Biomonitoring Atmospheric Pollution of Polycyclic Aromatic Hydrocarbons Using Mosses
Abstract
:1. Introduction
2. Physiological Structure and Biological Characteristics of Mosses
3. Influencing Factors of PHCs Biomonitoring by Mosses
3.1. Moss Species
3.2. The Growth Substrate and Habitat of Mosses
3.3. Limitations of Moss Biomonitoring
4. Application of Mosses in Biomonitoring Atmospheric PAHs
4.1. Biomonitoring with Chemical Analysis Methods
4.2. Index of Atmospheric Purity (IAP)
- i: Natural number from 1 to N, indicating the ith mosses in a particular area;
- n: The number of species of all epiphytic mosses in a specific area;
- Q: Ecological index of epiphytic mosses in the test area; that is, the average number of all other epiphytic moss species coexisting with epiphytic mosses in all sample areas.
- F: Subjective estimates of the coverage and frequency of each epiphytic mosses in the same area. Generally, five levels are adopted, and the classification method is shown in Table 4.
4.3. Ecological Survey Method
4.4. Moss-Bag Technique
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.X.; Zeng, H.M.; Zheng, R.S.; Xia, C.F.; Zhang, S.W.; Chen, W.Q. Progress of Research on the Association between atmospheric pollution and Prevalence of Major Cancers. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi 2018, 39, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Bolade, O.P.; Adeniyi, K.O.; Williams, A.B.; Benson, N.U. Remediation and Optimization of Petroleum Hydrocarbons Degra-dation in Contaminated Water Using Alkaline Activated Persulphate. J. Environ. Chem. Eng. 2021, 9, 105801. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Saeed, T.; Jupp, B.; Faizuddin, M. Petroleum hydrocarbons pollutions in Sediments from the Gulf and Omani Waters: Status and Review. Mar. Pollut. Bull. 2021, 173, 112913. [Google Scholar] [CrossRef] [PubMed]
- Karthick, A.; Roy, B.; Chattopadhyay, P. A Review on the Application of Chemical Surfactant and Surfactant Foam for Remediation of Petroleum Oil Contaminated Soil. J. Environ. Manag. 2019, 243, 187–205. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of Petroleum hydrocarbons: Sources, Impacts and Remediation Strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef] [PubMed]
- Wolterbeek, B. Biomonitoring of Trace Element atmospheric pollution: Principles, Possibilities and Perspectives. Environ. Pollut. 2002, 120, 11–21. [Google Scholar] [CrossRef]
- Wolterbeek, H.T.; Verburg, T.G. Atmospheric Metal Deposition in a Moss Data Correlation Study with Mortality and Disease in the Netherlands. Sci. Total Environ. 2004, 319, 53–64. [Google Scholar] [CrossRef]
- Figueira, R.; Sérgio, C.; Lopes, J.L.; Sousa, A.J. Detection of Exposition Risk to Arsenic in Portugal Assessed by Air Deposition in Biomonitors and Water Contamination. Int. J. Hyg. Environ. Health 2007, 210, 393–397. [Google Scholar] [CrossRef]
- Augusto, S.; Pereira, M.J.; Soares, A.; Branquinho, C. The Contribution of Environmental Biomonitoring with Lichens to Assess Human Exposure to Dioxins. Int. J. Hyg. Environ. Health 2007, 210, 433–438. [Google Scholar] [CrossRef]
- Augusto, S.; Pereira, M.J.; Máguas, C.; Soares, A.; Branquinho, C. Assessing Human Exposure to Polycyclic Aromatic Hydrocarbons (PAH) in a Petrochemical Region Utilizing Data from Environmental Biomonitors. J. Toxicol. Environ. Health Part A 2012, 75, 819–830. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. Impact of Total Petroleum Hydrocarbons on Human Health. In Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation; Kuppusamy, S., Maddela, N.R., Megharaj, M., Venkateswarlu, K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–165. ISBN 978-3-030-24035-6. [Google Scholar]
