Impact of PM10 Particles on the Measurement Error of SO2 Electrochemical Gas Sensor
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Instruments and Experimental Samples
2.1.1. Experimental Instruments
2.1.2. Experimental Samples
2.2. Experimental Instruments and Experimental Samples
2.2.1. Scanning of Fly Ash Particle Morphology
2.2.2. Measurement Error Experiment of SO2 Electrochemical Gas Sensor
3. Results
3.1. Particle Morphology of Fly Ash
3.2. Particle Size Distribution of Fly Ash
3.3. Calculation of Settling Speed of Fly Ash Particles (*Appendix A for the Meaning of the Equation Symbols)
3.4. SO2 Electrochemical Gas Sensor Measurement Error Experiment
3.4.1. Impact of Deposition Time on Sensor Measurement Error
3.4.2. Impact of Fly Ash Deposition on the Measurement Error of Different Gas Concentrations
3.4.3. Actual Field Measurements and Limitations of Purely Experimental Methods
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Equations (3)–(5): Mass of fly ash particles, kg: Density of fly ash particle density, kg/m3: Volume of fly ash particle, m3: Aerodynamic equivalent diameter of fly ash particle, m: Density of air, kg/m3
- Equations (6) and (7): Air resistance coefficient, dimensionless units: Maximum cross-sectional area of fly ash particles in the direction of motion, m2Defined by the parameter equivalent diameter: Speed of movement of fly ash particles in the air, m/s
- Equations (12) and (13): Dynamic viscosity of air,k, m: Constants
References
- National Energy Administration. The National Energy Administration Released the Statistical Data of National Power Industry in 2021. Government Website; 26 January 2021. Available online: http://www.nea.gov.cn (accessed on 8 April 2022).
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021; Volume 3, pp. 154–196.
- Huang, L.; Hu, J.; Chen, M.; Zhang, H. Impacts of power generation on air quality in China—Part I: An overview. Resour. Conserv. Recycl. 2016, 121, 103–114. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, J.; Xu, W.; Liu, M. Emission characteristics of conventional air pollutants in coal-fired power plants after ultra-low emission transformation. J. Environ. Sci. 2020, 40, 1967–1975. [Google Scholar]
- Chu, Y.; Cheng, Z.; Dong, Y. The harm of dust environment in thermal power plant and its prevention countermeasures. J. Environ. Dev. 2018, 30, 68–70. [Google Scholar]
- Zhai, S. Study on the impact of pollutants in thermal power plants on the environment. J. Shandong Ind. Technol. 2018, 6, 184. [Google Scholar]
- Cao, D. SO2 pollution, harm and control technology in China. J. Environ. Sci. Surv. 2013, 32, 73–74. [Google Scholar]
- Liu, X.; Fu, Z.; Zhang, B.; Zhai, L.; Meng, M.; Lin, J.; Zhuang, J.; Wang, G.G.; Zhang, J. Effects of sulfuric, nitric, and mixed acid rain on Chinese fir sapling growth in Southern China. Ecotoxicol. Environ. Saf. 2018, 160, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Li, G. Harm of nitrogen oxides to environment and pollution control technology. J. Shanxi Chem. Ind. 2019, 39, 123–125. [Google Scholar]
- Liang, J.; Zheng, J.; Han, M. Nitrogen oxide and its treatment technology. J. Sci. Technol. Innov. Appl. 2021, 24, 120–122. [Google Scholar]
- Liang, Y.; Tian, F.; Feng, W. Research progress of coal mine gas detection technology in China. J. Coal 2021, 46, 1701–1714. [Google Scholar]
- Zhao, C.; Niu, G.; Gong, H. Research progress of electrochemistry and semiconductor SO2 gas sensor. J. Funct. Mater. Devices 2020, 26, 143–159. [Google Scholar]
- Wu, Z. Colloidal Electrolyte Electrochemical Gas Sensor; Zhengzhou University: Zhengzhou, China, 2020; p. 7. [Google Scholar]
- Alphasense. ANN104 How Electrochemical Gas Sensors Work. Available online: https://www.alphasense.com/downloads/application-notes/ (accessed on 12 August 2021).
- Hai, T.; Yang, Y.; Yan, M. Study on potentiostatic electrolytic electrochemical gas sensor. J. Sens. Microsyst. 2020, 39, 63–65. [Google Scholar]
- Li, S.; Jin, G.; Chen, B. Effect of temperature on electrochemical NH3 gas sensor. J. Mod. Comput. (Prof. Ed.) 2016, 28, 3–6. [Google Scholar]
- Stationary Source Emission—Determination of Sulfur Dioxide—Fixed Potential by Electrolysis Method; HJ 57-2017; China Environmental Science Press: Beijing, China, 2017; p. 2.
- Qiang, N.; Ji, X.; Xu, B. Air Pollution Control Engineering; Chemical Industry Press: Beijing, China, 2015; pp. 35–40. [Google Scholar]
- Zhao, B. Air Pollution Control Engineering; Chemical Industry Press: Beijing, China, 2017; pp. 31–32. [Google Scholar]
- Lei, J.; Wu, X.; Wu, J. Aerodynamics; Beijing University of Technology Press: Beijing, China, 2015; p. 348. [Google Scholar]
- GB 13223-2011; Emission Standard of Air Pollutants for Thermal Power Plants. China Environmental Science Press: Beijing, China, 2011; p. 3.
