Investigation of Surface Bacterial Diversities and Compositions in the Global Subway Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. DNA Extraction and 16S rRNA Gene Sequencing
2.3. Bacterial Communities Analysis
2.4. Statistical Analyses
3. Results and Discussion
3.1. Surface Bacterial Diversity from Different Subway Stations
3.2. Surface Bacterial Community Composition from Different Subway Stations
3.3. Surface Bacterial Community Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed] [Green Version]
- Lee, G.; Yoo, K. A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. Rev. Environ. Sci. Biotechnol. 2022, 21, 799–827. [Google Scholar] [CrossRef] [PubMed]
- Walser, S.M.; Gerstner, D.G.; Brenner, B.; Bünger, J.; Eikmann, T.; Janssen, B.; Kolb, S.; Kolk, A.; Nowak, D.; Raulf, M. Evaluation of exposure–response relationships for health effects of microbial bioaerosols–a systematic review. Int. J. Hyg. Environ. Health 2015, 218, 577–589. [Google Scholar] [CrossRef]
- Yoo, K.; Lee, T.K.; Choi, E.J.; Yang, J.; Shukla, S.K.; Hwang, S.-I.; Park, J. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J. Environ. Sci. 2017, 51, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Gohli, J.; Bøifot, K.O.; Moen, L.V.; Pastuszek, P.; Skogan, G.; Udekwu, K.I.; Dybwad, M. The subway microbiome: Seasonal dynamics and direct comparison of air and surface bacterial communities. Microbiome 2019, 7, 160. [Google Scholar] [CrossRef]
- Grydaki, N.; Colbeck, I.; Mendes, L.; Eleftheriadis, K.; Whitby, C. Bioaerosols in the Athens Metro: Metagenetic insights into the PM10 microbiome in a naturally ventilated subway station. Environ. Int. 2021, 146, 106186. [Google Scholar] [CrossRef]
- Loxham, M.; Nieuwenhuijsen, M.J. Health effects of particulate matter air pollution in underground railway systems–a critical review of the evidence. Part. Fibre Toxicol. 2019, 16, 12. [Google Scholar] [CrossRef] [Green Version]
- Nyström, A.K.; Svartengren, M.; Grunewald, J.; Pousette, C.; Rödin, I.; Lundin, A.; Sköld, C.M.; Eklund, A.; Larsson, B.-M. Health effects of a subway environment in healthy volunteers. Eur. Respir. J. 2010, 36, 240–248. [Google Scholar] [CrossRef]
- Xu, B.; Hao, J. Air quality inside subway metro indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Guo, K.; Qian, H.; Zhao, D.; Ye, J.; Zhang, Y.; Kan, H.; Zhao, Z.; Deng, F.; Huang, C.; Zhao, B.; et al. Indoor exposure levels of bacteria and fungi in residences, schools, and offices in China: A systematic review. Indoor Air 2020, 30, 1147–1165. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, C.N. Airborne microbiological characteristics in public buildings of Korea. Build. Environ. 2007, 42, 2188–2196. [Google Scholar] [CrossRef]
- Anderson, B.D.; Yondon, M.; Bailey, E.S.; Duman, E.K.; Simmons, R.A.; Greer, A.G.; Gray, G.C. Environmental bioaerosol surveillance as an early warning system for pathogen detection in North Carolina swine farms: A pilot study. Transbound. Emerg. Dis. 2021, 68, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Herfst, S.; Böhringer, M.; Karo, B.; Lawrence, P.; Lewis, N.S.; Mina, M.J.; Russell, C.J.; Steel, J.; de Swart, R.L.; Menge, C. Drivers of airborne human-to-human pathogen transmission. Curr. Opin. Virol. 2017, 22, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Karbowska-Berent, J.; Górny, R.L.; Strzelczyk, A.B.; Wlazło, A. Airborne and dust borne microorganisms in selected Polish libraries and archives. Build. Environ. 2011, 46, 1872–1879. [Google Scholar] [CrossRef]
- Gangneux, J.-P.; Sassi, M.; Lemire, P.; Le Cann, P. Metagenomic characterization of indoor dust bacterial and fungal microbiota in homes of asthma and non-asthma patients using next generation sequencing. Front. Microbiol. 2020, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Klimenko, N.S.; Tyakht, A.V.; Toshchakov, S.V.; Shevchenko, M.A.; Korzhenkov, A.A.; Afshinnekoo, E.; Mason, C.E.; Alexeev, D.G. Co-occurrence patterns of bacteria within microbiome of Moscow subway. Comput. Struct. Biotechnol. J. 2020, 18, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Afshinnekoo, E.; Meydan, C.; Chowdhury, S.; Jaroudi, D.; Boyer, C.; Bernstein, N.; Maritz, J.M.; Reeves, D.; Gandara, J.; Chhangawala, S. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst. 2015, 1, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.M.; Vargas-Robles, D.; Alcaraz, L.D.; Peimbert, M. Station and train surface microbiomes of Mexico City’s metro (subway/underground). Sci. Rep. 2020, 10, 8798. [Google Scholar] [CrossRef]
- Hsu, T.; Joice, R.; Vallarino, J.; Abu-Ali, G.; Hartmann, E.M.; Shafquat, A.; DuLong, C.; Baranowski, C.; Gevers, D.; Green, J.L. Urban transit system microbial communities differ by surface type and interaction with humans and the environment. Msystems 2016, 1, e00018-16. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Han, S.J.; Yoo, K. Dust-Associated Bacterial and Fungal Communities in Indoor Multiple-Use and Public Transportation Facilities. Atmosphere 2022, 13, 1373. [Google Scholar] [CrossRef]
- Busan Transportation Corporation. Busan Transportation Corporation_Number of Passengers per Time Slot. Available online: https://www.data.go.kr/data/3057229/fileData.do (accessed on 17 January 2022).