- Wu, Q.; Wang, X.; Zhou, Q. Biomonitoring Persistent Organic Pollutants in the Atmosphere with Mosses: Performance and Application. Environ. Int. 2014, 66, 28–37. [Google Scholar] [CrossRef]
- Zhou, Q.; Sun, F.; Liu, R. Joint Chemical Flushing of Soils Contaminated with Petroleum hydrocarbons. Environ. Int. 2005, 31, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.A.; Adetutu, E.M.; Kadali, K.K.; Morrison, P.D.; Nurulita, Y.; Ball, A.S. Assessing the Hydrocarbon Degrading Potential of Indigenous Bacteria Isolated from Crude Oil Tank Bottom Sludge and Hydrocarbon-Contaminated Soil of Azzawiya Oil Refinery, Libya. Environ. Sci. Pollut. Res. 2014, 21, 10725–10735. [Google Scholar] [CrossRef] [PubMed]
- Onyegeme-Okerenta, B.M.; West, O.L.; Chuku, L.C. Concentration, Dietary Exposure and Human Health Risk Assessment of Total Petroleum and Polycyclic Aromatic Hydrocarbons in Seafood from Coastal Communities in Rivers State, Nigeria. Sci. Afr. 2022, 16, e01186. [Google Scholar] [CrossRef]
- Emoyan, O.O.; Adjerese, W.; Tesi, G.O. Concentrations, Origin, and Associated Exposure Risk of Polycyclic Aromatic Hydrocarbons in Soil Depths from Selected Petroleum Tank Farms in Western Delta, Nigeria. Polycycl. Aromat. Compd. 2022, 1–23. [Google Scholar] [CrossRef]
- Eldos, H.I.; Zouari, N.; Saeed, S.; Al-Ghouti, M.A. Recent Advances in the Treatment of PAHs in the Environment: Application of Nanomaterial-Based Technologies. Arab. J. Chem. 2022, 15, 103918. [Google Scholar] [CrossRef]
- Kulshrestha, M.J.; Singh, R.; Ojha, V.N. Trends and Source Attribution of PAHs in Fine Particulate Matter at an Urban and a Rural Site in Indo-Gangetic Plain. Urban Clim. 2019, 29, 100485. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Ho, K.F.; Wang, X.M.; Zou, S.C. Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban Air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Bourotte, C.; Forti, M.-C.; Taniguchi, S.; Bícego, M.C.; Lotufo, P.A. A Wintertime Study of PAHs in Fine and Coarse Aerosols in São Paulo City, Brazil. Atmos. Environ. 2005, 39, 3799–3811. [Google Scholar] [CrossRef]
- Fraser, M.P.; Yue, Z.W.; Tropp, R.J.; Kohl, S.D.; Chow, J.C. Molecular Composition of Organic Fine Particulate Matter in Houston, TX. Atmos. Environ. 2002, 36, 5751–5758. [Google Scholar] [CrossRef]
- Eiguren-Fernandez, A.; Miguel, A.H.; Froines, J.R.; Thurairatnam, S.; Avol, E.L. Seasonal and Spatial Variation of Polycyclic Aromatic Hydrocarbons in Vapor-Phase and PM2.5 in Southern California Urban and Rural Communities. Aerosol Sci. Technol. 2004, 38, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Ares, Á.; Ángel Fernández, J.; Ramón Aboal, J.; Carballeira, A. Study of the Air Quality in Industrial Areas of Santa Cruz de Tenerife (Spain) by Active Biomonitoring with Pseudoscleropodium Purum. Ecotoxicol. Environ. Saf. 2011, 74, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Cipro, C.V.Z.; Yogui, G.T.; Bustamante, P.; Taniguchi, S.; Sericano, J.L.; Montone, R.C. Organic Pollutants and Their Correlation with Stable Isotopes in Vegetation from King George Island, Antarctica. Chemosphere 2011, 85, 393–398. [Google Scholar] [CrossRef] [Green Version]
- De Nicola, F.; Murena, F.; Costagliola, M.A.; Alfani, A.; Baldantoni, D.; Prati, M.V.; Sessa, L.; Spagnuolo, V.; Giordano, S. A Multi-Approach Monitoring of Particulate Matter, Metals and PAHs in an Urban Street Canyon. Environ. Sci. Pollut. Res. 2013, 20, 4969–4979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zhang, Q.-H.; Wang, T.; Chen, W.-H.; Ren, D.-W.; Li, Y.-M.; Jiang, G.-B. PCBs and PBDEs in Environmental Samples from King George Island and Ardley Island, Antarctica. RSC Adv. 2012, 2, 1350–1355. [Google Scholar] [CrossRef]
