Hourly Valley Concentration of Air Pollutants Associated with Increased Acute Myocardial Infarction Hospital Admissions in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Gathering
2.2. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Overall and Stratified Effects
3.3. Lag Effect
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the Gbd 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Bishu, K.G.; Lekoubou, A.; Kirkland, E.; Schumann, S.O.; Schreiner, A.; Heincelman, M.; Moran, W.P.; Mauldin, P.D. Estimating the Economic Burden of Acute Myocardial Infarction in the Us: 12 Year National Data. Am. J. Med. Sci. 2020, 359, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Yoon, S.-J.; Yoon, J.; Kim, D.; Gong, Y.; Kim, A.R.; Oh, I.-H.; Kim, E.-J.; Lee, Y.-H. Recent Trends in Economic Burden of Acute Myocardial Infarction in South Korea. PLoS ONE 2015, 10, e0117446. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.; Tabberer, M. Economic burden of post-acute myocardial infarction heart failure in the United Kingdom. Eur. J. Hear. Fail. 2005, 7, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Araújo, D.V.; Bahia, L.; Stella, S.F. The Economic Burden of HIV/AIDS and Myocardial Infarction Treatment in Brazil. Sci. World J. 2013, 2013, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Deng, Q.; Guo, M.; Ezzati, M.; Baumgartner, J.; Bixby, H.; Chan, Q.; Zhao, D.; Lu, F.; Hu, P.; et al. Trends and Inequalities in the Incidence of Acute Myocardial Infarction among Beijing Townships, 2007–2018. Int. J. Environ. Res. Public Heal. 2021, 18, 12276. [Google Scholar] [CrossRef]
- Lederer, A.M.; Fredriksen, P.M.; Nkeh-Chungag, B.N.; Everson, F.; Strijdom, H.; De Boever, P.; Goswami, N. Cardiovascular Effects of Air Pollution: Current Evidence from Animal and Human Studies. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1417–H1439. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, J.; Zhang, Y.; Hu, H.; Hu, W.; Li, L.; Pang, Y.; Ma, S.; Niu, Y.; Zhang, R. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. Sci. Total Environ. 2021, 782, 146855. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.H.; Hvidtfeldt, U.A.; Sørensen, M.; Puett, R.; Ketzel, M.; Brandt, J.; Christensen, J.H.; Geels, C.; Raaschou-Nielsen, O. Components of particulate matter air-pollution and brain tumors. Environ. Int. 2020, 144, 106046. [Google Scholar] [CrossRef] [PubMed]
- Soca-Chafre, G.; Avila-Vásquez, H.; Rueda-Romero, C.; Huerta-García, E.; Márquez-Ramírez, S.G.; Ramos-Godinez, P.; López-Marure, R.; Alfaro-Moreno, E.; Montiel-Dávalos, A. Airborne particulate matter upregulates expression of early and late adhesion molecules and their receptors in a lung adenocarcinoma cell line. Environ. Res. 2021, 198, 111242. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Belova, A.; Brandt, J.; Fann, N.; Greco, S.L.; Guttikunda, S.; Heroux, M.-E.; Hurley, F.; Krzyzanowski, M.; Medina, S.; et al. Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Anal. 2016, 36, 1718–1736. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Fan, C.; Xu, R.; Wang, Y.; Xu, C.; Xie, S.; Zhang, H.; Cui, X.; Peng, Z.; et al. Short-Term Exposure to Ambient Air Pollution and Mortality From Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 271–281. [Google Scholar] [CrossRef]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Pandit, B.N.; Shrivastava, A.; Nath, R.K.; Kuber, D.; Sinha, S.K.; Aggarwal, P. Impact of COVID-19 on Thrombus Burden and Outcome in Acute Myocardial Infarction. Cureus 2021, 13, e16817. [Google Scholar] [CrossRef]