- Korea Airports Corporation. Korea Airports Corporation_Transportation Performance Statistics. Available online: https://www.data.go.kr/data/15002638/fileData.do (accessed on 17 January 2022).
- National Transit Database. 2015 Metrics. Available online: https://www.transit.dot.gov/ntd/data-product/2015-metrics (accessed on 22 July 2022).
- American Public Transportation Association. Public Transportation Ridership Report; American Public Transportation Association: Washington, DC, USA, 2014. [Google Scholar]
- International Association of Public Transport. World Metro Figures. Available online: https://www.uitp.org/publications/world-metro-figures/ (accessed on 22 July 2022).
- Gobierno de la Ciudad de Mexico. Metro CDMX. Available online: https://metro.cdmx.gob.mx/ (accessed on 22 July 2022).
- Pochtovyi, A.A.; Vasina, D.V.; Verdiev, B.I.; Shchetinin, A.M.; Yuzhakov, A.G.; Ovchinnikov, R.S.; Tkachuk, A.P.; Gushchin, V.A.; Gintsburg, A.L. Microbiological Characteristics of Some Stations of Moscow Subway. Biology 2022, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Moскoвский Mетрoпoлитен. Available online: https://www.mosmetro.ru/ (accessed on 17 July 2022).
- World Meteorological Organization. World Weather Information Service. Available online: https://worldweather.wmo.int/en/home.html (accessed on 17 July 2022).
- Kirshen, P.; Ruth, M.; Anderson, W. Interdependencies of urban climate change impacts and adaptation strategies: A case study of Metropolitan Boston USA. Clim. Chang. 2008, 86, 105–122. [Google Scholar] [CrossRef]
- Romero Lankao, P. Water in Mexico City: What will climate change bring to its history of water-related hazards and vulnerabilities? Environ. Urban. 2010, 22, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Varentsov, M.; Wouters, H.; Platonov, V.; Konstantinov, P. Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia. Atmosphere 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Jansson, L.; Akel, Y.; Eriksson, R.; Lavander, M.; Hedman, J. Impact of swab material on microbial surface sampling. J. Microbiol. Methods 2020, 176, 106006. [Google Scholar] [CrossRef]
- Flores, G.E.; Bates, S.T.; Knights, D.; Lauber, C.L.; Stombaugh, J.; Knight, R.; Fierer, N. Microbial biogeography of public restroom surfaces. PLoS ONE 2011, 6, e28132. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 August 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘Vegan’. Community Ecology Package, Version 2.0-10. 2013; pp. 1–295. Available online: http://vegan.r-forge.r-project.org/ (accessed on 4 January 2023).
