Impact-Based Critical Areal Rainfall for Early Flood Warning: A Case Study of Zhulong River Watershed in the Upper Reaches of the Xiong’an New Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Early Flood Warning Methods
2.2.1. Determination of Catastrophic Discharges
2.2.2. Establishment of Precipitation–Discharge Relationships
2.2.3. Estimation of Critical Areal Rainfall
2.2.4. Validation with Historical Flood Events
3. Results and Discussion
3.1. Graded Catastrophic Discharges in the Zhulong River Watershed
3.2. Precipitation–Discharge Relationship in the Zhulongh River Watershed
3.3. The 24 h Critical Areal Rainfall Thresholds for Early Flood Warnings
3.4. Validation of Early Flood Warning Indices in the Zhulong River Watershed
4. Conclusions
- (1)
- Depending on the degree of the impact of floods on socio-economic factors and the relationship between flood peak discharge and daily discharge, the current maximum discharge of the Zhulong River watershed is defined as the first level of early flood warning, which corresponds to a daily discharge with a return period of about 35 to 60 years, while the second, third and fourth level of flood warning is selected as the daily discharge with a return period of 30, 20 and 10 years, respectively;
- (2)
- When the preceding one-day areal rainfall in the Zhulong River watershed reaches 10 mm, then the river generates surface runoff. According to whether surface runoff is formed in the river channel, precipitation–discharge relationship models are developed and the goodness of fit of both models is high with the coefficients of determination, R2, of 0.79 and 0.83, respectively;
- (3)
- The 1-day critical areal rainfall amounts for early flood warnings are 31 mm, 63 mm, 92 mm and 160 mm for level IV, level III, level II and level I warnings, respectively, when the preceding one-day areal rainfall is ≤10 mm. When the preceding one-day areal rainfall is >10 mm, the 1-day critical areal rainfall amounts are 20 mm, 54 mm, 87 mm and 160 mm for each level of early flood warning, respectively. The differences between the 1-day critical areal rainfall established under the two river pre-precipitation conditions get smaller as the flood warning level increases;
- (4)
- The early warning effectiveness of the established graded flood warning of critical areal rainfall was verified by using the historical flood event data in the Zhulong River watershed and the precipitation data from recent years. None of the warnings were missed or underestimated by the model, and the early warning accuracy rate is very high.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNDRR. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019). 2020. Available online: https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019 (accessed on 1 October 2022).
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.-K.; Rogelj, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Summary; Masson-Delmotte, V., Zhai, P., Pirani, A., Conners, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Jiang, T.; Su, B.; Huang, J.; Zhai, J.; Xia, J.; Tao, H.; Wang, Y.; Sun, H.; Luo, Y.; Zhang, L.; et al. Each 0.5 °C of warming increases annual flood losses in China by more than US $60 billion. Bull. Am. Meteorol. Soc. 2020, 101, E1464–E1474. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Nover, D.; Fan, J.; Yang, G.; Chen, W.; Meng, H.; Liu, C. Floods and associated socioeconomic damages in China over the last century. Nat. Hazards 2016, 82, 401–413. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, P.; Qin, C. Spatial and temporal changes of meteorological disasters in China during 1950–2013. Nat. Hazards 2015, 75, 2607–2623. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Flood and Drought Disasters in China’s Bulletin 2018; China Water & Power Press: Beijing, China, 2019. [Google Scholar]