- Santoso, A.; Pranata, R.; Wibowo, A.; Al-Farabi, M.J.; Huang, I.; Antariksa, B. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. Am. J. Emerg. Med. 2020, 44, 352–357. [Google Scholar] [CrossRef]
- Garcia-Lledo, A.; Rodriguez-Martin, S.; Tobias, A.; Garcia-de-Santiago, E.; Ordobas-Gavin, M.; Ansede-Cascudo, J.C.; Alonso-Martin, J.; de Abajo, F.J. Relationship between Influenza, Temperature, and Type 1 Myocardial Infarction: An Ecological Time-Series Study. J. Am. Heart Assoc. 2021, 10, e19608. [Google Scholar] [CrossRef] [PubMed]
- Higuma, T.; Yoneyama, K.; Nakai, M.; Kaihara, T.; Sumita, Y.; Watanabe, M.; Doi, S.; Miyamoto, Y.; Yasuda, S.; Ishibashi, Y.; et al. Effects of Temperature and Humidity on Acute Myocardial Infarction Hospitalization in a Super-Aging Society. Sci. Rep. 2021, 11, 22832. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ma, W.; Law, C.; Luo, J.; Zhao, N. Importance of applying Mixed Generalized Additive Model (MGAM) as a method for assessing the environmental health impacts: Ambient temperature and Acute Myocardial Infarction (AMI), among elderly in Shanghai, China. PLoS ONE 2021, 16, e0255767. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Su, H.; Xu, Z.; Tong, S. Extreme Temperature Exposure and Acute Myocardial Infarction: Elevated Risk within Hours? Environ. Res. 2021, 202, 111691. [Google Scholar] [CrossRef]
- Cowling, B.J.; Wong, I.O.L.; Ho, L.-M.; Riley, S.; Leung, G.M. Methods for monitoring influenza surveillance data. Leuk. Res. 2006, 35, 1314–1321. [Google Scholar] [CrossRef]
- Zhao, Y.; Kong, D.; Fu, J.; Zhang, Y.; Chen, Y.; Liu, Y.; Chang, Z.; Liu, Y.; Liu, X.; Xu, K.; et al. Increased Risk of Hospital Admission for Asthma in Children from Short-Term Exposure to Air Pollution: Case-Crossover Evidence from Northern China. Front. Public Health 2021, 9, 798746. [Google Scholar] [CrossRef] [PubMed]
- Chinese National Influenza Center. “Chinese National Influenza Center”. Available online: http://www.chinaivdc.cn/cnic/ (accessed on 20 August 2022).
- Central People’s Government of the People’s Republic of China. “Central People’s Government of the People’s Republic of China”. Available online: http://www.gov.cn/zhengce/ (accessed on 3 July 2022).
- Lin, H.; Liu, T.; Xiao, J.; Zeng, W.; Guo, L.; Li, X.; Xu, Y.; Zhang, Y.; Chang, J.J.; Vaughn, M.G.; et al. Hourly peak PM2.5 concentration associated with increased cardiovascular mortality in Guangzhou, China. J. Expo. Sci. Environ. Epidemiol. 2016, 27, 333–338. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Li, Y.; Fu, S.; Xu, X.; Li, L.; Zhou, J.; Liu, X.; He, X.; Yan, J.; et al. Airborne particulate matter, population mobility and COVID-19: A multi-city study in China. BMC Public Health 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Lin, H.; Tao, J.; Du, Y.; Liu, T.; Qian, Z.; Tian, L.; Di, Q.; Rutherford, S.; Guo, L.; Zeng, W.; et al. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China. Environ. Pollut. 2016, 208, 758–766. [Google Scholar] [CrossRef]