- Wappelhorst, O.; Kühn, I.; Oehlmann, J.; Markert, B. Deposition and Disease: A Moss Monitoring Project as an Approach to Ascertaining Potential Connections. Sci. Total Environ. 2000, 249, 243–256. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Olszowski, T.; Prokop, M.; Kłos, A. Application of Mosses to Identification of Emission Sources of Polycyclic Aromatic Hydrocarbons/Wykorzystanie Mchów Do Identyfikacji Źródeł Emisji Wielopierścieniowych Węglowodorów Aromatycznych. Ecol. Chem. Eng. S 2012, 19, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Carballeira, A.; Ángel Fernández, J.; Aboal, J.R.; Real, C.; Couto, J.A. Moss: A Powerful Tool for Dioxin Monitoring. Atmos. Environ. 2006, 40, 5776–5786. [Google Scholar] [CrossRef]
- Fernandes, G.M.; Martins, D.A.; dos Santos, R.P.; de Santiago, I.S.; Nascimento, L.S.; Oliveira, A.H.B.; Yamamoto, F.Y.; Caval-cante, R.M. Levels, Source Appointment, and Ecological Risk of Petroleum hydrocarbons in Tropical Coastal Ecosystems (North-east Brazil): Baseline for Future Monitoring Programmes of an Oil Spill Area. Environ. Pollut. 2022, 296, 118709. [Google Scholar] [CrossRef]
- Ratola, N.; Amigo, J.M.; Alves, A. Comprehensive Assessment of Pine Needles as Bioindicators of PAHs Using Multivariate Analysis. The Importance of Temporal Trends. Chemosphere 2010, 81, 1517–1525. [Google Scholar] [CrossRef]
- Viskari, E.-L.; Rekilä, R.; Roy, S.; Lehto, O.; Ruuskanen, J.; Kärenlampi, L. Airborne Pollutants along a Roadside: Assessment Using Snow Analyses and Moss Bags. Environ. Pollut. 1997, 97, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Krommer, V.; Zechmeister, H.G.; Roder, I.; Scharf, S.; Hanus-Illnar, A. Monitoring Atmospheric Pollutants in the Biosphere Reserve Wienerwald by a Combined Approach of Biomonitoring Methods and Technical Measurements. Chemosphere 2007, 67, 1956–1966. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, B.; Dhal, N.K.; Dash, A.K.; Panda, B.P.; Panigrahi, K.C.S.; Pradhan, A. Perspective of Mitigating Atmospheric Heavy Metal Pollution: Using Mosses as Biomonitoring and Indicator Organism. Environ. Sci. Pollut. Res. 2019, 26, 29620–29638. [Google Scholar] [CrossRef] [PubMed]
- Świsłowski, P.; Nowak, A.; Rajfur, M. The Influence of Environmental Conditions on the Lifespan of Mosses under Long-Term Active Biomonitoring. Atmos. Pollut. Res. 2021, 12, 101203. [Google Scholar] [CrossRef]
- Lazo, P.; Qarri, F.; Bekteshi, L.; Allajbeu, S.; Frontasyeva, M.; Stafilov, T.; Harmens, H. Pollution Characterization of Atmospheric Deposition for Assessing Air Quality in Albania by Using Most Toxic Heavy Metal, Moss as Bioindicator, ICP/AES and ENAA Analysis. In Proceedings of the 2nd CAPERMED Meeting, Brescia, Italy, 28–30 June 2016. [Google Scholar]
- Manning, W.J.; Feder, W.A. Biomonitoring Air Pollutants with Plants; Applied Science Publishers: UK, 1980. [Google Scholar]
- Bargagli, R. Moss and Lichen Biomonitoring of Atmospheric Mercury: A Review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef]
- Zhong, Q.; Du, J.; Puigcorbé, V.; Wang, J.; Wang, Q.; Deng, B.; Zhang, F. Accumulation of Natural and Anthropogenic Radionuclides in Body Profiles of Bryidae, a Subgroup of Mosses. Environ. Sci. Pollut. Res. 2019, 26, 27872–27887. [Google Scholar] [CrossRef]
- Lequy, E.; Siemiatycki, J.; Leblond, S.; Meyer, C.; Zhivin, S.; Vienneau, D.; de Hoogh, K.; Goldberg, M.; Zins, M.; Jacquemin, B. Long-Term Exposure to Atmospheric Metals Assessed by Mosses and Mortality in France. Environ. Int. 2019, 129, 145–153. [Google Scholar] [CrossRef]
- Barkan, V.S.; Lyanguzova, I.V. Concentration of Heavy Metals in Dominant Moss Species as an Indicator of Aerial Technogenic Load. Russ. J. Ecol. 2018, 49, 128–134. [Google Scholar] [CrossRef]