- Wu, J.; Han, G.; Zhou, H.; Li, N. Economic development and declining vulnerability to climate-related disasters in China. Environ. Res. Lett. 2018, 13, 034013. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, C.; Fang, J.; Liu, M.; Luan, Y. Increasing exposure to floods in China revealed by nighttime light data and flood susceptibility mapping. Environ. Res. Lett. 2021, 16, 104044. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 C and 2.0 C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, A.; Zhai, J.; Tao, H.; Jiang, T.; Su, B.; Yang, J.; Wang, G.; Liu, Q.; Gao, C.; et al. Tens of thousands additional deaths annually in cities of China between 1.5 C and 2.0 C warming. Nat. Commun. 2019, 10, 3376. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Zhang, J.; Kattel, G.R.; Liu, R. Increased Exposure of China’s Cropland to Droughts under 1.5 °C and 2 °C Global Warming. Atmosphere 2022, 13, 1035. [Google Scholar] [CrossRef]
- Lin, Q.; Steger, S.; Pittore, M.; Zhang, J.; Wang, L.; Jiang, T.; Wang, Y. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total Environ. 2022, 850, 158049. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Xu, Y.; Zhang, G.; Lin, Q.; Luo, R. Projection of changes in flash flood occurrence under climate change at tourist attractions. J. Hydrol. 2021, 595, 126039. [Google Scholar] [CrossRef]
- Younis, J.; Anquetin, S.; Thielen, J. The benefit of high-resolution operational weather forecasts for flash flood warning. Hydrol. Earth Syst. Sci. 2008, 12, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G. Flood warning-on the value of local information. Int. J. River Basin Manag. 2008, 6, 41–50. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, M.; Wan, F. Calculation of critical rainfall for small-watershed flash floods based on the HEC-HMS hydrological model. Water Resour. Manag. 2019, 33, 2555–2575. [Google Scholar] [CrossRef]
- Miao, Q.; Yang, D.; Yang, H.; Li, Z. Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model. J. Hydrol. 2016, 541, 371–386. [Google Scholar] [CrossRef]
- Jiao, M.; Song, L.; Jiang, T.; Zhai, J. China’s implementation of impact and risk-based early warning. Boletín-Organ. Meteorológica Mund. 2015, 64, 11–14. [Google Scholar]
- Hao, Z.; Xiong, D.; Ge, Q. Reconstruction of the chronology and characteristics of flood disasters in the Xiong. Chin. Sci. Bull. 2018, 63, 2302–2310, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Song, L.; Han, Z.; Liao, Y.; Xu, H.; Zhai, J.; Zhu, R. Climate-related risks in the construction of Xiongan New Area, China. Theor. Appl. Climatol. 2020, 141, 1301–1311. [Google Scholar] [CrossRef]
- Wu, F.; Guo, N.; Kumar, P.; Niu, L. Scenario-based extreme flood risk analysis of Xiong’an New Area in northern China. J. Flood Risk Manag. 2021, 14, e12707. [Google Scholar] [CrossRef]
- Huang, D.; Liao, Y.; Han, Z. Projection of key meteorological hazard factors in Xiongan new area of Hebei Province, China. Sci. Rep. 2021, 11, 18675. [Google Scholar] [CrossRef]
- Hao, Z.; Xiong, D.; Zheng, J. Flood disasters and social resilience during the decline of the Qing Dynasty: Case studies of 1823 and 1849. Hydrol. Process. 2021, 35, e14295. [Google Scholar] [CrossRef]
- Editorial Committee of China Meteorological Disasters Dictionary. China Meteorological Disasters Dictionary—Hebei Volume; China Meteorological Press: Beijing, China, 2007. [Google Scholar]
- Eum, H.I.; Gupta, A. Hybrid climate datasets from a climate data evaluation system and their impacts on hydrologic simulations for the Athabasca River basin in Canada. Hydrol. Earth Syst. Sci. 2019, 23, 5151–5173. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatial-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.C.; Gan, T.Y.; Wang, J. Climate change impact to Mackenzie river basin projected by a regional climate model. Clim. Dyn. 2020, 54, 3561–3581. [Google Scholar] [CrossRef]
- Li, H.; Beldring, S.; Xu, C.Y. Implementation and testing of routing algorithms in the distributed Hydrologiska Byråns Vattenbalansavdelning model for mountainous catchments. Hydrol. Res. 2014, 45, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Worqlul, A.W.; Yen, H.; Collick, A.S.; Tilahun, S.A.; Langan, S.; Steenhuis, T.S. Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena 2017, 152, 242–251. [Google Scholar] [CrossRef]
