Significant Increases in Wet Nighttime and Daytime–Nighttime Compound Heat Waves in China from 1961 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Definition of Wet HWs
2.3. Characteristics of Wet HWs
3. Results
3.1. Main Features of Wet HWs
3.2. Variations of Areal Exposure to Wet HWs
3.3. Severe Wet HWs
4. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, Y.; Guan, D.; Tinoco, D.M.; Xia, J.; Yan, Z.; Yang, J.; Liu, Q.; Huo, H. Assessment of the economic impacts of heat waves: A case study of Nanjing, China. J. Clean. Prod. 2018, 171, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ. Int. 2016, 89, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef] [PubMed]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Gutierrez, L.; Müller, W.A.; Li, C.; Marotzke, J. Hotspots of extreme heat under global warming. Clim. Dyn. 2020, 55, 429–447. [Google Scholar] [CrossRef]
- Wang, P.; Hui, P.; Xue, D.; Tang, J. Future projection of heat waves over China under global warming within the CORDEX-EA-II project. Clim. Dyn. 2019, 53, 957–973. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Chen, X.; Huang, C.; Han, F.; Li, N. Assessment of the regional and sectoral economic impacts of heat-related changes in labor productivity under climate change in China. Earth’s Future 2021, 9, e2021EF002028. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Orlov, A.; Sillmann, J.; Aunan, K.; Kjellstrom, T.; Aaheim, A. Economic costs of heat-induced reductions in worker productivity due to global warming. Global Environ. Chang. 2020, 63, 102087. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Ren, Z.; Li, M.; Wang, B.; Liu, D.L.; Ou, C.-Q.; Yin, P.; Sun, J.; Tong, S.; et al. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 2021, 12, 1039. [Google Scholar] [CrossRef]
- Wang, H.-J.; Sun, J.-Q.; Chen, H.-P.; Zhu, Y.-L.; Zhang, Y.; Jiang, D.-B.; Lang, X.-M.; Fan, K.; Yu, E.-T.; Yang, S. Extreme climate in China: Facts, simulation and projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Deng, K.; Jiang, X.; Hu, C.; Chen, D. More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environ. Res. Lett. 2020, 15, 074011. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C.; Liu, Z.; Wu, S.; Wang, X. An observational investigation of spatiotemporally contiguous heatwaves in China from a 3D perspective. Geophys. Res. Lett. 2022, 49, e2022GL097714. [Google Scholar] [CrossRef]
- You, Q.; Jiang, Z.; Kong, L.; Wu, Z.; Bao, Y.; Kang, S.; Pepin, N. A comparison of heat wave climatologies and trends in China based on multiple definitions. Clim. Dyn. 2017, 48, 3975–3989. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Sun, Q.; Zhou, X.; Li, X.; Yang, M.; Yu, A.; Geng, F. Heat wave impact on mortality in Pudong New Area, China in 2013. Sci. Total Environ. 2014, 493, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, H.; Wang, H.; Sun, J.; Ma, J. Can Barents sea ice decline in spring enhance summer hot drought events over northeastern China? J. Clim. 2018, 31, 4705–4725. [Google Scholar] [CrossRef]
- Sun, Y.; Song, L.; Yin, H.; Zhou, B.; Hu, T.; Zhang, X.; Stott, P. Human influence on the 2015 extreme high temperature events in western China. Bull. Am. Meteorol. Soc. 2016, 97, S102–S106. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y. An inter-comparison of three heat wave types in China during 1961−2010: Observed basic features and linear trends. Sci. Rep. 2017, 7, 45619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhou, B.; Zhai, P.; Moufouma-Okia, W. Half-a-degree matters for reducing and delaying global land exposure to combined daytime-nighttime hot extremes. Earth’s Future 2019, 7, 953–966. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett. 2017, 44, 5096–5103. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.; Yan, Z.; Chen, Y. Future risks of unprecedented compound heat waves over three vast urban agglomerations in China. Earth’s Future 2020, 8, e2020EF001716. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Li, W. Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J. Meteorol. Res. 2017, 31, 455–467. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, V. A sixfold rise in concurrent day and night-time heatwaves in India under 2 °C warming. Sci. Rep. 2018, 8, 16922. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ding, Y.; Liu, Y. Mechanisms for regional compound hot extremes in the mid-lower reaches of the Yangtze River. Int. J. Climatol. 2021, 41, 1292–1304. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C.; Liu, Z. Different mechanisms for daytime, nighttime, and compound heatwaves in southern China. Weather Clim. Extrem. 2022, 36, 100449. [Google Scholar] [CrossRef]
- Zhang, T.; Tam, C.-Y.; Lau, N.-C.; Wang, J.; Yang, S.; Chen, J.; Yu, W.; Jiang, X.; Gao, P. Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze–Huaihe River basin: The North Atlantic capacitor effect. Clim. Dyn. 2022, 59, 2331–2343. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Sci. Total Environ. 2021, 772, 145004. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhou, B.; Han, Z.; Xu, Y. Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environ. Res. Lett. 2022, 17, 045007. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.; Chen, C.; Lu, Z.; Luo, Z.; Zhou, W. Population exposure to concurrent daytime and nighttime heatwaves in Huai River Basin, China. Sustain. Cities Soc. 2020, 61, 102309. [Google Scholar] [CrossRef]