- Callahan, G.; Fillier, T.; Pham, T.H.; Zhu, X.; Thomas, R. The Effects of Clearcut Harvesting on Moss Chloroplast Lipidome and Adaptation to Light Stress during Boreal Forest Regeneration. J. Environ. Manag. 2022, 315, 115126. [Google Scholar] [CrossRef]
- Tesser, T.T.; Bordin, J.; Da Rocha, C.M.; Da Silva, A. Application of the Dry and Wet Biomass of mosses for Phytoremediation of Metals: Batch Experiments. Environ. Chall. 2021, 5, 100382. [Google Scholar] [CrossRef]
- Gürtler, S.; Souza Filho, C.R.; Sanches, I.D.; Alves, M.N.; Oliveira, W.J. Determination of Changes in Leaf and Canopy Spectra of Plants Grown in Soils Contaminated with Petroleum hydrocarbons. ISPRS J. Photogramm. Remote Sens. 2018, 146, 272–288. [Google Scholar] [CrossRef]
- Ávila-Pérez, P.; Ortiz-Oliveros, H.B.; Zarazúa-Ortega, G.; Tejeda-Vega, S.; Villalva, A.; Sánchez-Muñoz, R. Determining of Risk Areas Due to Exposure to Heavy Metals in the Toluca Valley Using Epiphytic Mosses as a Biomonitor. J. Environ. Manag. 2019, 241, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-E.; Cui, J.-M.; Yang, J.-C.; Zhang, Z.-W.; Yuan, M.; Song, C.; Yang, H.; Liu, H.-M.; Wang, C.-Q.; Zhang, H.-Y.; et al. Biomonitoring Heavy Metal Contaminations by Moss Visible Parameters. J. Hazard. Mater. 2015, 296, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Z.; Wang, Z. Bryophyte Communities as Biomonitors of Environmental Factors in the Goujiang Karst Bauxite, Southwestern China. Sci. Total Environ. 2015, 538, 270–278. [Google Scholar] [CrossRef]
- Capozzi, F.; Sorrentino, M.C.; Di Palma, A.; Mele, F.; Arena, C.; Adamo, P.; Spagnuolo, V.; Giordano, S. Implication of Vitality, Seasonality and Specific Leaf Area on PAH Uptake in Moss and Lichen Transplanted in Bags. Ecol. Indic. 2020, 108, 105727. [Google Scholar] [CrossRef]
- Desalme, D.; Binet, P.; Chiapusio, G. Challenges in Tracing the Fate and Effects of Atmospheric Polycyclic Aromatic Hydrocarbon Deposition in Vascular Plants. Environ. Sci. Technol. 2013, 47, 3967–3981. [Google Scholar] [CrossRef]
- Terzaghi, E.; Zacchello, G.; Scacchi, M.; Raspa, G.; Jones, K.C.; Cerabolini, B.; Di Guardo, A. Towards More Ecologically Realistic Scenarios of Plant Uptake Modelling for Chemicals: PAHs in a Small Forest. Sci. Total Environ. 2015, 505, 329–337. [Google Scholar] [CrossRef]
- Han, L.; Liu, W.; Zhao, J.; Wang, X. Comparison of Anatomy of the Stems among Ten Species of Mosses. Arid Zone Res. 2003, 20, 20–24. [Google Scholar]
- Capozzi, F.; Adamo, P.; Di Palma, A.; Aboal, J.R.; Bargagli, R.; Fernandez, J.A.; Lopez Mahia, P.; Reski, R.; Tretiach, M.; Spagnuolo, V.; et al. Sphagnum Palustre Clone vs Native Pseudoscleropodium Purum: A First Trial in the Field to Validate the Future of the Moss Bag Technique. Environ. Pollut. 2017, 225, 323–328. [Google Scholar] [CrossRef]
- Campos, M.L.; Prado, G.S.; dos Santos, V.O.; Nascimento, L.C.; Dohms, S.M.; da Cunha, N.B.; Ramada, M.H.S.; Grossi-de-Sa, M.F.; Dias, S.C. Mosses: Versatile Plants for Biotechnological Applications. Biotechnol. Adv. 2020, 41, 107533. [Google Scholar] [CrossRef]
- Giordano, S.; Adamo, P.; Spagnuolo, V.; Tretiach, M.; Bargagli, R. Accumulation of Airborne Trace Elements in Mosses, Lichens and Synthetic Materials Exposed at Urban Monitoring Stations: Towards a Harmonisation of the Moss-Bag Technique. Chemosphere 2013, 90, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Boquete, M.T.; Carballeira, A.; Aboal, J.R. A Critical Review of Protocols for Moss Biomonitoring of Atmospheric Deposition: Sampling and Sample Preparation. Sci. Total Environ. 2015, 517, 132–150. [Google Scholar] [CrossRef] [PubMed]
