonal evaluation of outdoor/indoor air quality in primary schools in Lisbon. J. Environ. Monit. 2011, 13, 657–667. [Google Scholar] [CrossRef]
- Gupta, P.; Rajakumar, B. Reaction kinetics of a series of alkanes with ClO and BrO radicals: A theoretical study. Int. J. Chem. Kinet. 2020, 53, 189–206. [Google Scholar] [CrossRef]
- Hsu, C.H.; Cheng, F.Y. Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res. 2019, 19, 1139–1151. [Google Scholar] [CrossRef]
- Gouriou, F.; Morin, J.P.; Weill, M.E. On-road measurements of particle number concentrations and size distributions in urban and tunnel environments. Atmos. Environ. 2004, 38, 2831–2840. [Google Scholar] [CrossRef]
- Baidya, B.; Chandra, A.K. Theoretical investigation on atmospheric chemistry of (CF3)2C=CH2: Reaction with OH radical. Chem. Phys. Lett. 2020, 749, 137409. [Google Scholar] [CrossRef]
- Rivela, C.B.; Tovar, C.M.; Teruel, M.A.; Barnes, I.; Wiesen, P.; Blanco, M.B. CFCs replacements: Reactivity and atmospheric lifetimes of a series of Hydrofluoroolefins towards OH radicals and Cl atoms. Chem. Phys. Lett. 2019, 714, 190–196. [Google Scholar] [CrossRef]
- Bengraine, K.; Marhaba, T.F. Using principal component analysis to monitor spatial and temporal changes in water quality. J. Hazard. Mater. B 2003, 100, 179–195. [Google Scholar] [CrossRef]
- Arslan, O.A. GIS-based spatial-multivariate statistical analysis of water quality data in the Porsuk river, Turkey. Water Qual. Res. J. Can. 2009, 44, 279–293. [Google Scholar] [CrossRef]
- Mendiguchia, C.; Moreno, C.; Galindo-Riano, D.M.; Garcia-Vargas, M. Using chemometric tools to assess anthropogenic effects in river water: A case study Guadalquivir River (Spain). Anal. Chim. Acta 2004, 515, 143–149. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India): A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Cheng, W.; Chen, Y.; Zhang, J.; Lyons, T.J.; Pai, J.; Chang, S. Comparision of revised air quality index with the PSI and AQI indices. Sci. Total Environ. 2007, 382, 191–198. [Google Scholar] [CrossRef]
- Kuo, S.L.; Wu, E.M.Y. Highway tunnel air quality assessment using multivariate statistical classification on factor, cluster, and discriminant analysis. Int. J. Eng. Technol. 2018, 7, 287–291. [Google Scholar]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J. Surface water quality assessment by the use of combination of multivariate statistical classification and expert information. Chemosphere 2010, 80, 740–746. [Google Scholar] [CrossRef]
- Cheng, J.H.; Hsieh, M.J.; Chen, K.S. Characteristics and source apportionment of ambient volatile organic compounds in a science park in central Taiwan. Aerosol Air Qual. Resour. 2016, 16, 221–229. [Google Scholar] [CrossRef]
- Baidya, B.; Lily, M.; Chandra, A.K. Theoretical insight into the kinetics of H-abstraction reaction of CHF2CH2OH with OH radical atmospheric lifetime and global warming potential. ChemistrySelect 2018, 3, 6136–6144. [Google Scholar] [CrossRef]
- Tovar, C.M.; Blanco, M.B.; Barnes, I.; Wiesen, P.; Teruel, M.A. Gas-phase reactivity study of a series of hydrofluoroolefins (HFOs) toward OH radicals and Cl atoms at atmospheric pressure and 298K. Atmos. Environ. 2014, 88, 107–114. [Google Scholar] [CrossRef]
- Chen, W.K.; Li, T.D. The Establishment of Aerosol Control Mode Based on the Photochemical Reaction Mechanism; NSC-1999-EPA-Z-231-001; National Science Council, Executive Yuan: Taipei, Taiwan, 1999. (In Chinese)
- Shi, X.; Qiu, X.; Cheng, Z.; Chen, Q.; Rudich, Y.; Zhu, T. Isomeric identification of particle-phase organic nitrates through gas chromatography and time-of-flight mass spectrometry coupled with an electron capture negative ionization source. Environ. Sci. Technol. 2020, 54, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Prakash, A.; Jain, V.K. A multivariate time series approach to study the interdependence among O3, NOx and VOCS in ambient urban atmosphere. Environ. Model. Assess. 2009, 14, 631–643. [Google Scholar] [CrossRef]