- Cai, J. Air Filtration ABC; China Construction Industry Press: Beijing, China, 2002; p. 2. [Google Scholar]
- John, C. Crittenden. MWH’s Water Treatment: Principles and Design; East China University of Technology Press: Shanghai, China, 2016; p. 5. [Google Scholar]
Category | Index | Value |
---|---|---|
Performance | Sensitivity | 275 to 475 nA/ppm at 2 ppm SO2 |
Response time | t90 < 30 s, from zero to 2 ppm SO2 | |
Zero current | −80 to +80 nA in zero air at 20 °C | |
Noise | ±2 standard deviations (5 ppb equivalent) | |
Range | 100 ppm limit of performance warranty | |
Linearity | 0 to −2 ppb error at 100 ppm SO2, linear at zero and 10 ppm SO2 | |
Overgas limit | 200 maximum ppm for stable response to gas pulse | |
Lifetime | Zero drift | <±20 ppb equivalent change/year in lab air |
Sensitivity drift | <±15% change/year in lab air, monthly test | |
Operating life | >36 months until 50% original signal (24 months warranty) | |
Environmental | Sensitivity at −20 °C | 70%~82%, at 2 ppm SO2 |
Sensitivity at 50 °C | 95%~110%, at 2 ppm SO2 | |
Zero at −20 °C | 0 to−10 nA change from 20 °C | |
Zero at 50 °C | 10 to 30 nA change from 20 °C | |
Key Specification | Temperature range | −30~50 °C |
Humidity range | 15~90%RH | |
Pressure range | 80~120 kPa | |
Storage period | 6 months (at 3 to 20 °C) | |
Load resistor | 33~100 Ω | |
Weight | 13 g |
Distr./μm | Mean/μm | Amount | Freq./% |
---|---|---|---|
2–2.9 | 2.45 | 9 | 10.34 |
2.9–3.8 | 3.35 | 11 | 12.64 |
3.8–4.7 | 4.25 | 7 | 8.05 |
4.7–5.6 | 5.15 | 16 | 18.39 |
5.6–6.5 | 6.05 | 7 | 8.05 |
6.5–7.4 | 6.95 | 9 | 10.34 |
7.4–8.3 | 7.85 | 8 | 9.2 |
8.3–9.2 | 8.75 | 7 | 8.05 |
9.2–10.1 | 9.65 | 8 | 9.2 |
10.1–11 | 10.55 | 5 | 5.74 |
Deposition Time | 1 h | 1 day | 30 days | 60 days | 100 days |
---|---|---|---|---|---|
Deposition Amount/mg | 39.7 × 10−3 | 0.95 | 28.5 | 57 | 95 |
Sensor Measurement Values/ppm | Deposition Time | Measurement Error/% | ||||||
---|---|---|---|---|---|---|---|---|
0 Day | 30 Days | 60 Days | 100 Days | 30 Days | 60 Days | 100 Days | ||
SO2 gas concentration/ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 10 | 5.975 | 3.359 | 2.051 | 40.25 | 66.41 | 79.49 | |
20 | 19.944 | 16.404 | 12.333 | 7.864 | 17.75 | 38.16 | 60.57 | |
30 | 29.955 | 27.066 | 28.081 | 16.222 | 9.64 | 32.96 | 45.85 | |
40 | 40.000 | 37.298 | 29.53 | 25.338 | 6.76 | 26.18 | 36.66 | |
50 | 49.975 | 47.823 | 39.874 | 34.470 | 4.31 | 20.21 | 31.03 | |
60 | 59.994 | 57.793 | 48.010 | 44.864 | 3.59 | 19.91 | 25.16 | |
70 | 70.000 | 67.126 | 57.960 | 55.773 | 4.11 | 17.20 | 20.32 | |
80 | 79.960 | 76.308 | 68.288 | 66.045 | 4.57 | 14.60 | 17.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Wu, S.; Liao, D.; Zhang, H. Impact of PM10 Particles on the Measurement Error of SO2 Electrochemical Gas Sensor. Atmosphere 2022, 13, 1512. https://doi.org/10.3390/atmos13091512
Chen W, Wu S, Liao D, Zhang H. Impact of PM10 Particles on the Measurement Error of SO2 Electrochemical Gas Sensor. Atmosphere. 2022; 13(9):1512. https://doi.org/10.3390/atmos13091512
Chicago/Turabian StyleChen, Wei, Shijing Wu, Dongmei Liao, and Hanping Zhang. 2022. "Impact of PM10 Particles on the Measurement Error of SO2 Electrochemical Gas Sensor" Atmosphere 13, no. 9: 1512. https://doi.org/10.3390/atmos13091512
APA StyleChen, W., Wu, S., Liao, D., & Zhang, H. (2022). Impact of PM10 Particles on the Measurement Error of SO2 Electrochemical Gas Sensor. Atmosphere, 13(9), 1512. https://doi.org/10.3390/atmos13091512