- Foan, L.; Domercq, M.; Bermejo, R.; Santamaría, J.M.; Simon, V. Mosses as an Integrating Tool for Monitoring PAH Atmospheric Deposition: Comparison with Total Deposition and Evaluation of Bioconcentration Factors. A Year-Long Case-Study. Chemosphere 2015, 119, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucharová, J.; Suchara, I. Atmospheric Deposition Levels of Chosen Elements in the Czech Republic Determined in the Framework of the International Bryomonitoring Program 1995. Sci. Total Environ. 1998, 223, 37–52. [Google Scholar] [CrossRef]
- Bignert, A.; Olsson, M.; Persson, W.; Jensen, S.; Zakrisson, S.; Litzén, K.; Eriksson, U.; Häggberg, L.; Alsberg, T. Temporal Trends of Organochlorines in Northern Europe, 1967–1995. Relation to Global Fractionation, Leakage from Sediments and International Measures. Environ. Pollut. 1998, 99, 177–198. [Google Scholar] [CrossRef]
- Carlberg, G.E.; Baumann Ofstad, E.; Drangholt, H.; Steinnes, E. Atmospheric deposition of organic micropollutants in Norway studied by means of moss and lichen analysis. Chemosphere 1983, 12, 341–356. [Google Scholar] [CrossRef]
- Lead, W.; Steinnes, E.; Jones, K.C. Atmospheric deposition of PCBs to moss (Hylocomium splendens) in Norway between 1977 and 1990. Environ. Sci. Technol 1996, 30, 524–530. [Google Scholar] [CrossRef]
- Villeneuve, J.-P.; Fogelqvist, E.; Cattini, C. Lichens as bioindicators for atmospheric pollution by chlorinated hydrocarbons. Chemosphere 1988, 17, 399–403. [Google Scholar] [CrossRef]
- Augusto, S.; Máguas, C.; Banquinho, C. Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: Potential for intercalibration. Ecotoxicology 2009, 18, 1036–1042. [Google Scholar] [CrossRef]
- Augusto, S.; Máguas, C.; Matos, J.; Pereira, M.J.; Branquinho, C. Lichen as an integrating tool for monitoring PAH atmospheric deposition: A comparison with soil, air and pine needles. Environ. Pollut 2010, 158, 483–489. [Google Scholar] [CrossRef]
- Hellström, A. Uptake of Airborne Organic Pollutants in Pine Needles: Geographical and Seasonal Variations. Ph.D. Dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2003. [Google Scholar]
- Kylin, H.; Söderkvist, K.; Undeman, A.; Franich, R. Seasonal variation of the terpene content, an overlooked factor in the determination of environmental pollutants in pine needles Bull. Environ. Contam. Toxicol 2002, 68, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Kylin, H.; Sjödin, A. Accumulation of airborne hexachlorocyclohexanes and DDT in pine needles. Environ. Sci. Technol 2003, 37, 2350–2355. [Google Scholar] [CrossRef] [PubMed]
- Bringmark, L. Discussion Document 1985–12–19: Monitoring of Organic Contaminants with Mosses and Lichens (in Swedish); Swedish Environmental Protection Agency: Stockholm, Sweden, 1985. [Google Scholar]
- Rühling, Å.; Tyler, G. Ecology of Heavy Metals—A Regional and Historical Study. Bot. Not. 1969, 122, 248–259. [Google Scholar]
- Harmens, H.; Norris, D.; Aboal, J.; Alber, R.; Aleksiayenak, Y.; Ashmore, M.; Barandovski, L.; Berg, T.; Bermejo, V.; Blum, O.; et al. Spatial and Temporal Trends in Heavy Metal Accumulation in Mosses in Europe (1990–2005); Programme Coordination Centre for the ICP Vegetation: Bangor, UK, 2008; ISBN 978-1-85531-239-5. [Google Scholar]
- Colabuono, F.I.; Taniguchi, S.; Cipro, C.V.Z.; da Silva, J.; Bícego, M.C.; Montone, R.C. Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons in Mosses after Fire at the Brazilian Antarctic Station. Mar. Pollut. Bull. 2015, 93, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Cabrerizo, A.; Dachs, J.; Barceló, D.; Jones, K.C. Influence of Organic Matter Content and Human Activities on the Occurrence of Organic Pollutants in Antarctic Soils, Lichens, Grass, and Mosses. Environ. Sci. Technol. 2012, 46, 1396–1405. [Google Scholar] [CrossRef]