- Maurer, M.; Klemm, O.; Lokys, H.L.; Lin, N.H. Trends of fog and visibility in Taiwan: Climate change or air quality improvement? Aerosol Air Qual. Res. 2019, 19, 896–910. [Google Scholar] [CrossRef] [Green Version]
Components | Initial Eigenvalues | % of Total Variance | Cumulative Variance % |
---|---|---|---|
1 | 2.244 | 43.478 | 43.478 |
2 | 1.682 | 26.087 | 69.565 |
3 | 1.161 | 13.872 | 83.437 |
4 | 0.730 | 7.765 | 91.202 |
5 | 0.506 | 3.641 | 94.843 |
6 | 0.443 | 2.538 | 97.381 |
7 | 0.324 | 1.009 | 98.390 |
8 | 0.216 | 0.624 | 99.014 |
9 | 0.203 | 0.553 | 99.567 |
10 | 0.118 | 0.433 | 100.000 |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.876 | |
Bartlett’s test of sphericity | Chi-square distribution | 2411.390 |
Degree of freedom | 22 | |
Significance | 0.000 |
VOCs | Factors | ||
---|---|---|---|
1 | 2 | 3 | |
TU | 0.879 | 0.211 | 0.006 |
TB | 0.792 | −0.095 | −0.058 |
IB | 0.741 | 0.117 | −0.084 |
IP | −0.567 | 0.822 | 0.273 |
AT | 0.315 | 0.770 | 0.049 |
MH | 0.098 | 0.713 | 0.224 |
EA | −0.284 | 0.164 | 0.858 |
PP | 0.346 | −0.263 | 0.780 |
NB | −0.148 | 0.096 | 0.733 |
NC | 0.220 | 0.369 | 0.681 |
Clusters | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | |
---|---|---|---|---|---|---|
VOCs | ||||||
TU (ppb) | 4.89 0.24~50.4 | 1.39 0.12~36.7 | 5.97 0.71~70.9 | 9.78 1.12~112.4 | 6.55 0.56~82.8 | |
TB (ppb) | 5.24 0.45~46.1 | 2.59 0.08~41.7 | 3.49 0.43~53.5 | 8.76 2.08~79.3 | 4.77 0.72~65.9 | |
IB (μg/m3) | 4.02 0.44~25.8 | 1.71 0.09~20.3 | 3.46 0.71~63.6 | 6.74 0.96~80.5 | 3.92 0.53~66.6 | |
IP (ppb) | 6.02 0.23~21.8 | 3.08 0.11~13.7 | 7.03 0.45~28.6 | 7.49 1.26~36.2 | 8.58 1.78~42.1 | |
AT (ppm) | 4.08 0.09~22.0 | 2.97 0.06~16.3 | 6.85 0.31~35.9 | 7.64 0.96~23.8 | 9.23 2.56~50.5 | |
MH (ppb) | 3.57 0.11~6.8 | 2.10 0.05~3.8 | 4.38 0.24~15.1 | 3.58 0.32~26.1 | 6.10 1.37~43.0 | |
EA (ppb) | 4.54 0.36~29.9 | 2.87 0.11~39.8 | 6.43 0.39~47.8 | 4.48 1.24~45.6 | 7.32 2.44~60.8 | |
PP (ppb) | 2.25 0.17~14.2 | 1.73 0.12~30.3 | 5.06 0.69~99.1 | 4.87 0.90~97.4 | 4.06 0.88~89.6 | |
NB (ppb) | 2.32 0.31~21.4 | 1.04 0.13~30.1 | 2.58 0.47~89.2 | 3.47 0.40~102.3 | 3.16 0.53~71.3 | |
NC (ppb) | 2.07 0.19~7.5 | 1.09 0.09~6.8 | 3.76 0.28~33.6 | 4.03 0.32~18.1 | 3.58 0.47~29.1 | |
Photochemical pollution conditions | General photochemical pollution | Mild photochemical pollution | Factor of moderate pollution from stationary sources and energy sources | Factor of moderate to severe pollution from mobile sources | Factor of moderate to severe pollution from stationary sources | |
The monitoring station where the VOCs are mostly detected | Chaozhou | Qiaotou and Chaozhou | Qiaotou and Linyuan | Xiaogang | Xiaogang and Linyuan | |
Number of samples (14,400 entries in total) | 3186 | 7525 | 1457 | 1024 | 1208 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, E.M.-Y.; Kuo, S.-L. Characteristics of Photochemical Reactions with VOCs Using Multivariate Statistical Techniques on Data from Photochemical Assessment Monitoring Stations. Atmosphere 2022, 13, 1489. https://doi.org/10.3390/atmos13091489
Wu EM-Y, Kuo S-L. Characteristics of Photochemical Reactions with VOCs Using Multivariate Statistical Techniques on Data from Photochemical Assessment Monitoring Stations. Atmosphere. 2022; 13(9):1489. https://doi.org/10.3390/atmos13091489
Chicago/Turabian StyleWu, Edward Ming-Yang, and Shu-Lung Kuo. 2022. "Characteristics of Photochemical Reactions with VOCs Using Multivariate Statistical Techniques on Data from Photochemical Assessment Monitoring Stations" Atmosphere 13, no. 9: 1489. https://doi.org/10.3390/atmos13091489
APA StyleWu, E. M. -Y., & Kuo, S. -L. (2022). Characteristics of Photochemical Reactions with VOCs Using Multivariate Statistical Techniques on Data from Photochemical Assessment Monitoring Stations. Atmosphere, 13(9), 1489. https://doi.org/10.3390/atmos13091489