- Smith, B.; Sandwell, D. Accuracy and resolution of shuttle radar topography mission data. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the shuttle radar topography mission (SRTM) Heights: Insights from the indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. Int. J. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Eckhardt, K. Analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter. Hydrol. Earth Syst. Sci. 2012, 16, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Xiao, C.; Zhang, Z.; Liang, X. Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method? Hydrol. Earth Syst. Sci. 2021, 25, 1747–1760. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, Y.; Wang, X.; Zhang, P.; Xu, W. Flash Flood Warning Assessment Considering Temporal Differences. Adv. Eng. Sci. 2021, 53, 10–18, (In Chinese with English Abstract). [Google Scholar]
- Ripberger, J.T.; Silva, C.L.; Jenkins-Smith, H.C.; Carlson, D.E.; James, M.; Herron, K.G. False alarms and missed events: The impact and origins of perceived inaccuracy in tornado warning systems. Risk Anal. 2015, 35, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.R.; Gruntfest, E.C.; Hayden, M.H.; Schultz, D.M.; Benight, C. False alarms and close calls: A conceptual model of warning accuracy. Weather Forecast. 2007, 22, 1140–1147. [Google Scholar] [CrossRef]
- Trainor, J.E.; Nagele, D.; Philips, B.; Scott, B. Tornadoes, social science, and the false alarm effect. Weather Clim. Soc. 2015, 7, 333–352. [Google Scholar] [CrossRef]
- Yang, P.; Xu, Z.; Yan, X.; Wang, X.K. Comparative study on methods of early warning index of flash flood disaster induced by rainstorm. Adv. Eng. Sci. 2020, 52, 157–165, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.K.; Yang, P.; Sun, T.; Xu, Z. Study on division early warning of flash flood disaster caused by rainstorm in mountainous small watersheds. Adv. Eng. Sci. 2021, 53, 29–38, (In Chinese with English Abstract). [Google Scholar]
- Ma, M.; Wang, H.; Jia, P.; Tang, G.; Wang, D.; Ma, Z.; Yan, H. Application of the GPM-IMERG Products in Flash Flood Warning: A Case Study in Yunnan, China. Remote Sens. 2020, 12, 1954. [Google Scholar] [CrossRef]
- Llauca, H.; Lavado-Casimiro, W.; León, K.; Jimenez, J.; Traverso, K.; Rau, P. Assessing near real-time satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in Peruvian andes. Remote Sens. 2021, 13, 826. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, T.; Zhai, J.; Wang, X.K. Numerical Investigation of a Flash Flood Process that Occurred in Zhongdu River, Sichuan, China. Front. Earth Sci. 2021, 9, 686925. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.K.; Sun, Y.; Duan, W.; Xie, S. Numerical investigation on a flash flood disaster in streams with confluence and bifurcation. Water 2022, 14, 1646. [Google Scholar] [CrossRef]
- Young, A.; Bhattacharya, B.; Zevenbergen, C. A rainfall threshold-based approach to early warnings in urban data-scarce regions: A case study of pluvial flooding in Alexandria, Egypt. J. Flood Risk Manag. 2021, 14, e12702. [Google Scholar] [CrossRef]
- Taguas, E.V.; Ayuso, J.L.; Pena, A.; Yuan, Y.; Sanchez, M.C.; Giraldez, J.V.; Pérez, R. Testing the relationship between instantaneous peak flow and mean daily flow in a Mediterranean Area Southeast Spain. Catena 2008, 75, 129–137. [Google Scholar] [CrossRef]
- Ding, J.; Wallner, M.; Müller, H.; Haberlandt, U. Estimation of instantaneous peak flows from maximum mean daily flows using the HBV hydrological model. Hydrol. Process. 2016, 30, 1431–1448. [Google Scholar] [CrossRef]
- Chen, B.; Krajewski, W.F.; Liu, F.; Fang, W.; Xu, Z. Estimating instantaneous peak flow from mean daily flow. Hydrol. Res. 2017, 48, 1474–1488. [Google Scholar] [CrossRef]
- Pan, T.Y.; Li, M.Y.; Lin, Y.J.; Chang, T.J.; Lai, J.S.; Tan, Y.C. Sensitivity analysis of the hydrological response of the Gaping River basin to radar-raingauge quantitative precipitation estimates. Hydrol. Sci. J. 2014, 59, 1335–1352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gong, D.-Y.; Mao, R.; Yang, J.; Zhang, Z.; Qian, Y. Anomalous holiday precipitation over southern China. Atmos. Chem. Phys. 2018, 18, 16775–16791. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front. 2021, 12, 101248. [Google Scholar] [CrossRef]