- Concha-Graña, E.; Muniategui-Lorenzo, S.; De Nicola, F.; Aboal, J.R.; Rey-Asensio, A.I.; Giordano, S.; Reski, R.; López-Mahía, P.; Prada-Rodríguez, D. Matrix Solid Phase Dispersion Method for Determination of Polycyclic Aromatic Hydrocarbons in Moss. J. Chromatogr. A 2015, 1406, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Aboal, J.R.; Boquete, M.T.; Carballeira, A.; Casanova, A.; Debén, S.; Fernández, J.A. Quantification of the Overall Measurement Uncertainty Associated with the Passive Moss Biomonitoring Technique: Sample Collection and Processing. Environ. Pollut. 2017, 224, 235–242. [Google Scholar] [CrossRef]
- Carballeira, C.B.; Aboal, J.R.; Fernández, J.A.; Carballeira, A. Comparison of the Accumulation of Elements in Two Terrestrial Moss Species. Atmos. Environ. 2008, 42, 4904–4917. [Google Scholar] [CrossRef]
- Schilling, J.S.; Lehman, M.E. Bioindication of Atmospheric Heavy Metal Deposition in the Southeastern US Using the Moss Thuidium Delicatulum. Atmos. Environ. 2002, 36, 1611–1618. [Google Scholar] [CrossRef]
- Gerdol, R.; Bragazza, L.; Marchesini, R.; Alber, R.; Bonetti, L.; Lorenzoni, G.; Achilli, M.; Buffoni, A.; De Marco, N.; Franchi, M.; et al. Monitoring of Heavy Metal Deposition in Northern Italy by Moss Analysis. Environ. Pollut. 2000, 108, 201–208. [Google Scholar] [CrossRef]
- Grodzińska, K.; Szarek-Łukaszewska, G.; Godzik, B. Survey of Heavy Metal Deposition in Poland Using Mosses as Indicators. Sci. Total Environ. 1999, 229, 41–51. [Google Scholar] [CrossRef]
- Foan, L.; Sablayrolles, C.; Elustondo, D.; Lasheras, E.; González, L.; Ederra, A.; Simon, V.; Santamaría, J.M. Reconstructing Historical Trends of Polycyclic Aromatic Hydrocarbon Deposition in a Remote Area of Spain Using Herbarium Moss Material. Atmos. Environ. 2010, 44, 3207–3214. [Google Scholar] [CrossRef]
- Gałuszka, A. Distribution Patterns of PAHs and Trace Elements in Mosses Hylocomium Splendens (Hedw.) B.S.G. and Pleurozium Schreberi (Brid.) Mitt. from Different Forest Communities: A Case Study, South-Central Poland. Chemosphere 2007, 67, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Concha-Graña, E.; Piñeiro-Iglesias, M.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Proposal of a Procedure for the Analysis of Atmospheric Polycyclic Aromatic Hydrocarbons in Mosses. Talanta 2015, 134, 239–246. [Google Scholar] [CrossRef]
- Ötvös, E.; Kozák, I.O.; Fekete, J.; Sharma, V.K.; Tuba, Z. Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) in Mosses (Hypnum Cupressiforme) in Hungary. Sci. Total Environ. 2004, 330, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sen, C.K.; Hänninen, O. Monitoring of Polycyclic Aromatic Hydrocarbons Using ‘Moss Bags’: Bioaccumulation and Responses of Antioxidant Enzymes in Fontinalis Antipyretica Hedw. Chemosphere 1996, 32, 2305–2315. [Google Scholar] [CrossRef]
- Gerdol, R.; Bragazza, L.; Marchesini, R.; Medici, A.; Pedrini, P.; Benedetti, S.; Bovolenta, A.; Coppi, S. Use of Moss (Tortula Muralis Hedw.) for Monitoring Organic and Inorganic Air Pollution in Urban and Rural Sites in Northern Italy. Atmos. Environ. 2002, 36, 4069–4075. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Jones, K.C.; Li, X.; Peng, X.; Qi, S. Compositional Fractionation of Polycyclic Aromatic Hydrocarbons (PAHs) in Mosses (Hypnum Plumaeformae WILS.) from the Northern Slope of Nanling Mountains, South China. Atmos. Environ. 2005, 39, 5490–5499. [Google Scholar] [CrossRef]
- Holoubek, I.; Kořınek, P.; Šeda, Z.; Schneiderová, E.; Holoubková, I.; Pacl, A.; Třıska, J.; Cudlın, P.; Čáslavský, J. The Use of Mosses and Pine Needles to Detect Persistent Organic Pollutants at Local and Regional Scales. Environ. Pollut. 2000, 109, 283–292. [Google Scholar] [CrossRef]