- Barberán, A.; Dunn, R.R.; Reich, B.J.; Pacifici, K.; Laber, E.B.; Menninger, H.L.; Morton, J.M.; Henley, J.B.; Leff, J.W.; Miller, S.L. The ecology of microscopic life in household dust. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151139. [Google Scholar] [CrossRef] [PubMed]
- Weikl, F.; Tischer, C.; Probst, A.J.; Heinrich, J.; Markevych, I.; Jochner, S.; Pritsch, K. Fungal and bacterial communities in indoor dust follow different environmental determinants. PLoS ONE 2016, 11, e0154131. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.C.; Pehrsson, E.C.; Blaser, M.J.; Sandhu, K.; Gao, Z.; Wang, B.; Magris, M.; Hidalgo, G.; Contreras, M.; Noya-Alarcón, Ó. The microbiome of uncontacted Amerindians. Sci. Adv. 2015, 1, e1500183. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Li, X.; Deng, J.; Da, G.; Gehin, E.; Yao, M. Time-dependent size-resolved bacterial and fungal aerosols in Beijing subway. Aerosol Air Qual. Res. 2017, 17, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogerakis, N.; Paschali, D.; Lekaditis, V.; Pantidou, A.; Eleftheriadis, K.; Lazaridis, M. Indoor air quality—Bioaerosol measurements in domestic and office premises. J. Aerosol Sci. 2005, 36, 751–761. [Google Scholar] [CrossRef]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kummer, V.; Thiel, W.R. Bioaerosols–sources and control measures. Int. J. Hyg. Environ. Health 2008, 211, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Macher, J.; Burge, H.; Milton, D.; Morey, P. Assessment and control of bioaerosols in the indoor environment. In Proceedings of the American Conference of Industrial Hygienists, Cincinnati, OH, USA, 1999. Chapter 19.1.5.4. [Google Scholar]
- Leung, M.H.; Wilkins, D.; Li, E.K.; Kong, F.K.; Lee, P.K. Indoor-air microbiome in an urban subway network: Diversity and dynamics. Appl. Environ. Microbiol. 2014, 80, 6760–6770. [Google Scholar] [CrossRef] [Green Version]
- Triadó-Margarit, X.; Veillette, M.; Duchaine, C.; Talbot, M.; Amato, F.; Minguillón, M.C.; Martins, V.; de Miguel, E.; Casamayor, E.O.; Moreno, T. Bioaerosols in the Barcelona subway system. Indoor Air 2017, 27, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Li, Y.; Bai, W.; Hou, J.; Ma, T.; Zeng, X.; Zhang, L.; An, T. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 2021, 15, 44. [Google Scholar] [CrossRef]
- Passi, A.; Nagendra, S.S.; Maiya, M. Characteristics of indoor air quality in underground metro stations: A critical review. Build. Environ. 2021, 198, 107907. [Google Scholar] [CrossRef]
- Cox, J.; Mbareche, H.; Lindsley, W.G.; Duchaine, C. Field sampling of indoor bioaerosols. Aerosol Sci. Technol. 2020, 54, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.E.; Baumgartner, L.K.; Harris, J.K.; Peterson, K.L.; Stevens, M.J.; Frank, D.N.; Pace, N.R. Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Appl. Environ. Microbiol. 2013, 79, 3485–3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, A.; Kettleson, E.M.; Vesper, S.; Kumar, S.; Popham, D.L.; Schaffer, C.; Indugula, R.; Chatterjee, K.; Allam, K.K.; Grinshpun, S.A. Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Sci. Total Environ. 2014, 482, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, K.; Han, I.; Ko, K.S.; Lee, T.K.; Yoo, H.; Khan, M.I.; Tiedje, J.M.; Park, J. Bacillus-dominant airborne bacterial communities identified during Asian dust events. Microb. Ecol. 2019, 78, 677–687. [Google Scholar] [CrossRef]
- Huertas, M.E.; Acevedo-Barrios, R.L.; Rodríguez, M.; Gaviria, J.; Arana, R.; Arciniegas, C. Identification and Quantification of Bioaerosols in a Tropical Coastal Region: Cartagena de Indias, Colombia. Aerosol Sci. Eng. 2018, 2, 206–215. [Google Scholar] [CrossRef]
- Li, Y.; Wadsö, L.; Larsson, L. Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti–correlations between produced heat, ergosterol content and biomass. J. Appl. Microbiol. 2009, 106, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.W.; Huh, E.H.; Jeong, H.C. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea. Environ. Monit. Assess. 2014, 186, 2111–2120. [Google Scholar] [CrossRef]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef] [Green Version]