- Wang, C.; Lin, Q.; Wang, L.; Jiang, T.; Su, B.; Wang, Y.; Mondal, S.K.; Huang, J.; Wang, Y. The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: A case study of Anhui Province in China. Nat. Hazards 2022, 112, 1967–1988. [Google Scholar] [CrossRef]
- Wang, L.; Rohli, R.V.; Lin, Q.; Jin, S.; Yan, X. Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability 2022, 14, 11458. [Google Scholar] [CrossRef]
- Huang, J.; Mondal, S.K.; Zhai, J.; Fischer, T.; Wang, Y.; Su, B.; Wang, G.; Gao, M.; Jiang, S.; Tao, H.; et al. Intensity-area-duration-based drought analysis under 1.5 °C–4.0 °C warming using CMIP6 over a climate hotspot in South Asia. J. Clean. Prod. 2022, 345, 131106. [Google Scholar] [CrossRef]
Return Period | Early Flood Warning Level | Daily Discharge | Flood Peak Discharge |
---|---|---|---|
10-year | IV | 380 | 450 |
20-year | III | 700 | 805 |
30-year | II | 1000 | 1138 |
50-year | —— | 1500 | 1693 |
100-year | —— | 2600 | 2914 |
200-year | —— | 4500 | 5023 |
Current maximum discharge | I | 1700 | 2000 |
Design flood discharge | —— | 5100 | 5700 |
Average Daily Discharge | Average Daily Baseflow | Baseflow June to September | Baseflow October to May |
---|---|---|---|
24.7 | 12.2 | 19.1 | 8.7 |
Warning Levels | IV | III | II | I |
---|---|---|---|---|
The preceding one-day areal rainfall ≤ 10 mm | 31 | 63 | 92 | 160 |
The preceding one-day areal rainfall > 10 mm | 20 | 54 | 87 | 160 |
Flooding Process | First Alerting Date | Preceding One-Day Areal Rainfall | 24 h Critical Areal Rainfall | Warning Levels | Warning Effectiveness | Correct | Correct Rate |
---|---|---|---|---|---|---|---|
August 1963 | 4 August 1963 | 9.1 | 51.2 | IV | One day in advance | True | 100% |
August 1996 | 4 August 1996 | 9.6 | 81.7 | III | Tow day in advance | True | 100% |
July 2016 | 19 July 2016 | 0.3 | 89.9 | III | One day in advance | True | 100% |
July–August 2018 | 11 July 2018 | 1.3 | 35.8 | IV | The same day | True | 100% |
July–August 2019 | 29 July 2019 | 21.6 | 33.9 | IV | The same day | True | 100% |
Date | 1-Day Critical Areal Rainfall (mm) | Daily Discharge (m3/s) | Model Alerts | Validation |
---|---|---|---|---|
11 July 2016 | 0.0 | 11.0 | None | Correct |
12 July 2016 | 22.0 | 14.1 | None | Correct |
13 July 2016 | 0.0 | 15.6 | None | Correct |
14 July 2016 | 4.3 | 17.0 | None | Correct |
15 July 2016 | 4.5 | 17.5 | None | Correct |
16 July 2016 | 2.8 | 17.7 | None | Correct |
17 July 2016 | 7.0 | 19.3 | None | Correct |
18 July 2016 | 0.3 | 19.4 | None | Correct |
19 July 2016 | 89.9 | 116.6 | III level warning | Correct (overestimated warning, one day in advance) |
20 July 2016 | 69.2 | 399.1 | III level warning | Correct (overestimated warning) |
21 July 2016 | 11.7 | 599.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, L.; Zhao, L.; Chen, Z.; Chen, X.; Zhao, T.; Xie, W.; Wang, B.; Wang, Y. Impact-Based Critical Areal Rainfall for Early Flood Warning: A Case Study of Zhulong River Watershed in the Upper Reaches of the Xiong’an New Area. Atmosphere 2023, 14, 113. https://doi.org/10.3390/atmos14010113
Si L, Zhao L, Chen Z, Chen X, Zhao T, Xie W, Wang B, Wang Y. Impact-Based Critical Areal Rainfall for Early Flood Warning: A Case Study of Zhulong River Watershed in the Upper Reaches of the Xiong’an New Area. Atmosphere. 2023; 14(1):113. https://doi.org/10.3390/atmos14010113
Chicago/Turabian StyleSi, Lili, Liang Zhao, Ziyan Chen, Xiaolei Chen, Tiesong Zhao, Wenjuan Xie, Bingwei Wang, and Yanjun Wang. 2023. "Impact-Based Critical Areal Rainfall for Early Flood Warning: A Case Study of Zhulong River Watershed in the Upper Reaches of the Xiong’an New Area" Atmosphere 14, no. 1: 113. https://doi.org/10.3390/atmos14010113
APA StyleSi, L., Zhao, L., Chen, Z., Chen, X., Zhao, T., Xie, W., Wang, B., & Wang, Y. (2023). Impact-Based Critical Areal Rainfall for Early Flood Warning: A Case Study of Zhulong River Watershed in the Upper Reaches of the Xiong’an New Area. Atmosphere, 14(1), 113. https://doi.org/10.3390/atmos14010113