- Ares, A.; Aboal, J.R.; Fernández, J.A.; Real, C.; Carballeira, A. Use of the Terrestrial Moss Pseudoscleropodium Purum to Detect Sources of Small Scale Contamination by PAHs. Atmos. Environ. 2009, 43, 5501–5509. [Google Scholar] [CrossRef]
- Oishi, Y.; Hiura, T. mosses as Bioindicators of the Atmospheric Environment in Urban-Forest Landscapes. Landsc. Urban Plan. 2017, 167, 348–355. [Google Scholar] [CrossRef]
- Chai, Z.; Zhang, M.; Zeng, Q.; Zhang, H.; Jin, J.; Xie, J.; You, T. A High-Top Version of IAP-AGCM: Preliminary Assessment and Sensitivity. Atmos. Ocean. Sci. Lett. 2021, 14, 100025. [Google Scholar] [CrossRef]
- Das, P. Chapter 1—Lichen-Based Index of Atmospheric Purity (IAP) for Biomonitoring of Air. In New Paradigms in Environmental Biomonitoring Using Plants; Tiwari, S., Agrawal, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–26. ISBN 978-0-12-824351-0. [Google Scholar]
- Correa-Ochoa, M.A.; Vélez-Monsalve, L.C.; Saldarriaga-Molina, J.C.; Jaramillo-Ciro, M.M. Evaluation of the Index of Atmospheric Purity in an American Tropical Valley through the Sampling of Corticulous Lichens in Different Phorophyte Species. Ecol. Indic. 2020, 115, 106355. [Google Scholar] [CrossRef]
- Gombert, S.; Asta, J.; Seaward, M.R.D. Assessment of Lichen Diversity by Index of Atmospheric Purity (IAP), Index of Human Impact (IHI) and Other Environmental Factors in an Urban Area (Grenoble, Southeast France). Sci. Total Environ. 2004, 324, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Tregidgo, D.J.; West, S.E.; Ashmore, M.R. Can Citizen Science Produce Good Science? Testing the OPAL Air Survey Methodology, Using Lichens as Indicators of Nitrogenous Pollution. Environ. Pollut. 2013, 182, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Bekteshi, L.; Lazo, P.; Qarri, F.; Stafilov, T. Application of the Normalization Process in the Survey of Atmospheric Deposition of Heavy Metals in Albania through Moss Biomonitoring. Ecol. Indic. 2015, 56, 50–59. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef]
- Foan, L.; Leblond, S.; Thöni, L.; Raynaud, C.; Santamaría, J.M.; Sebilo, M.; Simon, V. Spatial Distribution of PAH Concentrations and Stable Isotope Signatures (Δ13C, Δ15N) in Mosses from Three European Areas—Characterization by Multivariate Analysis. Environ. Pollut. 2014, 184, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.S. New Approach to Areal Sampling in Ecological Surveys. For. Ecol. Manag. 2001, 154, 11–22. [Google Scholar] [CrossRef]
- Buse, A.; Norris, D.; Harmens, H.; Büker, P.; Ashenden, T.; Mill, G. Heavy Metals in European Mosses: 2000/2001 Survey; ICP Vegetation: Bangor, UK, 2003. [Google Scholar]
- Aničić Urošević, M.; Vuković, G.; Jovanović, P.; Vujičić, M.; Sabovljević, A.; Sabovljević, M.; Tomašević, M. Urban Background of atmospheric pollution: Evaluation through Moss Bag Biomonitoring of Trace Elements in Botanical Garden. Urban For. Urban Green. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Capozzi, F.; Giordano, S.; Di Palma, A.; Spagnuolo, V.; De Nicola, F.; Adamo, P. Biomonitoring of Atmospheric Pollution by Moss-bag: Discriminating Urban-Rural Structure in a Fragmented Landscape. Chemosphere 2016, 149, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wegener, J.W.M.; van Schaik, M.J.M.; Aiking, H. Active Biomonitoring of Polycyclic Aromatic Hydrocarbons by Means of Mosses. Environ. Pollut. 1992, 76, 15–18. [Google Scholar] [CrossRef] [PubMed]
PAH | Delhi, India [18] | Hong Kong, China [19] | Sau Paulo, Brazil [20] | Houston, US [21] | Lompoc, US [22] |
---|---|---|---|---|---|
NAP | 13.1 | ND | ND | ND | 15.2 |
ACY | 16.1 | ND | 0.09 | 0.04 | ND |