- Peimbert, M.; Alcaraz, L.D. Where environmental microbiome meets its host: Subway and passenger microbiome relationships. Mol. Ecol. 2022. [Google Scholar] [CrossRef]
- Tarrah, A.; Noal, V.; Treu, L.; Giaretta, S.; da Silva Duarte, V.; Corich, V.; Giacomini, A. Comparison of growth kinetics at different temperatures of Streptococcus macedonicus and Streptococcus thermophilus strains of dairy origin. J. Dairy Sci. 2018, 101, 7812–7816. [Google Scholar] [CrossRef]
- Zhao, F.; He, S.; Tan, A.P.; Guo, X.Z.; Jiang, L.; Liu-Fu, C.; Deng, Y.T.; Zhang, R.Q. Isolation, identification and character analysis of Streptococcus dysgalactiae from Megalobrama terminalis. J. Fish Dis. 2020, 43, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Kinlock, N.L.; Prowant, L.; Herstoff, E.M.; Foley, C.M.; Akin-Fajiye, M.; Bender, N.; Umarani, M.; Ryu, H.Y.; Şen, B.; Gurevitch, J. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 2018, 27, 125–141. [Google Scholar] [CrossRef]
- Tignat-Perrier, R.; Dommergue, A.; Thollot, A.; Keuschnig, C.; Magand, O.; Vogel, T.M.; Larose, C. Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Sci. Rep. 2019, 9, 14441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef]
- Kampf, G. Adaptive microbial response to low-level benzalkonium chloride exposure. J. Hosp. Infect. 2018, 100, e1–e22. [Google Scholar] [CrossRef]
- Khongkhaem, P.; Intasiri, A.; Luepromchai, E. Silica-immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 degrade high concentrations of phenol. Lett. Appl. Microbiol. 2011, 52, 448–455. [Google Scholar] [CrossRef]
- Hwang, S.H.; Roh, J.; Park, W.M. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 2018, 242, 700–708. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Li, B.; Sun, S.; Yabo, S.D.; Geng, J.; Ma, L.; Qi, H. Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. J. Hazard. Mater. 2020, 398, 122984. [Google Scholar] [CrossRef]
- Yang, L.; Shen, Z.; Wei, J.; Wang, X.; Xu, H.; Sun, J.; Wang, Q.; Cao, J. Size distribution, community composition, and influencing factors of bioaerosols on haze and non-haze days in a megacity in Northwest China. Sci. Total Environ. 2022, 838, 155969. [Google Scholar] [CrossRef]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 2012, 22, 339–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandi, V.; Palange, P.; Vaish, R.; Bhatti, A.B.; Kale, V.; Kandi, M.R.; Bhoomagiri, M.R. Emerging bacterial infection: Identification and clinical significance of Kocuria species. Cureus 2016, 8, e731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Koszutski, M.; Faure, M.; Guillaumot, A.; Gomez, E.; Mercy, M.; Chabot, F.; Chaouat, A. Infection de cathéter veineux central tunnelisé survenue sous traitement par époprosténol. Rev. Mal. Respir. 2018, 35, 324–327. [Google Scholar] [CrossRef]
- Navaratnam, J.; Dedi, L.; Tjølsen, A.M.; Bragadóttir, R. Identification of Dietzia species in a patient with endophthalmitis following penetrating injury with retained intraocular metallic foreign body. Case Rep. Infect. Dis. 2018, 2018, 3027846. [Google Scholar] [CrossRef] [Green Version]
- Gerber, E.; Bernard, R.; Castang, S.; Chabot, N.; Coze, F.; Dreux-Zigha, A.; Hauser, E.; Hivin, P.; Joseph, P.; Lazarelli, C. Deinococcus as new chassis for industrial biotechnology: Biology, physiology and tools. J. Appl. Microbiol. 2015, 119, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kovaleva, J.; Degener, J.E.; van der Mei, H.C. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol. 2014, 52, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Nunez, M.; Hammer, H. Microbial specialists in below-grade foundation walls in Scandinavia. Indoor Air 2014, 24, 543–551. [Google Scholar] [CrossRef]
- Tian, Z.; Lu, S.; Jin, D.; Yang, J.; Pu, J.; Lai, X.-H.; Wang, X.-X.; Wu, X.-M.; Li, J.; Wang, S. Roseomonas wenyumeiae sp. nov., isolated from faeces of Tibetan antelopes (Pantholops hodgsonii) on the Qinghai–Tibet Plateau. Int. J. Syst. Evol. 2019, 69, 2979–2986. [Google Scholar] [CrossRef]