- Chu, H.; Xin, J.; Yuan, Q.; Wang, M.; Cheng, L.; Zhang, Z.; Lu, M. The effects of particulate matters on allergic rhinitis in Nanjing, China. Environ. Sci. Pollut. Res. 2019, 26, 11452–11457. [Google Scholar] [CrossRef]
- Argacha, J.; Collart, P.; Wauters, A.; Kayaert, P.; Lochy, S.; Schoors, D.; Sonck, J.; de Vos, T.; Forton, M.; Brasseur, O.; et al. Air pollution and ST-elevation myocardial infarction: A case-crossover study of the Belgian STEMI registry 2009–2013. Int. J. Cardiol. 2016, 223, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Davoodabadi, Z.; Soleimani, A.; Pourmoghaddas, A.; Hosseini, S.M.; Jafari-Koshki, T.; Rahimi, M.; Shishehforoush, M.; Lahijanzadeh, A.; Sadeghian, B.; Moazam, E.; et al. Correlation between air pollution and hospitalization due to myocardial infarction. ARYA 2019, 15, 161–167. [Google Scholar]
- Dai, L.; Zanobetti, A.; Koutrakis, P.; Schwartz, J.D. Associations of Fine Particulate Matter Species with Mortality in the United States: A Multicity Time-Series Analysis. Environ. Health Perspect. 2014, 122, 837–842. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Hopke, P.K.; Ferrante, M.; De Marco, A.; Sicard, P.; Conti, G.O.; Goudarzi, G.; Basiri, H.; Mohammadi, M.J.; et al. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ. Res. 2017, 156, 683–687. [Google Scholar] [CrossRef]
- Ren, C.; Schwartz, J.; Melly, S. Modifiers of Short-Term Effects of Ozone on Mortality in the Eastern Massachusetts—A Case-Crossover Analysis at Individual Level. Epidemiology 2009, 20, S164. [Google Scholar] [CrossRef] [Green Version]
- Milojevic, A.; Wilkinson, P.; Armstrong, B.; Bhaskaran, K.; Smeeth, L.; Hajat, S. Short-Term Effects of Air Pollution on a Range of Cardiovascular Events in England and Wales: Case-Crossover Analysis of the Minap Database, Hospital Admissions and Mortality. Heart 2014, 100, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Wilkinson, P.; Smeeth, L. Cardiovascular Consequences of Air Pollution: What are the Mechanisms? Heart 2011, 97, 519–520. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Kashani, H.; Faridi, S.; Kunzli, N.; Nabizadeh, R.; Momeniha, F.; Gholampour, A.; Arhami, M.; Zare, A.; et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ. Pollut. 2017, 223, 695–704. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Yao, Y.; Liu, Q.; Pang, Y.; Tang, M. Ambient particulate matter triggers defective autophagy and hijacks endothelial cell renewal through oxidative stress-independent lysosomal impairment. Environ. Pollut. 2021, 286, 117295. [Google Scholar] [CrossRef]
- Madsen, C.; Rosland, P.; Hoff, D.A.; Nystad, W.; Nafstad, P.; Naess, O.E. The short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway. Eur. J. Epidemiol. 2012, 27, 717–727. [Google Scholar] [CrossRef]
- Yunginger, J.W.; Reed, C.E.; O’Connell, E.J.; Melton, L.J.; O’Fallon, W.M.; Silverstein, M.D. A Community-Based Study of the Epidemiology of Asthma. Incidence Rates, 1964–1983. Am. Rev. Respir. Dis. 1992, 146, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Hu, S.C. Regional deposition of inhaled particles in human lungs: Comparison between men and women. J. Appl. Physiol. 1998, 84, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wei, J.; Liu, T.; Li, Y.; Yang, C.; Shi, C.; Chen, G.; Zhou, Y.; Sun, H.; Liu, Y. Association of short-term exposure to ambient PM1 with total and cause-specific cardiovascular disease mortality. Environ. Int. 2022, 169, 107519. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.; Dunster, C.; Mudway, I. Air pollution and the elderly: Oxidant/antioxidant issues worth consideration. Eur. Respir. J. 2003, 21, 70S–75S. [Google Scholar] [CrossRef] [Green Version]