ACE | 12.7 | ND | 0.35 | 0.01 | 2.56 |
FLU | 17.1 | 0.25 | ND | 0.02 | 8.39 |
PHE | 9.2 | 0.55 | 0.18 | 0.09 | 1.46 |
ANT | 11.2 | 0.01 | ND | 0.02 | 2.05 |
FLT | 6.0 | 5.47 | 0.68 | 0.07 | 4.51 |
PYR | 4.1 | 6.35 | 0.52 | 0.08 | 5.51 |
BbF | 3.4 | 6.64 | 1.23 | 0.05 | 11.7 |
BkF | 1.2 | 0.19 | 0.76 | 0.14 | 5.8 |
BaP | 1.9 | 2.06 | 0.52 | 0.04 | 9.01 |
Mosses Species | Pollutant Type | Symptom |
---|---|---|
Bryum argenteum, Ceretodon Purpud, Glyphomitrium humillimu, Grimmia pulvinata, Hypnum cupressiforme, H. yokohamae var. kusatsuense, Tortula muralis | Sulfur compounds | The cytoplasmic wall was separated and the tissue cells were necrotic. Chlorophyll decomposes downward from the leaf tip until it disappears [33]. |
Aulacomium androgynum, Pohlianutans, Orthotrichaceae | Oxides of carbon, hydrocarbon, carbohydroxides, fluorides, and ozone | Cell wall separation occurs, respiration rate decreases, carotene increases, chloroplasts are slightly damaged, leaf tips turn brown or dark brown, and plants show green deficiency spots [39]. |
Dicranum scopariunm, Entodon compressus, Hyloconium splendens, Isothecium stoloniferum, Philonotis fontana, Pleurozium shreberi, Polytrichum commume, P. juniperinum, P. acutum, Sphagnum rigensohnii, Taxiphyllum taxirameum | Particulate matter | Abnormal nuclear division occurs, spores cannot usually germinate or grow into short or even deformed protonema, chloroplasts in cells decrease, and plants grow abnormally [41]. |
Compounds | Sample | Extraction | Determination | Sensitivity |
---|---|---|---|---|
13 PAHs [78] | Dicranum scopariumHypnum cupressiformeThamnobryum alopecurumThuidium tamariscinum | Soxtec (moss + sodium sulphate + Florisil) | HPLC-FLD | LOQ 3–52 pg instrumental |
16 PAHs [79] | Hylocomium splendensPleurozium scheberi | ASE, DCM | GC–MS | LOQ 1–5 ng g−1 |
19 PAHs [80] | Pseudoscleropodium purum | MAE, 20 mL H: A (90:10) | GC–MS/MS | MQL: 0.1–1.7 ng g−1 |
16 PAHs [81] | Hypnum cupressiforme | Sonication 5 g + 100 mL H:A (1:1), twice | HPLC | NM |
11 PAHs [82] | Fontinalis antipyretica | Soxhlet 200 mL DCM 16 h | HPLC-FLD | NM |
15 PAHs [32] | Pleurozium scheberi | Soxhlet 200 mL DCM 16 h | GC–MS | NM |
18 PAHs [83] | Tortula muralis | Sonication 5 g 30 min, 100 mL H | GC–MS | NM |
16 PAHs [84] | Hypnum plumaeformae | ASE 5 g, 1500 psi, 100 °C, 2 cycles, 5 min DCM:A (1:1) | GC–MS | MDL:3.3–7.8 ng g−1 |
16 PAHs [85] | Hypnum cupressiforme | Soxhlet, 8 h DCM. Sulphuric clean up | GC–MS | 0.3–1 ng g−1 |
16 PAHs [86] | Leptodon smithii | Sonication, 3 g, 3 × 100 mL DCM:A (1:1) | GC–MS | LOD 1–3 ng mL−1 |
Coverage | Frequency of Occurrence | |
---|---|---|
1 | Rare species with low coverage | 0~20% |
2 | Uncommon or low coverage species | 21~40% |
3 | Uncommon or moderately covered species on some trees | 41~60% |
4 | Species with high coverage on some trees | 61~80% |
5 | Common species with high coverage on all trees | 81~100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, G.; Zeng, H.; Zhou, Q. Biomonitoring Atmospheric Pollution of Polycyclic Aromatic Hydrocarbons Using Mosses. Atmosphere 2023, 14, 26. https://doi.org/10.3390/atmos14010026
Gao G, Zeng H, Zhou Q. Biomonitoring Atmospheric Pollution of Polycyclic Aromatic Hydrocarbons Using Mosses. Atmosphere. 2023; 14(1):26. https://doi.org/10.3390/atmos14010026
Chicago/Turabian StyleGao, Guiping, Hui Zeng, and Qixing Zhou. 2023. "Biomonitoring Atmospheric Pollution of Polycyclic Aromatic Hydrocarbons Using Mosses" Atmosphere 14, no. 1: 26. https://doi.org/10.3390/atmos14010026
APA StyleGao, G., Zeng, H., & Zhou, Q. (2023). Biomonitoring Atmospheric Pollution of Polycyclic Aromatic Hydrocarbons Using Mosses. Atmosphere, 14(1), 26. https://doi.org/10.3390/atmos14010026