- Liao, W.; Li, D.; Malyshev, S.; Shevliakova, E.; Zhang, H.; Liu, X. Amplified increases of compound hot extremes over urban land in China. Geophys. Res. Lett. 2021, 48, e2020GL091252. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. More persistent summer compound hot extremes caused by global urbanization. Geophys. Res. Lett. 2021, 48, e2021GL093721. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Liao, W.; He, G.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Ma, W.; Huang, C.; et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Clim. Chang. 2021, 11, 1084–1089. [Google Scholar] [CrossRef]
- Wu, S.; Wang, P.; Tong, X.; Tian, H.; Zhao, Y.; Luo, M. Urbanization-driven increases in summertime compound heat extremes across China. Sci. Total Environ. 2021, 799, 149166. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA. 2010, 107, 9552–9555. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Ke, Z. Characteristics and changes of regional wet and dry heat wave events in China during 1960−2013. Theor. Appl. Climatol. 2015, 122, 651–665. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C. Characteristics of summer heat stress in China during 1979–2014: Climatology and long-term trends. Clim. Dyn. 2019, 53, 5375–5388. [Google Scholar] [CrossRef]
- Xu, F.; Chan, T.O.; Luo, M. Different changes in dry and humid heat waves over China. Int. J. Climatol. 2021, 41, 1369–1382. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X.; Li, H. Characteristics and circulation patterns for wet and dry compound day-night heat waves in mid-eastern China. Global Planet. Chang. 2022, 213, 103839. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. (In Chinese) [Google Scholar]
- Chen, H.; He, W.; Sun, J.; Chen, L. Increases of extreme heat-humidity days endanger future populations living in China. Environ. Res. Lett. 2022, 17, 064013. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.; Giorgi, F.; Chen, D. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset. Int. J. Climatol. 2017, 37, 788–800. [Google Scholar] [CrossRef]
- Gao, M.; Wang, B.; Yang, J.; Dong, W. Are peak summer sultry heat wave days over the Yangtze–Huaihe River Basin predictable? J. Clim. 2018, 31, 2185–2196. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Tan, J.; Wu, R.; Xu, X. Influence of meteorological parameters on human comfort index. Meteor. Sci. Tech. 2007, 35, 827–831. (In Chinese) [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef]
- Su, Q.; Dong, B. Recent decadal changes in heat waves over China: Drivers and mechanisms. J. Clim. 2019, 32, 4215–4234. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Xia, J. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 2020, 11, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lang, X.; Jiang, D. Detectable anthropogenic influence on summer compound hot events over China from 1965 to 2014. Environ. Res. Lett. 2022, 17, 034042. [Google Scholar] [CrossRef]
HW Type | HWN | HWF | HWD | HWI |
---|---|---|---|---|
Compound | 0.07 * | 0.27 * | 0.18 * | 0.48 * |
Daytime | 0.02 | 0.06 | 0.02 | 0.07 * |
Nighttime | 0.19 * | 0.82 * | 0.33 * | 0.35 * |
Sub-Region | HW Type | HWN | HWF | HWD | HWI | |
---|---|---|---|---|---|---|
NEC | Compound | 0.04 * | 0.12 * | 0.11 * | 0.43 * | |
Daytime | 0.03 | 0.10 | 0.05 | 0.19 | ||
Nighttime | 0.19 * | 0.77 * | 0.42 * | 1.00 * | ||
NC | Compound | 0.02 * | 0.08 * | 0.08 * | 0.22 * | |
Daytime | 0.02 | 0.06 | 0.05 | 0.11 | ||
Nighttime | 0.11 * | 0.39 * | 0.24 * | 0.39 * | ||
JH | Compound | 0.10 * | 0.38 * | 0.24 * | 0.83 * | |
Daytime | 0.00 | −0.01 | −0.03 | 0.03 | ||
Nighttime | 0.16 * | 0.57 * | 0.32 * | 0.43 * | ||
SC | Compound | 0.19 * | 0.73 * | 0.43 * | 1.28 * | |
Daytime | 0.04 | 0.10 | 0.05 | 0.14 | ||
Nighttime | 0.29* | 1.23 * | 0.52 * | 0.77 * | ||
SWC | Compound | 0.11 * | 0.42 * | 0.31 * | 1.06 * | |
Daytime | 0.08 * | 0.32 * | 0.17 * | 0.53 * | ||
Nighttime | 0.36 * | 1.58 * | 0.52 * | 1.26 * | ||
TP | Compound | 0.04 * | 0.15 * | 0.12 * | 0.30 * | |
Daytime | 0.00 | 0.01 | 0.00 | 0.05 | ||
Nighttime | 0.36 * | 1.77 * | 0.44 * | 1.36 * | ||
WNC | Compound | 0.00 * | 0.01 * | 0.01 * | 0.02 * | |
Daytime | 0.00 | 0.00 | 0.00 | 0.00 | ||
Nighttime | 0.02 * | 0.09 * | 0.06 * | 0.11 * | ||
ENC | Compound | 0.01 * | 0.02 * | 0.02 * | 0.05 * | |
Daytime | 0.01 * | 0.03 * | 0.03 * | 0.05 * | ||
Nighttime | 0.08 * | 0.33 * | 0.18 * | 0.44 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X. Significant Increases in Wet Nighttime and Daytime–Nighttime Compound Heat Waves in China from 1961 to 2020. Atmosphere 2023, 14, 178. https://doi.org/10.3390/atmos14010178
Chen X. Significant Increases in Wet Nighttime and Daytime–Nighttime Compound Heat Waves in China from 1961 to 2020. Atmosphere. 2023; 14(1):178. https://doi.org/10.3390/atmos14010178
Chicago/Turabian StyleChen, Xi. 2023. "Significant Increases in Wet Nighttime and Daytime–Nighttime Compound Heat Waves in China from 1961 to 2020" Atmosphere 14, no. 1: 178. https://doi.org/10.3390/atmos14010178
APA StyleChen, X. (2023). Significant Increases in Wet Nighttime and Daytime–Nighttime Compound Heat Waves in China from 1961 to 2020. Atmosphere, 14(1), 178. https://doi.org/10.3390/atmos14010178