Total Solar Irradiance and Stroke Mortality by Neural Networks Modelling
Abstract
:1. Introduction
2. Materials and Methods
- Classifying the importance of the certain factors (input), using neural network modelling;
- Gauging the predictive power of the proposing model using classification techniques.
- Building a data model under learning;
- Applying the model to the data set.
- 3.
- Results
3. Discussion
3.1. Solar Energy
3.2. Locality and Time Period Selected
- It is the last period when the population was genetically homogeneous, as vast immigration flows started in 1990;
- Diet, lifestyle, physical activity, and smoking variations were narrow;
- Ambient pollution was finite;
- “Sunspot numbers and stroke mortality were inversely correlated, and… a violent fluctuation of sunspot numbers over 35% shifted monthly mortality with a phase delay of two months”, as already discussed in [10];
- In a previous work, in the same population and time frame, “a common, novel, non-anthropogenic chronome of 6.8 days in solar activity (sunspot numbers) and stroke mortality was uncovered” [10].
3.3. Strokes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frohlich, C. Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 2009, 501, L27–L30. [Google Scholar] [CrossRef]
- Steinhilber, F.; Beer, J.; Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 2009, 36, L19704. [Google Scholar] [CrossRef] [Green Version]
- Foukal, P.; Fröhlich, C.; Spruit, H.; Wigley, T.M. Variations in solar luminosity and their effect on the Earth’s climate. Nature 2006, 443, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Lean, J.; Beer, J.; Bradley, R. Reconstruction of solar irradiance since 1610. Geophys. Res. Lett. 1995, 22, 3195. [Google Scholar] [CrossRef] [Green Version]
- Kopp, G.; Lean, J.L. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 2011, 38, L01706. [Google Scholar] [CrossRef] [Green Version]
- Penza, V.; Berrilli, F.; Bertello, L.; Cantoresi, M.; Criscuoli, S.; Giobbi, P. Total Solar Irradiance during the Last Five Centuries. Astrophys. J. 2022, 937, 84. [Google Scholar] [CrossRef]
- Hathaway, D.H. The Solar Cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Fröhlich, C. Total Solar Irradiance: What Have We Learned from the Last Three Cycles and the Recent Minimum? Space Sci. Rev. 2013, 176, 237–252. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; et al. Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [Green Version]
- Geronikolou, S.; Leontitsis, A.; Petropoulos, V.; Davos, C.; Cokkinos, D.; Chrousos, G. Cyclic stroke mortality variations follow sunspot patterns. F1000Res 2020, 9, 1088. [Google Scholar] [CrossRef]
- Malik, R.; Dichgans, M. Challenges and opportunities in stroke genetics. Cardiovasc. Res. 2018, 114, 1226–1240. [Google Scholar] [CrossRef]
- Stienen, M.N.; Smoll, N.R.; Battaglia, M.; Schatlo, B.; Woernle, C.M.; Fung, C.; Roethlisberger, M.; Daniel, R.T.; Fathi, A.R.; Fandino, J.; et al. Intracranial aneurysm rupture is predicted by measures of solar activity. World Neurosurg. 2015, 83, 588–595. [Google Scholar] [CrossRef]
- Halgberg, F.; Cornélissen, G.; Watanabe, Y.; Otsuka, K.; Fiser, B.; Siegelova, J.; Mazankova, V.; Maggioni, C.; Sothern, R.B.; Katinas, G.S.; et al. Near 10-year and longer periods modulate circadians: Intersecting anti-aging and chronoastrobiological research. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M304–M324. [Google Scholar] [CrossRef] [Green Version]
- Hempelmann, A.; Weber, W. Correlation Between the Sunspot Number, the Total Solar Irradiance, and the Terrestrial Insolation. Solar Phys. 2012, 277, 417–430. [Google Scholar] [CrossRef]
- Lisboa, P.J. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 2002, 15, 11–39. [Google Scholar] [CrossRef]
- Martín-Guerrero, J.D.; Lamata, L. Quantum Machine Learning: A tutorial. Neurocomputing 2022, 470, 457–461. [Google Scholar] [CrossRef]
- Mitchell, T. Machine Learning; McGraw-Hill Education: New York, NY, USA, 1997. [Google Scholar]
- Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 2016, 67. [Google Scholar] [CrossRef] [Green Version]
- Taleb, I.; Serhani, M.A.; Dssouli, R. Big Data Quality: A Survey. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 2–7 July 2018; pp. 166–173. [Google Scholar]
- Gershenson, C. Artificial Neural Networks for Beginners; Cornell University: Ithaca, NY, USA, 2011. [Google Scholar]
- Stergiou, C.; Siganos, D. 2011. An Introduction to ANNs; Imperial College London: London, UK, 2011. [Google Scholar]
- Hoyt, D.V.; Kyle, H.L.; Hickey, J.R.; Maschhoff, R.H. The Nimbus 7 solar total irradiance: A new algorithm for its derivation. J. Geophys. Res 1992, 97, 51. [Google Scholar] [CrossRef]
- Willson, R.C.; Hudson, H.S. Variations of solar irradiance. Astrophys. J. 1981, 244, L185–L189. [Google Scholar] [CrossRef]
- Kopp, G.; Lawrence, G. The Total Irradiance Monitor (TIM): Instrument Design. Solar Phys. 2005, 230, 91–109. [Google Scholar] [CrossRef]
- Strobel, D.F. Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation. J. Geophys. Res. Ocean. 1978, 83, 6225–6230. [Google Scholar] [CrossRef]
- Geronikolou, S. Public Health in Piraeus 1985–1989; Public Hygiene, TIE: Athens, Greece, 1991. [Google Scholar]
- Zhao, X.R.; Gonzales, N.; Aronowski, J. Pleiotropic role of PPARγ in intracerebral hemorrhage: An intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci. Ther. 2015, 21, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Culman, J.; Zhao, Y.; Gohlke, P.; Herdegen, T. PPAR-gamma: Therapeutic target for ischemic stroke. Trends Pharmacol. Sci. 2007, 28, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Geronikolou, S.A.; Pavlopoulou, A.; Kanaka-Gantenbein, C.; Chrousos, G. Inter-species functional interactome of nuclear steroid receptors (R1). Front. Biosci. 2018, 10, 208–228. [Google Scholar] [CrossRef] [Green Version]
- Anna, B.; Blazej, Z.; Jacqueline, G.; Andrew, C.J.; Jeffrey, R.; Andrzej, S. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. Expert Rev. Dermatol. 2007, 2, 451–469. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Yu, Y.; Li, S.; Huang, Y.; Xu, D.; Tao, X.; Fan, Y. Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective. Front. Public Health 2021, 9, 666528. [Google Scholar] [CrossRef]
- de Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet Light Induced Generation of Reactive Oxygen Species. Adv. Exp. Med. Biol. 2017, 996, 15–23. [Google Scholar] [CrossRef]
- Hrushesky, W.J.; Sothern, R.B.; Du-Quiton, J.; Quiton, D.F.; Rietveld, W.; Boon, M.E. Sunspot dynamics are reflected in human physiology and pathophysiology. Astrobiology 2011, 11, 93–103. [Google Scholar] [CrossRef]
Years | Training Data | Testing Data | SSE |
---|---|---|---|
1985 | 83.3% | 16.7% | 0.029 |
1986 | 75% | 25% | 0.193 |
1987 | 66.7% | 33.8% | 0.314 |
1988 | 83.3% | 16.7% | 0.088 |
1989 | 83.3% | 16.7% | 2.593 |
All | 73.3% | 26.7% | 0.343 |
Years | TSI | EPOCH |
---|---|---|
1985 | 0.714 | 0.286 |
1986 | 0.595 | 0.405 |
1987 | 0.903 | 0.064 |
1988 | 0.294 | 0.706 |
1989 | 0.785 | 0.215 |
All | 0.095 | 0.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geronikolou, S.; Zimeras, S.; Tsitomeneas, S.; Cokkinos, D.; Chrousos, G.P. Total Solar Irradiance and Stroke Mortality by Neural Networks Modelling. Atmosphere 2023, 14, 114. https://doi.org/10.3390/atmos14010114
Geronikolou S, Zimeras S, Tsitomeneas S, Cokkinos D, Chrousos GP. Total Solar Irradiance and Stroke Mortality by Neural Networks Modelling. Atmosphere. 2023; 14(1):114. https://doi.org/10.3390/atmos14010114
Chicago/Turabian StyleGeronikolou, Styliani, Stelios Zimeras, Stephanos Tsitomeneas, Dennis Cokkinos, and George P. Chrousos. 2023. "Total Solar Irradiance and Stroke Mortality by Neural Networks Modelling" Atmosphere 14, no. 1: 114. https://doi.org/10.3390/atmos14010114
APA StyleGeronikolou, S., Zimeras, S., Tsitomeneas, S., Cokkinos, D., & Chrousos, G. P. (2023). Total Solar Irradiance and Stroke Mortality by Neural Networks Modelling. Atmosphere, 14(1), 114. https://doi.org/10.3390/atmos14010114