- Chouaia, B.; Crotti, E.; Brusetti, L.; Daffonchio, D.; Essoussi, I.; Nouioui, I.; Sbissi, I.; Ghodhbane-Gtari, F.; Gtari, M.; Vacherie, B. Genome sequence of Blastococcus saxobsidens DD2, a stone-inhabiting bacterium. Am. Soc. Microbiol. 2012, 194, 2752–2753. [Google Scholar] [CrossRef]
- Hezbri, K.; Nouioui, I.; Rohde, M.; Spröer, C.; Schumann, P.; Gtari, M.; Klenk, H.-P.; del Carmen Montero-Calasanz, M.; Ghodhbane-Gtari, F. Blastococcus xanthinilyticus sp. nov., isolated from monument. Int. J. Syst. Evol. 2018, 68, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Almeida, B.; Paciência, I.; Cavaleiro Rufo, J.; Ribeiro, E.; Carolino, E.; Viegas, C.; Uva, A.S.; Verde, S.C. Bacterial contamination in health care centers: Differences between urban and rural settings. Atmosphere 2021, 12, 450. [Google Scholar] [CrossRef]
- Satari, L.; Guillén, A.; Vidal-Verdú, À.; Porcar, M. The wasted chewing gum bacteriome. Sci. Rep. 2020, 10, 16846. [Google Scholar] [CrossRef]
- Julian, T.; Leckie, J.; Boehm, A. Virus transfer between fingerpads and fomites. J. Appl. Microbiol. 2010, 109, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.U.; Gerba, C.P.; Tamimi, A.H.; Kitajima, M.; Maxwell, S.L.; Rose, J.B. Transfer efficiency of bacteria and viruses from porous and nonporous fomites to fingers under different relative humidity conditions. Appl. Environ. Microbiol. 2013, 79, 5728–5734. [Google Scholar] [CrossRef] [Green Version]
- Rusin, P.; Maxwell, S.; Gerba, C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J. Appl. Microbiol. 2002, 93, 585–592. [Google Scholar] [CrossRef]
- Patel, K.; Bailey, C.; Harding, A.H.; Biggin, M.; Crook, B. Background levels of micro-organisms in the busy urban environment of transport hubs. J. Appl. Microbiol. 2018, 125, 1541–1551. [Google Scholar] [CrossRef]
- Giovannangelo, M.; Gehring, U.; Nordling, E.; Oldenwening, M.; Terpstra, G.; Bellander, T.; Hoek, G.; Heinrich, J.; Brunekreef, B. Determinants of house dust endotoxin in three European countries-the AIRALLERG study. Indoor Air 2007, 17, 70–79. [Google Scholar] [CrossRef]
- Leppänen, H.K.; Täubel, M.; Jayaprakash, B.; Vepsäläinen, A.; Pasanen, P.; Hyvärinen, A. Quantitative assessment of microbes from samples of indoor air and dust. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 231–241. [Google Scholar] [CrossRef] [PubMed]
City | Site | Station | Sequence Available |
---|---|---|---|
Busan | BS1 | Busan Station | mgs860663 |
BS2 | Seomyeon | mgs860666 | |
BS3 | Busan National University | mgs884070 | |
BS4 | Haeundae | mgs884082 | |
BS5 | Airport | mgs860669 | |
Boston | BT1 | Alewife | SRR3498906 |
BT2 | Riverside | SRR3545943 | |
BT3 | South(underground) | SRR3545897 | |
BT4 | South(upstairs) | SRR3545957 | |
BT5 | Foresthills | SRR3545889 | |
Mexico City | MX1 | Indios verdes | SRR9671870 |
MX2 | Pantitlan | SRR9671879 | |
MX3 | Tacubaya | SRR9671874 | |
MX4 | Buenavista | SRR9671878 | |
MX5 | Tacuba | SRR9671883 | |
Moscow | MC1 | Rimskaya | SRR7976670 |
MC2 | Sretenskiy boulevard | SRR7976673 | |
MC3 | Vystavochnaya | SRR7976678 | |
MC4 | Vystavochnaya | SRR7976679 | |
MC5 | Dostoyevskaya | SRR7976692 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Bae, S.; Park, S.; Shukla, S.K.; Yoo, K. Investigation of Surface Bacterial Diversities and Compositions in the Global Subway Facilities. Atmosphere 2023, 14, 140. https://doi.org/10.3390/atmos14010140
Kim J, Bae S, Park S, Shukla SK, Yoo K. Investigation of Surface Bacterial Diversities and Compositions in the Global Subway Facilities. Atmosphere. 2023; 14(1):140. https://doi.org/10.3390/atmos14010140
Chicago/Turabian StyleKim, Jeongwon, Suyeon Bae, Sena Park, Sudheer Kumar Shukla, and Keunje Yoo. 2023. "Investigation of Surface Bacterial Diversities and Compositions in the Global Subway Facilities" Atmosphere 14, no. 1: 140. https://doi.org/10.3390/atmos14010140
APA StyleKim, J., Bae, S., Park, S., Shukla, S. K., & Yoo, K. (2023). Investigation of Surface Bacterial Diversities and Compositions in the Global Subway Facilities. Atmosphere, 14(1), 140. https://doi.org/10.3390/atmos14010140