- Kan, H.; London, S.; Chen, G.; Zhang, Y.; Song, G.; Zhao, N.; Jiang, L.; Chen, B. Season, Sex, Age, and Education as Modifiers of the Effects of Outdoor Air Pollution on Daily Mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. Environ. Health Perspect. 2008, 116, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Z.; Liu, F.; Li, B.; Li, N.; Yu, H.; Wang, Y.; Tang, H.; Chen, X.; Lu, Y.; Cheng, Z.; et al. Acute effect of ambient fine particulate matter on heart rate variability: An updated systematic review and meta-analysis of panel studies. Environ. Health Prev. Med. 2020, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shields, K.N.; Cavallari, J.M.; Hunt, M.J.; Lazo, M.; Molina, L.; Holguin, F. Traffic-Related Air Pollution Exposures and Changes in Heart Rate Variability in Mexico City: A Panel Study. Environ. Health 2013, 12, 7. [Google Scholar] [CrossRef]
Variable | Observation Days | Mean ± SD | Percentiles | ||||
---|---|---|---|---|---|---|---|
Min | P25 | P50 | P75 | Max | |||
Daily AMI count | |||||||
Total | 2071 | 60.24 ± 14.32 | 24 | 49 | 60 | 70 | 110 |
Age < 65 | 2071 | 27.89 ± 7.04 | 7 | 23 | 28 | 32 | 58 |
Age ≥ 65 | 2071 | 32.35 ± 9.54 | 8 | 25 | 32 | 39 | 68 |
Male | 2071 | 41.81 ± 10.60 | 13 | 34 | 41 | 49 | 85 |
Female | 2071 | 18.44 ± 5.72 | 4 | 14 | 18 | 22 | 41 |
Meteorological factors | |||||||
Temperature (°C) | 2070 | 14.34 ± 11.21 | −14.3 | 3.3 | 16.1 | 24.7 | 32.6 |
Relative humidity (%) | 2070 | 51.14 ± 19.92 | 8 | 35 | 51 | 67 | 99 |
Air pollutants | |||||||
PM2.5 valley (μg/m3) | 2049 | 38.01 ± 43.79 | 2.45 | 10.25 | 23.56 | 48.06 | 400.43 |
PM2.5 mean (μg/m3) | 2049 | 64.60 ± 57.58 | 4.31 | 25.80 | 48.25 | 83.34 | 439.81 |
PM2.5 peak (μg/m3) | 2049 | 100.83 ± 81.16 | 6.03 | 45.19 | 78.91 | 131.20 | 640.57 |
PM10 valley (μg/m3) | 2044 | 54.72 ± 49.61 | 2.00 | 20.19 | 38.85 | 74.32 | 471.43 |
PM10 mean (μg/m3) | 2044 | 96.21 ± 68.42 | 5.63 | 50.06 | 79.17 | 122.17 | 830.72 |
PM10 peak (μg/m3) | 2044 | 153.90 ± 116.42 | 8.80 | 86.28 | 125.62 | 185.20 | 1680.26 |
NO2 valley (μg/m3) | 2050 | 27.26 ± 18.33 | 3.91 | 14.60 | 22.00 | 33.79 | 130.69 |
NO2 mean (μg/m3) | 2050 | 45.26 ± 20.50 | 9.12 | 31.27 | 41.22 | 54.63 | 146.46 |
NO2 peak (μg/m3) | 2050 | 66.95 ± 26.02 | 11.53 | 49.44 | 64.03 | 79.88 | 179.65 |
SO2 valley (μg/m3) | 2050 | 5.24 ± 6.00 | 1.59 | 2.32 | 3.03 | 5.47 | 57.67 |
SO2 mean (μg/m3) | 2050 | 9.51 ± 10.16 | 2.03 | 3.27 | 5.85 | 11.10 | 82.10 |
SO2 peak (μg/m3) | 2050 | 16.24 ± 16.88 | 2.09 | 5.48 | 10.77 | 19.98 | 213.77 |
CO valley (mg/m3) | 2026 | 0.65 ± 0.60 | 0.16 | 0.31 | 0.50 | 0.75 | 7.13 |
CO mean (mg/m3) | 2026 | 1.01 ± 0.81 | 0.21 | 0.55 | 0.81 | 1.15 | 7.72 |
CO peak (mg/m3) | 2026 | 1.48 ± 1.16 | 0.29 | 0.80 | 1.16 | 1.74 | 13.29 |
O3 valley (μg/m3) | 2050 | 19.50 ± 16.79 | 1.71 | 6.57 | 14.09 | 27.57 | 156.70 |
O3 mean (μg/m3) | 2050 | 59.38 ± 36.60 | 3.30 | 30.21 | 53.87 | 81.85 | 173.98 |
O3 peak (μg/m3) | 2050 | 107.83 ± 65.78 | 4.21 | 59.59 | 91.00 | 153.38 | 334.32 |
Variable | Total | Age < 65 | Age ≥ 65 | Male | Female |
---|---|---|---|---|---|
PM2.5 valley | 0.5 (0.35–0.66) | 0.29 (0.07–0.52) | 0.69 (0.48–0.89) | 0.41 (0.23–0.59) | 0.71 (0.44–0.98) |
PM2.5 mean | 0.43 (0.3–0.55) | 0.32 (0.14–0.5) | 0.53 (0.37–0.7) | 0.34 (0.2–0.49) | 0.62 (0.4–0.84) |
PM2.5 peak | 0.25 (0.17–0.34) | 0.23 (0.11–0.35) | 0.28 (0.17–0.39) | 0.2 (0.1–0.3) | 0.37 (0.23–0.52) |
PM10 valley | 0.44 (0.32–0.56) | 0.23 (0.05–0.41) | 0.64 (0.48–0.8) | 0.37 (0.23–0.52) | 0.61 (0.39–0.82) |
PM10 mean | 0.3 (0.21–0.39) | 0.24 (0.11–0.37) | 0.36 (0.24–0.48) | 0.26 (0.15–0.36) | 0.4 (0.24–0.55) |
PM10 peak | 0.11 (0.06–0.16) | 0.11 (0.04–0.19) | 0.12 (0.05–0.18) | 0.09 (0.03–0.15) | 0.16 (0.07–0.25) |
NO2 valley | 0.84 (0.47–1.22) | 0.39 (−0.16–0.95) | 1.25 (0.74–1.76) | 0.48 (0.03–0.93) | 1.66 (0.99–2.34) |
NO2 mean | 0.87 (0.54–1.2) | 0.49 (0–0.97) | 1.22 (0.77–1.67) | 0.55 (0.16–0.95) | 1.59 (0.99–2.18) |
NO2 peak | 0.7 (0.45–0.95) | 0.37 (0.01–0.73) | 1 (0.66–1.34) | 0.44 (0.14–0.74) | 1.27 (0.82–1.72) |
SO2 valley | 1.86 (0.73–3.01) | 0.33 (−1.33–2.02) | 3.09 (1.55–4.66) | 0.4 (−0.97–1.79) | 4.9 (2.88–6.95) |
SO2 mean | 1.05 (0.33–1.77) | 0.34 (−0.71–1.4) | 1.62 (0.65–2.6) | 0.16 (−0.71–1.03) | 2.92 (1.65–4.2) |
SO2 peak | 0.47 (0.05–0.9) | 0.14 (−0.49–0.78) | 0.74 (0.17–1.32) | 0.06 (−0.46–0.57) | 1.35 (0.6–2.11) |
CO valley | 44.6 (28.99–62.1) | 20.89 (1.99–43.29) | 69.6 (45.52–97.67) | 26.53 (10.1–45.4) | 93.66 (58.69–136.34) |
CO mean | 37.5 (25.37–50.8) | 21.34 (5.83–39.14) | 53.09 (35.21–73.33) | 22.31 (9.32–36.83) | 76.7 (50.35–107.67) |
CO peak | 23.64 (16.28–31.46) | 18.2 (7.96–29.41) | 28.34 (18.09–39.48) | 15.69 (7.39–24.64) | 42.61 (28.08–58.79) |
O3 valley | −0.34 (−0.74–0.06) | 0.04 (−0.54–0.63) | −0.68 (−1.24–−0.13) | −0.06 (−0.55–0.42) | −1.02 (−1.75–−0.29) |
O3 mean | −0.01 (−0.29–0.27) | 0.06 (−0.34–0.46) | −0.12 (−0.5–0.26) | 0.2 (−0.13–0.54) | −0.55 (−1.05–−0.05) |
O3 peak | 0.08 (−0.07–0.22) | −0.04 (−0.24–0.17) | 0.15 (−0.05–0.35) | 0.12 (−0.05–0.3) | −0.07 (−0.34–0.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Liu, Y.; Zhao, Y.; Tang, S.; Chen, Y.; Liu, Y.; Han, Y.; Fan, Z. Hourly Valley Concentration of Air Pollutants Associated with Increased Acute Myocardial Infarction Hospital Admissions in Beijing, China. Atmosphere 2023, 14, 27. https://doi.org/10.3390/atmos14010027
Fu J, Liu Y, Zhao Y, Tang S, Chen Y, Liu Y, Han Y, Fan Z. Hourly Valley Concentration of Air Pollutants Associated with Increased Acute Myocardial Infarction Hospital Admissions in Beijing, China. Atmosphere. 2023; 14(1):27. https://doi.org/10.3390/atmos14010027
Chicago/Turabian StyleFu, Jia, Yanbo Liu, Yakun Zhao, Siqi Tang, Yuxiong Chen, Yijie Liu, Yitao Han, and Zhongjie Fan. 2023. "Hourly Valley Concentration of Air Pollutants Associated with Increased Acute Myocardial Infarction Hospital Admissions in Beijing, China" Atmosphere 14, no. 1: 27. https://doi.org/10.3390/atmos14010027
APA StyleFu, J., Liu, Y., Zhao, Y., Tang, S., Chen, Y., Liu, Y., Han, Y., & Fan, Z. (2023). Hourly Valley Concentration of Air Pollutants Associated with Increased Acute Myocardial Infarction Hospital Admissions in Beijing, China. Atmosphere, 14(1), 27. https://doi.org/10.3390/atmos14010027